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AN ESTIMATE FOR THE GAUSS-KRONECKER CURVATURE

OF 3-DIMENSIONAL SMOOTH HYPERSURFACES IN E4

BOGDAN D. SUCEAVĂ

(Communicated by Kazım İLARSLAN)

Abstract. We give two alternate proofs of B.-Y. Chen’s inequality with clas-

sical curvature invariants for 3-dimensional hypersurfaces in E4. Then, by using
an idea described by Cvetkovski, we obtain an estimate of the Gauss-Kronecker

curvature of a three-dimensional smooth hypersurface in the four dimensional

Euclidean space in function of its mean curvature and its scalar curvature.

1. Introduction

There are many fundamental properties of real numbers that contribute essen-
tially to the special geometric properties that the dimension 3 objects have. In the
present paper we use the fact that the derivative of a cubic equation is a quadratic
function, whose properties can be controlled. By using this fundamental fact, we
prove an inequality in terms of curvature invariants of a hypersurface in a four
dimensional Euclidean ambient.

First, we remind some classical notations in the differential geometry of smooth
hypersurfaces. Let σ : U ⊂ Rn → Rn+1 be a hypersurface given by the smooth
map σ. Let p be a point on the hypersurface. Denote σk(p) = ∂σ

∂xk
, for all k from 1

to n. Consider {σ1(p), σ2(p), ..., σn(p), N(p)}, the Gauss frame of the hypersurface,
where N denotes the normal vector field. We denote by gij(p) the coefficients of
the first fundamental form and by hij(p) the coefficients of the second fundamental
form. Then we have

gij(p) = 〈σi(p), σj(p)〉, hij(p) = 〈N(p), σij(p)〉.
The Weingarten map Lp = −dNp ◦ dσ−1

p : Tσ(p)σ → Tσ(p)σ is linear. Denote by

(hij(p))1≤i,j≤n the matrix associated to Weingarten’s map, that is:

Lp(σi(p) = hki (p)σk(p),

where the repeated index and upper script above indicates Einstein’s summation
convention. Weingerten’s operator is self-adjoint, which implies that the roots of

Date: Received: April 3, 2014 and Accepted: May 27, 2014.

2010 Mathematics Subject Classification. Primary 53B25, 53B20; Secondary 53B21.
Key words and phrases. principal curvatures, scalar curvature, shape operator, umbilical hy-

persurfaces, mean curvature, Gauss-Kronecker curvature.

1



2 BOGDAN D. SUCEAVĂ

the algebraic equation
det(hij(p)− λ(p)δij) = 0

are real. The eigenvalues of Weingarten’s linear map are called principal curvatures
of the hypersurface. They are the roots λ1(p), λ2(p), ..., λn(p) of this algebraic
equation. The mean curvature at the point p is

H(p) =
1

n
[λ1(p) + ...+ λn(p)],

and the Gauss-Kronecker curvature is

K(p) = λ1(p)λ2(p)...λn(p).

If M is a submanifold of a Riemannian manifold M , and if their sectional cur-
vatures are sec and sec, respectively, then from the Gauss equation (see e.g. [9],
pg.131) we have:

sec(ei ∧ ej)− sec(ei ∧ ej) = λiλj .

If the ambient space is Euclidean, then sec(ei ∧ ej) = 0 at every point, in
every planar direction. This means that the scalar curvature of a hypersurface in
Euclidean ambient space at point p ∈Mn is

scal(p) =
∑
i<j

sec(ei ∧ ej) =
∑
i<j

λiλj .

The normalized scalar curvature is ρ = (n2 )−1scal.
In [13] it was proved that for a hypersurface Mn in a Riemannian (n+1)-manifold

M̄n+1, at every point p ∈M the following inequality holds:

(1.1) scal(p) ≤ n(n− 1)

2
H2 +

∑
i<j

sec(ei ∧ ej),

where scal is the scalar curvature of M at p, H is the mean curvature at p, and
sec(ei ∧ ej) is the sectional curvature on the plane generated by vectors ei and ej
tangent to the ambient space M̄ .

The equality holds at p if and only if p is an umbilical point.
This inequality was also studied in [12]. For a general formulation in pseudo-

Riemannian ambient spaces, see e.g. [6] pp.36-37, where the same fact is derived
as a consequence of Gauss’ equation and Cauchy-Schwarz inequality. In [13] it is
shown how from the inequality (1.1) one may derive Chen’s inequality with classical
curvature invariants, proved originally by B.-Y. Chen in 1996.

Theorem 1.1. [3] Let ρ = 2 scal(p)/n(n− 1) denote the normalized scalar cur-
vature of a hypersurface Mn isometrically immersed in a Riemannian space form
Rn+1(ε). Then we have the inequality:

(1.2) ρ ≤ H2 + ε,

at every point p ∈M.
The equality holds if and only if p is an umbilical point.

