INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 7 NO. 2 PP. 7-17 (2014) ©IEJG

PARACOMPLEX LIGHTLIKE SUBMANIFOLDS OF ALMOST PARAHERMITIAN MANIFOLDS

KOUHEI MIURA

(Communicated by Kazım ILARSLAN)

ABSTRACT. We prove that if an almost parahermitian structure of the ambient space induces the identity endomorphism of the radical distribution on a paracomplex lightlike submanifold, then there exists the global lightlike transversal bundle, which is uniquely determined with respect to a screen distribution and a screen transversal bundle of the lightlike submanifold. As an application, we give a sufficient condition that paracomplex lightlike submanifolds in a parakähler manifold are minimal.

1. INTRODUCTION

Let M be a submanifold in a semi-Riemannian manifold $(\widetilde{M}, \widetilde{g})$. Let g be the induced symmetric (0, 2)-tensor field on M from \widetilde{g} . Then if the intersection Rad (TM) of the tangent bundle TM and normal bundle TM^{\perp} of M is a smooth r-dimensional distribution, then (M, g) is called an r-lightlike submanifold in $(\widetilde{M}, \widetilde{g})$. The distribution Rad (TM) is called the radical distribution of (M, g). We note that 0-lightlike submanifolds are semi-Riemannian. The geometry of r-lightlike submanifolds with r > 0 is much different from that of semi-Riemannian submanifolds.

In the case of r > 0, we can take a semi-Riemannian complementary distribution S(TM) (resp. vector bundle $S(TM^{\perp})$) of Rad (TM) in TM (resp. TM^{\perp}), which is not uniquely determined in general. The fixed distribution S(TM) (resp. vector bundle $S(TM^{\perp})$) is called the screen distribution (resp. screen transversal vector bundle). Following Duggal and Bejancu [3], we can take a lightlike transversal bundle ltr (TM) on an open subset U of M, which depends on S(TM), $S(TM^{\perp})$ and a local basis $\xi = (\xi_1, \ldots, \xi_r)$ of Rad (TM) on U. In general, ltr (TM) is locally constructed on M. Then we obtain the decomposition $T\widetilde{M}|_U = TM|_U \oplus \text{tr} (TM)$, where tr $(TM) := S(TM^{\perp}) \oplus \text{ltr} (TM)$ is called a transversal bundle. The theory of lightlike submanifolds is to study properties of (M, g) which are independent of S(TM) and $S(TM^{\perp})$, using the decomposition above. As one of such properties,

Date: Received: November 17, 2013 and Accepted: June 27, 2014.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C40; Secondary 53C15.

Key words and phrases. Lightlike submanifold, paracomplex, parahermitian, parakähler, minimal.

KOUHEI MIURA

Sakaki introduced the notion of minimal lightlike submanifolds in [5], modifying the definition of minimal lightlike submanifolds in Bejan and Duggal [2].

In this paper, we study a paracomplex lightlike submanifold M of an almost parahermitian manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$. Let J be the induced endomorphism of TMfrom \widetilde{J} . In Section 2, we give notions and results we need from paracomplex geometry, and recall some basic facts on lightlike submanifolds following [3]. We prove in Section 3 that if $J|_{\text{Rad}(TM)} = \pm I_{\text{Rad}(TM)}$, then there exists the uniquely and globally determined lightlike transversal vector bundle tr(TM) with respect to fixed S(TM) and $S(TM^{\perp})$. As an application, in Section 4, we can see that co-isotropic paracomplex lightlike submanifolds with $J|_{\text{Rad}(TM)} = \pm I_{\text{Rad}(TM)}$ in a parakähler manifold are minimal in the sense of Sakaki [5].

2. Preliminaries

In this paper, we assume that all manifolds are connected, paracompact and differentiable of class C^{∞} . Let E be a vector bundle over a manifold N and End (E)be the vector bundle of which the fiber on $p \in N$ is End (E_p) . The identity endomorphism of E is denoted by I_E . We denote the algebra of smooth functions on Nby $\mathcal{F}(N)$, and the $\mathcal{F}(N)$ -module of smooth sections of E by $\Gamma(E)$. For a section $P \in \Gamma(\text{End}(E))$ and a linear connection ∇^E of E, we define the differential $\nabla^E P$ of P with respect to ∇^E by

$$(\nabla_X^E P)(s) := \nabla_X^E(P(s)) - P(\nabla_X^E s), \quad \forall X \in \Gamma(TN), \ \forall s \in \Gamma(E),$$

where TN is the tangent bundle of N.