The general form of this result, for submanifolds of arbitrary codimension, is
Proposition 2.5 in [6].

In the particular case when the ambient space is Euclidean, we have ε = 0. We
provide below two alternate proof for this inequality for three-dimensional hyper-
surfaces in four-dimensional Euclidean ambient space. For further discussion see
also [15].
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This present development is a natural continuation of the study of new curvature
invariants, as it was inspired by the ideas considered by B.-Y. Chen in [2, 4, 5]. For
the whole vision of this research direction, the most comprehensive reference is the
recent monograph [6]. For recent explorations of various inequalities of algebraic
or analytic inspiration that yield geometric consequences in terms of curvature
invariants, see [1, 7, 14], all inspired by the philosophy developed in [6].

2. Chen’s Fundamental Inequality with Classical Curvature
Invariants for Hypersurfaces of Dimension Three

We focus now on a particular case of Theorem 1.1, namely the following.

Corollary 2.1. Let M3 ⊂ R4 be a smooth hypersurface and λ1, λ2, λ3 be its
principal curvatures in the ambient space R4 endowed with the canonical met-
ric. Let p ∈ M be an arbitrary point. Denote by H(p) = 1

3 (λ1 + λ2 + λ3)
the mean curvature, by scal(p) = sec(e1 ∧ e2) + sec(e3 ∧ e1) + sec(e2 ∧ e3) =
λ1(p)λ2(p) + λ3(p)λ1(p) + λ2(p)λ3(p) the scalar curvature at the point p ∈ M3.
Then

H2(p) ≥ ρ(p),

with equality if and only if the point is umbilical, i.e. when λ1(p) = λ2(p) = λ3(p).

Alternate proof 1: We have

9H2 = (3H)2 = (λ1 + λ2 + λ3)2 = λ2
1 + λ2

2 + λ2
3 + 2(λ1λ2 + λ3λ1 + λ2λ3) ≥

≥ 3(λ1λ2 + λ3λ1 + λ2λ3),

this last inequality holds true since

λ2
1 + λ2

2 + λ2
3 ≥ λ1λ2 + λ3λ1 + λ2λ3,

and in this inequality equality holds if and only if λ1 = λ2 = λ3. From Gauss’s
equation, we express the scalar curvature of the hypersurface M3 as

scal = λ1λ2 + λ3λ1 + λ2λ3.

This yields 9H2 ≥ 3scal. The normalized scalar curvature in dimension three is
ρ = 1

3scal, therefore H2 ≥ ρ, with equality if and only if the point is an umbilic. �
Alternate proof 2: For some arbitrary point p ∈M3, consider the cubic equation

that has as roots the real numbers λ1, λ2, λ3. Namely, by using Viète’s formulae,
consider:

f(x) = x3 − 3Hx2 + scal · x−K = 0.

This is a differentiable function in the variable x, and its derivative is

f ′(x) = 3x2 − 6Hx+ scal = 0.

Since the variable x is real, the discriminant of this quadratic function must be
nonnegative, thus

36H2 − 4 · 3 · scal ≥ 0,

thus 3H2 − scal ≥ 0, which means we obtain again H2 ≥ ρ. �
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3. An Estimate for Gauss-Kronecker Curvature

In this section we apply the technique described by Cvetkovski in Chapter 15 in
his recent interesting volume [8] to prove the following.

Theorem 3.1. LetM3 ⊂ R4 be a smooth hypersurface and λ1, λ2, λ3 be its principal
curvatures in the ambient space R4 endowed with the canonical metric. Let p ∈M
be an arbitrary point. Denote by H(p) = 1

3 (λ1 + λ2 + λ3) the mean curvature,
by scal(p) = sec(e1 ∧ e2) + sec(e3 ∧ e1) + sec(e2 ∧ e3) = λ1(p)λ2(p) + λ3(p)λ1(p) +
λ2(p)λ3(p) the scalar curvature at the point p ∈M3, and by K(p) = λ1(p)λ2(p)λ3(p)
the Gauss-Kronecker curvature of the hypersurface. Then(

H +
q

3

)(
−H2 − 1

3
Hq +

2

3
scal

)
≤ K ≤

(
H − q

3

)(
−H2 +

1

3
Hq +

2

3
scal

)
,

where q =
√

9H2 − 9ρ =
√

9H2 − 3 scal. The equality holds if and only if the point
is semi-umbilical, i.e. if the following holds

(λ1(p)− λ2(p))(λ3(p)− λ1(p))(λ2(p)− λ3(p)) = 0.