An endomorphism $\widetilde{J} \in \text{End}\,(T\widetilde{M})$ is an *almost product structure* of a manifold \widetilde{M} , if $\widetilde{J}^2 = I_{T\widetilde{M}}$ and $\widetilde{J} \neq \pm I_{T\widetilde{M}}$. If there exists a nondegenerate metric on \widetilde{M} such that

$$\widetilde{g}(JX,JY) = -\widetilde{g}(X,Y), \quad \forall X,Y \in \Gamma(TM),$$

then we say that $(\widetilde{M}, \widetilde{g}, \widetilde{J})$ is an almost parahermitian manifold. If \widetilde{J} is integrable, we say that $(\widetilde{M}, \widetilde{g}, \widetilde{J})$ is a parahermitian manifold. We note that \widetilde{J} is integrable, if and only if the Nijenhuis tensor N of \widetilde{J} given by

$$N(X,Y) := [\widetilde{J}X, \widetilde{J}Y] - \widetilde{J}[\widetilde{J}X,Y] - \widetilde{J}[X,\widetilde{J}Y] + [X,Y],$$

vanishes identically on \widetilde{M} . For a torsion-free affine connection $\hat{\nabla}$ on \widetilde{M} , putting $(\hat{\nabla}\widetilde{J})(X,Y) := (\hat{\nabla}_X \widetilde{J})(Y)$ for any $X, Y \in T\widetilde{M}$, we obtain

$$N(X,Y) = (\hat{\nabla}\widetilde{J})(\widetilde{J}X,Y) - (\hat{\nabla}\widetilde{J})(\widetilde{J}Y,X) + \widetilde{J}(\hat{\nabla}\widetilde{J})(Y,X) - \widetilde{J}(\hat{\nabla}\widetilde{J})(X,Y).$$

We say that an almost parahermitian manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$ is a *parakählerian manifold* if \widetilde{J} is parallel with respect to the Levi-Civita connection $\widetilde{\nabla}$ of the semi-Riemannian manifold $(\widetilde{M}, \widetilde{g})$: $(\widetilde{\nabla}_X \widetilde{J})(Y) = 0$ for any $X, Y \in T\widetilde{M}$. Thus, if $(\widetilde{M}, \widetilde{J}, \widetilde{g})$ is parakählerian, then \widetilde{J} is integrable.

Let (E, g^E) be a semi-Riemannian vector bundle over a manifold M, that is, g^E is a nondegenerate bundle metric of E. An endomorphism $J^E \in \text{End}(E)$ is a parahermitian structure, if $(J^E)^2 = I_E$ and $g^E(J^Es_1, J^Es_2) = -g^E(s_1, s_2)$ for any $s_1, s_2 \in \Gamma(E)$. The triplet (E, g^E, J^E) is called a parahermitian vector bundle. We note that the rank of a parahermitian vector bundle is even and the metric is neutral. Thus, it follows that any almost parahermitian manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$ has even dimension, say 2m, and the index ind \widetilde{M} is equal to m. Thus $(\widetilde{M}, \widetilde{g})$ is a *neutral* semi-Riemannian manifold.

Putting $E^{\pm} := \text{Ker} (J^E \mp I_E)$ for a parahermitian vector bundle (E, g^E, J^E) with rank 2k, we obtain the non-orthogonal direct decomposition $E = E^+ \oplus E^-$, where E^{\pm} is the eigenspace of J^E corresponding to the eigenvalue ± 1 . Then rank $E^{\pm} = k$ and the subbundles are *totally lightlike* (*isotropic*), that is, g^E vanishes on each of them. Then we denote the E^{\pm} -component of $s \in E$ by s^{\pm} .

A tangent vector v of $(\widetilde{M}, \widetilde{g})$ is said to be *spacelike*, *timelike*, or *null* according as we have v = 0 or $\widetilde{g}(v, v) > 0$, $\widetilde{g}(v, v) < 0$, or $\widetilde{g}(v, v) = 0$ and $v \neq 0$. It is easy that $\widetilde{J}(v)$ is perpendicular to v for any $v \in T\widetilde{M}$, and $\widetilde{J}(v)$ is timelike (resp. spacelike) for any spacelike (resp. timelike) tangent vector $v \in T\widetilde{M}$.

We recall some basic results on lightlike submanifolds of a semi-Riemannian manifold. With respect to this class of submanifolds, we refer the monograph by Duggal and Bejancu [3]. (See Duggal and Sahin [4] also.)

Let (M, \tilde{g}) be an *n*-dimensional semi-Riemannian manifold with index *t*. An *m*-dimensional submanifold *M* of $(\widetilde{M}, \widetilde{g})$ is said to be *r*-lightlike if the subset of *TM*:

$$\operatorname{Rad}\left(TM\right):=\bigcup_{p\in M}\operatorname{Rad}\left(T_{p}M\right),\quad \text{where}\quad \operatorname{Rad}\left(T_{p}M\right):=T_{p}M\cap T_{p}M^{\perp},$$

is a smooth distribution on M of rank r called the *lightlike distribution*. Then we see that the rank r of Rad (TM) satisfies

(2.1)
$$r \le \min\{t, n-t, m, n-m\}.$$

It follows that M is r-lightlike if and only if the induced tensor field g on M by \tilde{g} has a constant rank m - r. In the case of r = 0, i.e., the distribution Rad (TM) is zero, (M, g) is a semi-Riemannian submanifold.

By the definition above, we see that the normal bundle TM^{\perp} of M is not complementary to TM in $T\widetilde{M}$ along M if r > 0. Then we take two vector bundles S(TM) and $S(TM^{\perp})$, whose existences are consequences of the paracompactness of M, such that

$$TM = S(TM) \oplus_{\text{orth}} \text{Rad}(TM) \text{ and } TM^{\perp} = \text{Rad}(TM) \oplus_{\text{orth}} S(TM^{\perp}),$$

which \oplus_{orth} stands for orthogonal direct sum of vector bundles. We call S(TM) and $S(TM^{\perp})$ a screen distribution and a screen transversal vector bundle of M, respectively. We note that both S(TM) and $S(TM^{\perp})$ are nondegenerate vector subbundles of $T\widetilde{M}$ along M.

For a fixed screen distribution S(TM), we can take the complementary orthogonal vector subbundle $S(TM)^{\perp}$ in $T\widetilde{M}$ along M:

$$T\widetilde{M}|_M = S(TM) \oplus_{\text{orth}} S(TM)^{\perp},$$

which is automatically nondegenerate. Since another fixed object $S(TM^{\perp})$ is a vector subbundle of $S(TM)^{\perp}$, we can take the complementary orthogonal vector subbundle $S(TM^{\perp})^{\perp}$ in $S(TM)^{\perp}$ such that

$$S(TM)^{\perp} = S(TM^{\perp}) \oplus_{\text{orth}} S(TM^{\perp})^{\perp}.$$

We note that $\operatorname{Rad} TM \subset S(TM^{\perp})^{\perp}$.

KOUHEI MIURA

For a local basis $\xi = (\xi_1, \ldots, \xi_r)$ of $\operatorname{Rad}(TM)$ on an open subset U of M, we can take local sections N_1, \ldots, N_r of $S(TM^{\perp})^{\perp}$ on U such that

$$\widetilde{g}(\xi_i, N_j) = \delta_{ij}$$
 and $\widetilde{g}(N_i, N_j) = 0$ for any $i, j = 1, 2, \dots, r$.

Then we obtain a complementary vector bundle $\operatorname{ltr}(TM) := \operatorname{Span}\{N_1, \ldots, N_r\}$ to $\operatorname{Rad}(TM)$ in $S(TM^{\perp})^{\perp}$ on U (cf. [3]). We call $\operatorname{ltr}(TM)$ the *lightlike transversal bundle*. This enables us to consider the vector bundle:

$$\operatorname{tr}(TM) := S(TM^{\perp}) \oplus_{\operatorname{orth}} \operatorname{ltr}(TM),$$

which is a complementary vector bundle to TM in $T\widetilde{M}$ along $U \subset M$. We call tr(TM) the transversal vector bundle. Then we have the following decompositions:

$$T\widetilde{M}|_{U} = TM \oplus \operatorname{tr} (TM)$$

= $(S(TM) \oplus_{\operatorname{orth}} \operatorname{Rad} (TM)) \oplus (S(TM^{\perp}) \oplus_{\operatorname{orth}} \operatorname{ltr} (TM))$
= $S(TM) \oplus_{\operatorname{orth}} S(TM)^{\perp} \oplus_{\operatorname{orth}} (\operatorname{Rad} (TM) \oplus \operatorname{ltr} (TM)),$

where \oplus stands for non-orthogonal direct sum of vector bundles. We note that tr(TM) is never orthogonal to TM, if r > 0.