Proof: Note first that 9H2 − 9ρ ≥ 0 is a consequence of Chen’s fundamental
inequality with classical curvature invariants, explored in the previous section, so
it makes sense to take q2 = 9H2 − 9ρ.

If q = 0 at p ∈ M , then, by the equality case in Chen’s fundamental inequality
with classical curvature invariants, p is an umbilical point. In this case, the double
inequality in the statement turns out to be an identity:

K = −H3 +
2

3
scal ·H,

which reduces immediately to 2λ3 = 2λ3.
Now assume that p is not an umbilical point, i.e. q > 0 at p ∈M.
Consider the function given by the real polynomial of degree three whose roots

at every point at the principal curvatures of the hypersurface:

f(x) = (x− λ1)(x− λ2)(x− λ3) = x3 − 3Hx2 + scal · x−K.
Then the derivative of f is the quadratic function

f ′(x) = 3x2 − 6Hx+ scal.

The equation f ′(x) = 0 has the real roots:

x1,2 =
6H ±

√
36H2 − 12 · scal

6
= H ± q

3
.

Denote by x1 = H + q
3 , and by x2 = H − q

3 , that is x2 ≤ x1. Remark that the
second derivative is

f ′′(x) = 6x− 6H,

and this yields

f ′′(x1) = 6
(
H +

q

3

)
− 6H = 2q > 0,

which means that f has a local minimum at x1. Similarly,

f ′′(x2) = 6
(
H − q

3

)
− 6H = −2q < 0,

and this means that the original function f has a local maximum at x2. So, f is a
polynomial of degree three, with three real roots. This means the local minimum
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must have a nonpositive value, while the local maximum must have a nonnegative
value:

f

(
3H − q

3

)
≥ 0, f

(
3H + q

3

)
≤ 0.

By evaluating f at these two values corresponding to x2 and x1, respectively, we
have: (

3H − q
3

)3

− 3H

(
3H − q

3

)2

+ scal ·
(

3H − q
3

)
−K ≥ 0,(

3H + q

3

)3

− 3H

(
3H + q

3

)2

+ scal ·
(

3H + q

3

)
−K ≤ 0.

By joining these two inequalities, we have:(
3H + q

3

)3

− 3H

(
3H + q

3

)2

+ scal ·
(

3H + q

3

)
≤ K ≤

≤
(

3H − q
3

)3

− 3H

(
3H − q

3

)2

+ scal ·
(

3H − q
3

)
.

A direct computation shows that the upper bound is:(
H − q

3

)[(
H − q

3

)2

− 3H
(
H − q

3

)
+ scal

]
=

=
(
H − q

3

)[
H2 − 2

3
Hq +

q2

9
− 3H2 +Hq + scal

]
=

=
(
H − q

3

)[
−2H2 +

1

3
Hq +

9H2 − 3 · scal
9

+ scal

]
.

This last expression reduces to the right hand side term in the double inequality
stated in the Theorem. The expression in the lower bound is obtained by a similar
computation.

To complete the proof, we need to discuss now when the equality holds in the
two stated inequalities. Equality holds in either of the two inequalities when we
have either

f

(
3H − q

3

)
= 0,

or

f

(
3H + q

3

)
= 0.

Suppose f
(

3H−q
3

)
= 0. Then f(x) = (x− λ1)(x− λ2)(x− λ3), which means that

3H−q
3 should be one of the roots. Suppose 3H−q

3 = λ1. Then we get λ2+λ3−q = 2λ1.
By squaring both sides in

λ2 + λ3 − 2λ1 =
√

9H2 − 3 · scal
we obtain

3λ2
1 + 3λ2λ3 − 3λ1λ2 − 3λ1λ3 = 0,

which factors as (λ1−λ2)(λ1−λ3) = 0, which means that at least a second principal
curvature λ2 or λ3 must equal λ1, and this can be written as

(λ1(p)− λ2(p))(λ3(p)− λ1(p))(λ2(p)− λ3(p)) = 0.

The case f
(

3H+q
3

)
= 0 yields a similar conclusion. �
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There are many examples of hypersurfaces satisfying the semi-umbilicity condi-
tion at every point, e.g. S2 × R, or S1 × R2.

A nontrival example is mentioned by Hasanis and Vlachos in [11], in Proposition
4.1. In their example, for that class of hypersurfaces in R4, the principal curvatures
are λ1 = λ2 = 9H

4 , and λ3 = − 3H
2 .

It is possible that some techniques in the classical theory of inequalities, as it is
presented in classical references e.g. [10], may yield inequalities whose geometric
interpretation encodes information in terms of curvature invariants. Some of these
connections are still to be explored.
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