Let M be a submanifold of an almost parahermitian manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$. We say that M is a *paracomplex* submanifold if the tangent space T_pM at any point p of Mis \widetilde{J} -invariant in $T_p\widetilde{M}$, that is, $\widetilde{J}(T_pM) = T_pM$ for any $p \in M$. Then the normal vector bundle TM^{\perp} is also \widetilde{J} -invariant.

For a paracomplex *r*-lightlike submanifold M of $(\widetilde{M}, \widetilde{g}, \widetilde{J})$, M has the induced symmetric (0, 2)-tensor field g from \widetilde{g} and the induced endomorphism J from \widetilde{J} on M. We note that J is not necessarily $J \neq \pm I_{TM}$.

3. Paracomplex lightlike submanifolds of almost parahermitian manifolds

Let $(\widetilde{M}, \widetilde{g}, \widetilde{J})$ be a 2*n*-dimensional almost parahermitian manifold with index *n*. Let *M* be an *m*-dimensional paracomplex *r*-lightlike submanifold of $(\widetilde{M}, \widetilde{g}, \widetilde{J})$ and *J* (resp. *g*) the induced endomorphism from \widetilde{J} (resp. symmetric (0, 2)-tensor field from \widetilde{g}) on *M*. We note that the dimension *m* of *M* is not necessary even, in contrast to the theory of nondegenerate paracomplex submanifolds in almost parahermitian manifolds.

Theorem 3.1. Let (M, J, g) be a paracomplex *r*-lightlike submanifold of an almost parahermitian manifold $(\widetilde{M}, \widetilde{J}, \widetilde{g})$. Then we have the following assertions:

- (i) The lightlike distribution $\operatorname{Rad}(TM)$ is J-invariant.
- (ii) There exists a J-invariant screen distribution S(TM) on M.
- (iii) There exists a \tilde{J} -invariant screen transversal bundle $S(TM^{\perp})$ on M.

Moreover, the induced metrics of S(TM) and $S(TM^{\perp})$ are parahermitian. Thus these are neutral.

Proof. (i) Since TM and TM^{\perp} are \tilde{J} -invariant, the intersection $\operatorname{Rad}(TM) := TM \cap TM^{\perp}$ is also \tilde{J} -invariant in TM.

In order to prove (ii) (resp. (iii)), we take a positive definite metric l (resp. l^{\perp}) of TM (resp. TM^{\perp}) whose existence is a consequence of the paracompactness of

M. Put

$$\begin{split} k(X,Y) &:= l(X,Y) + l(JX,JY), \\ \text{(resp. } k^{\perp}(V,W) &:= l^{\perp}(V,W) + l^{\perp}(\widetilde{J}V,\widetilde{J}W)), \end{split}$$

where $X, Y \in TM$ (resp. $V, W \in TM^{\perp}$). Since TM (resp. TM^{\perp}) is *J*-invariant (resp. \tilde{J} -), k (resp. k^{\perp}) is also a positive definite metric. We can take as a screen distribution S(TM) (resp. screen transversal bundle $S(TM^{\perp})$) of M the complementary orthogonal distribution to Rad (TM) in TM (resp. the complementary orthogonal subbundle to Rad (TM) in TM^{\perp}) with respect to k (resp. k^{\perp}). It is easy to see that

$$k(JX,\xi) = k(X,J\xi) = 0, \qquad \qquad k^{\perp}(\widetilde{J}V,\xi) = k^{\perp}(V,\widetilde{J}\xi) = 0,$$

where any $X \in S(TM)$, $\xi \in \text{Rad}(TM)$, $V \in S(TM^{\perp})$. Therefore S(TM) (resp. $S(TM^{\perp})$) is *J*-invariant (resp. \tilde{J} -invatiant). This completes the proof of our assertion (ii) (resp. (iii)). Since S(TM) (resp. $S(TM^{\perp})$) is complementary to Rad (TM) in TM (resp. TM^{\perp}), the induced tensor from \tilde{g} is nondegenerate. In particular, S(TM) and $S(TM^{\perp})$ are parahermitian bundles with respect to the induced objects from \tilde{g} and \tilde{J} .

Remark 3.1. Theorem 3.1 is a generalization of Theorem 4.2 in [1].

By Theorem 3.1, since S(TM) and $S(TM^{\perp})$ are parahermitian, the rank of both S(TM) and $S(TM^{\perp})$ are even. Thus, we obtain the following corollary:

Corollary 3.1. Let (M, g, J) be a paracomplex r-lightlike submanifold of an almost parahermitian manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$. If the dimension of M is odd (resp. even), then r is odd (resp. even). Hence, there exist no odd-dimensional paracomplex semi-Riemannian submanifolds.

In this paper, we call submanifolds with real codimension one *hypersurfaces*. From the inequality (2.1), we have

Corollary 3.2. Any paracomplex r-lightlike hypersurface (M, g, J) of an almost parahermitian manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$ is 1-lightlike.

Remark 3.2. corollary 3.1 and 3.2 are generalizations of Theorem 4.1 in [1]. We note that lightlike submanifolds with real codimension two are called "hypersurfaces" in Section 4 of [1].

Lemma 3.1. Let (M, g, J) be a paracomplex r-lightlike submanifold of an almost parahermitian manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$. There exists a local basis $\xi = (\xi_1, \ldots, \xi_r)$ of Rad (TM) such that $J(\xi_i) = +\xi_i$ or $-\xi_i$, that is, ξ_i is a local eigensection of J.

Proof. For an everywhere nonzero local section $\zeta \in \Gamma(\text{Rad})$ on an open subset $U \subset M$, if $\zeta \wedge J(\zeta) = 0$ on U, then we take $\xi_1 := \zeta$. Otherwise, we can put $\xi_1 := \zeta + J(\zeta)$. For $l \ (1 \leq l < r)$, we assume that $\xi_1, \xi_2, \ldots, \xi_l$ are eigensections which are linearly independent on an open set $U' \subset U$, that is, $\xi_1 \wedge \cdots \wedge \xi_l \neq 0$ on U'. There exists a local section $\zeta \in \Gamma(\text{Rad}(TM))$ such that $\zeta \notin \text{Span} \{\xi_1, \ldots, \xi_l\}$ on U'. If $\zeta \wedge J(\zeta) = 0$ on U', then we take $\xi_{l+1} := \zeta$. Otherwise, we put $\xi_{\pm} := \zeta \pm J(\zeta)$.

Then, it follows that $\xi_+ \notin \text{Span} \{\xi_1, \ldots, \xi_l\}$ or $\xi_- \notin \text{Span} \{\xi_1, \ldots, \xi_l\}$ on U'. Indeed, in case of $\xi_+ \in \text{Span} \{\xi_1, \ldots, \xi_l\}$, we can see

$$0 = \xi_{+} \wedge \xi_{1} \wedge \dots \wedge \xi_{l}$$

= $\zeta \wedge \xi_{1} \wedge \dots \wedge \xi_{l} + J(\zeta) \wedge \xi_{1} \wedge \dots \wedge \xi_{l},$

therefore, we get $J(\zeta) \wedge \xi_1 \wedge \cdots \wedge \xi_l = -\zeta \wedge \xi_1 \wedge \cdots \wedge \xi_l \neq 0$. Thus, we get

 $\xi_{-} \wedge \xi_{1} \wedge \dots \wedge \xi_{l} = 2(\zeta \wedge \xi_{1} \wedge \dots \wedge \xi_{l}) \neq 0$ on U'.

So $\xi_{-} \notin \text{Span} \{\xi_1, \dots, \xi_l\}$ on U'. By the inductively way, we can obtain a required local basis $\xi = (\xi_1, \dots, \xi_r)$ of Rad(TM).

Theorem 3.2. Let (M, g, J) be a paracomplex r-lightlike submanifold of an almost parahermitian manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$. For $(M, g, J, S(TM), S(TM^{\perp}))$ and a local basis $\xi = (\xi_1, \dots, \xi_r)$ of $\operatorname{Rad}(TM)|_U$ as in Lemma 3.1, where U is an open set of M, there exist local smooth sections η_1, \ldots, η_r of $S(TM^{\perp})^{\perp}|_U$ such that

(3.1)
$$J(\eta_i) = -\varepsilon_i \eta_i, \quad \widetilde{g}(\xi_i, \eta_j) = \delta_{ij}, \quad \widetilde{g}(\eta_i, \eta_j) = 0,$$

where $\varepsilon_i \in \{+1, -1\}$ is an eigenvalue of ξ_i for J, that is, the signature defined by $J(\xi_i) = \varepsilon_i \xi_i$, and $i, j \in \{1, \ldots, r\}$.

Proof. By [3], for a local basis $\xi = (\xi_1, \ldots, \xi_r)$ of Rad (TM) on $U \subset M$, we can take local sections N_1, \ldots, N_r of $S(TM^{\perp})^{\perp}$ on U such that

$$\widetilde{g}(\xi_i, N_j) = \delta_{ij}, \quad \widetilde{g}(N_i, N_j) = 0 \text{ for any } i, j \in \{1, 2, \dots, r\}$$

We define

$$\eta_i := \frac{1}{2} (N_i - \varepsilon_i \widetilde{J}(N_i)) \quad \text{for } i \in \{1, \dots, r\}.$$

It is easy to check $\widetilde{J}(\eta_i) = -\varepsilon_i \eta_i$ for any $i \in \{1, \ldots, r\}$. Moreover, we have

$$2\widetilde{g}(\xi_i, \eta_j) = \widetilde{g}(\xi_i, N_j - \varepsilon_j \widetilde{J}(N_j)) = \widetilde{g}(\xi_i, N_j) - \varepsilon_j \widetilde{g}(\xi_i, \widetilde{J}(N_j))$$
$$= \widetilde{g}(\xi_i, N_j) + \varepsilon_j \widetilde{g}(\widetilde{J}(\xi_i), N_j) = 2\delta_{ij}.$$

Thus $\widetilde{g}(\xi_i, \eta_j) = \delta_{ij}$ for any $i, j \in \{1, \dots, r\}$. With respect to the local null frame $\xi_1, \dots, \xi_r, N_1, \dots, N_r$ of $S(TM^{\perp})^{\perp}$,

(3.2)

$$\widetilde{J}(N_i) = \sum_{j=1}^{r} \left(\widetilde{g}(\widetilde{J}(N_i), N_j) \xi_j + \widetilde{g}(\widetilde{J}(N_i), \xi_j) N_j \right)$$

$$= \sum_{j=1}^{r} \widetilde{g}(\widetilde{J}(N_i), N_j) \xi_j - \varepsilon_i N_i.$$

Applying \widetilde{J} to the above equation, we have

(3.3)
$$N_i = \sum_{j=1}' \varepsilon_j \ \tilde{g}(\tilde{J}(N_i), N_j)\xi_j - \varepsilon_i \tilde{J}(N_i).$$

Substituting (3.3) into (3.2), we obtain

$$\sum_{j=1}^{r} (1 - \varepsilon_i \varepsilon_j) \ \widetilde{g}(\widetilde{J}(N_i), N_j) \xi_j = 0.$$

Consequently we can see

(3.4)
$$\widetilde{g}(\widetilde{J}(N_i), N_j) = 0$$
 for any i, j such that $\varepsilon_j = -\varepsilon_i$.

On the other hand,

$$\begin{split} 4\widetilde{g}(\eta_i,\eta_j) &= \widetilde{g}(N_i - \varepsilon_i J(N_i), N_j - \varepsilon_j J(N_j)) \\ &= (\varepsilon_j - \varepsilon_i) \ \widetilde{g}(\widetilde{J}(N_i), N_j) \\ &= \begin{cases} 0 & \text{for any } i, j \text{ such that } \varepsilon_j = \varepsilon_i, \\ 2\varepsilon_j \ \widetilde{g}(\widetilde{J}(N_i), N_j) & \text{for any } i, j \text{ such that } \varepsilon_j = -\varepsilon_i \end{cases} \end{split}$$

By the equation above and (3.4), we obtain $\tilde{g}(\eta_i, \eta_j) = 0$ for any $i, j \in \{1, \ldots, r\}$. This completes the proof of our assertion.

For a paracomplex r-lightlike submanifold $(M, g, J, S(TM), S(TM^{\perp}))$ and a local basis $\xi = (\xi_1, \ldots, \xi_r)$ of Rad (TM) as in Lemma 3.1, by virtue of Theorem 3.2, we can define over U:

$$ltr(TM) := ltr(TM,\xi) := Span \{\eta_1, \dots, \eta_r\},$$

$$tr(TM) := tr(TM,\xi) := S(TM^{\perp}) \oplus ltr(TM).$$

We obtain the following:

Theorem 3.3. Let (M, g, J) be a paracomplex r-lightlike submanifold of an almost parahermitian manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$. For $(M, g, J, S(TM), S(TM^{\perp}))$ and a basis $\xi = (\xi_1, \ldots, \xi_r)$ of Rad $(TM)|_U$ as in Lemma 3.1, where U is an open set of M, there exist local decompositions of vector bundles over U:

$$T\overline{M}|_{U} = TM \oplus \operatorname{tr} (TM)$$

= $(S(TM) \oplus_{\operatorname{orth}} \operatorname{Rad} (TM)) \oplus (S(TM^{\perp}) \oplus_{\operatorname{orth}} \operatorname{ltr} (TM))$
= $S(TM) \oplus_{\operatorname{orth}} S(TM^{\perp}) \oplus_{\operatorname{orth}} (\operatorname{Rad} (TM) \oplus \operatorname{ltr} (TM)),$

where S(TM), $S(TM^{\perp})$, $\operatorname{Rad}(TM)$ and $\operatorname{ltr}(TM)$ are \tilde{J} -invariant, and S(TM), $S(TM^{\perp})$ and $(\operatorname{Rad}(TM) \oplus \operatorname{ltr}(TM))$ are parahermitian vector bundles over U.

According to the \widetilde{J} -invariant decomposition over U: $T\widetilde{M}|_U = TM \oplus \operatorname{tr}(TM)$ as in Theorem 3.3, we have the Gauss formula and the Weingarten formula:

$\nabla_X Y = \nabla_X Y + h(X, Y),$	$X,Y\in\Gamma(TM),$
$\widetilde{\nabla}_X V = -A_V X + \nabla_X^{\rm tr} V,$	$V \in \Gamma(\operatorname{tr}(TM)),$

where $\nabla_X Y$ (resp. h(X, Y)) is the tangential (resp. transversal) component of $\widetilde{\nabla}_X Y$, and $-A_V X$ (resp. $\nabla_X^{\text{tr}} V$) is the tangential (resp. transversal) component of $\widetilde{\nabla}_X V$. We note that the induced connection ∇ is not necessary a metric connection in case of r > 0 and refer details for [3] and [4].

We note that $J|_{\text{Rad}(TM)}$ is not necessary $J|_{\text{Rad}(TM)} \neq \pm I_{\text{Rad}(TM)}$. We put $k := \text{rank}(\text{Ker}(J|_{\text{Rad}(TM)} - I_{\text{Rad}(TM)}))$. Hereafter we use the induces i, j, α, β and A, B for the following range respectively:

 $i, j = 1, \dots, k; \quad \alpha, \beta = k + 1, \dots, r; \quad A, B = 1, \dots, r.$

From now on, we take a local basis of $\operatorname{Rad}(TM)$ as in Lemma 3.1 as follows:

 $\xi = (\xi^+; \xi^-) = (\xi_1^+, \dots, \xi_k^+; \xi_{k+1}^-, \dots, \xi_r^-),$

KOUHEI MIURA

where $J|_{\text{Rad}(TM)}(\xi_i^+) = \xi_i^+$, $J|_{\text{Rad}(TM)}(\xi_\alpha^-) = -\xi_\alpha^-$. Furthermore, we denote the local basis of ltr (TM) constructed corresponding to ξ in Theorem 3.2 by

$$\eta = (\eta^-; \eta^+) = (\eta^-_1, \dots, \eta^-_k; \eta^+_{k+1}, \dots, \eta^+_r).$$

It follows that $J|_{\operatorname{Rad}(\operatorname{TM})}(\eta_i^-) = -\eta_i^-$ and $J|_{\operatorname{Rad}(TM)}(\eta_\alpha^+) = \eta_\alpha^+$. We denote the local basis of $S(TM^{\perp})^{\perp} = \operatorname{Rad}(TM) \oplus \operatorname{ltr}(TM,\xi)$ by $(\xi;\eta)$.

Lemma 3.2. Let $(M, g, J, S(TM), S(TM^{\perp}))$ be a paracomplex r-lightlike submanifold of an almost parahermitian manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$. For local bases $(\xi; \eta)$ and $(\xi'; \eta')$ of $S(TM^{\perp})^{\perp}$ on U and U' respectively, the transition matrix at $p \in U \cap U'$ is

$$(3.5) \quad \left(\xi'^{+} \quad \xi'^{-} \quad \eta'^{-} \quad \eta'^{+}\right)_{p} = \left(\xi^{+} \quad \xi^{-} \quad \eta^{-} \quad \eta^{+}\right)_{p} \begin{bmatrix} A_{+} & O & O & B_{+} \\ O & A_{-} & B_{-} & O \\ O & O & C_{-} & O \\ O & O & O & C_{+} \end{bmatrix},$$

where $A_+, C_- \in GL_k(\mathbb{R}), A_-, C_+ \in GL_{r-k}(\mathbb{R})$ and $B_+, {}^tB_- \in M_{k,r-k}(\mathbb{R})$, and these matrices satisfy

$$C_{-} = {}^{t}A_{+}^{-1}, \quad C_{+} = {}^{t}A_{-}^{-1}, \quad B_{-} = -A_{-}{}^{t}B_{+}{}^{t}A_{+}^{-1}.$$

Proof. Since ξ and ξ' are bases of Rad $(TM)_p$ and eigenvectors of J, we obtain

$$\xi_{j}^{'+} = \sum_{i=1}^{k} a_{ij}\xi_{i}^{+}, \quad \xi_{\beta}^{'-} = \sum_{\alpha=k+1}^{r} a_{\alpha\beta}\xi_{\alpha}^{-},$$

where $j \in \{1, \ldots, k\}$ and $\beta \in \{k + 1, \ldots, r\}$. Then it follows that $A_+ := (a_{ij}) \in GL_k(\mathbb{R})$ and $A_- := (a_{\alpha\beta}) \in GL_{r-k}(\mathbb{R})$. Since $\xi_A^{\pm}, \xi_A^{\pm}, \eta_A^{\pm}$ and η_A^{\pm} $(A \in \{1, \ldots, r\})$ are eigenvectors of \widetilde{J} in $S(TM^{\perp})_p^{\perp}$, we obtain

$$\eta_{j}^{'-} = \sum_{\alpha=k+1}^{r} b_{\alpha j} \xi_{\alpha}^{-} + \sum_{i=1}^{k} c_{ij} \eta_{i}^{-}, \quad \eta_{\beta}^{'+} = \sum_{i=1}^{k} b_{i\beta} \xi_{i}^{+} + \sum_{\alpha=k+1}^{r} c_{\alpha\beta} \eta_{\alpha}^{+},$$

where $j \in \{1, ..., k\}$ and $\beta \in \{k + 1, ..., r\}$. We put $B_{-} := (b_{\alpha j}), B_{+} := (b_{i\beta}), C_{-} := (c_{ij})$ and $C_{+} := (c_{\alpha\beta})$. From $\tilde{g}(\xi_{i}^{'+}, \eta_{j}^{'-}) = \delta_{ij}, \ \tilde{g}(\xi_{\alpha}^{'-}, \eta_{\beta}^{'+}) = \delta_{\alpha\beta}$ and $\tilde{g}(\xi_{i}^{'+}, \eta_{\beta}^{'+}) = \tilde{g}(\xi_{\alpha}^{'-}, \eta_{j}^{'-}) = 0,$

$$\delta_{ij} = \widetilde{g}(\xi_i^{'+}, \eta_j^{'-}) = \sum_{l=1}^k a_{li}c_{lj}, \quad \delta_{\alpha\beta} = \widetilde{g}(\xi_\alpha^{'-}, \eta_\beta^{'+}) = \sum_{\gamma=k+1}^r a_{\gamma\alpha}c_{\gamma\beta}.$$

Thus we obtain $C_{-} = {}^{t}A_{+}^{-1}$ and $C_{+} = {}^{t}A_{-}^{-1}$. Furthermore, using $\tilde{g}(\eta_{i}^{'+}, \eta_{\alpha}^{'-}) = 0$, we have

$$0 = \tilde{g}(\eta_i^{'+}, \eta_{\alpha}^{'-}) = \sum_{j=1}^{k} b_{j\alpha} c_{ji} + \sum_{\beta=k+1}^{r} b_{\beta i} c_{\beta \alpha}.$$

ently get $B_- = -A_-^{t} B_+^{t} A_+^{-1}.$

Hence, we consequently get $B_{-} = -A_{-}^{t}B_{+}^{t}A_{+}^{-1}$.

In case of $k(r-k) \neq 0$, for $(\xi; \eta)$ and $(\xi'; \eta')$ of which is non-vanishing $M_{k,r-k}(\mathbb{R})$ -valued function B_+ on $U \cap U'$, we see

$$\operatorname{ltr}(TM,\xi) \neq \operatorname{ltr}(TM,\xi')$$
 on $U \cap U'$.

In the other hand, when k(r - k) = 0, we can obtain the uniquely determined lightlike transversal bundle on M as follows:

Theorem 3.4. Let (M, J, g) be a paracomplex *r*-lightlike submanifold of an almost parahermitian manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$. If $(M, g, J, S(TM), S(TM^{\perp}))$ satisfies

 $(3.6) J|_{\operatorname{Rad}(TM)} = I_{\operatorname{Rad}(TM)} \quad or \quad J|_{\operatorname{Rad}(TM)} = -I_{\operatorname{Rad}(TM)},$

then there uniquely exists the lightlike transversal vector bundle ltr (TM) over M such that \widetilde{J} -invariant. Moreover, if $J|_{\text{Rad}(TM)} = \pm I_{\text{Rad}(TM)}$, then $\widetilde{J}|_{\text{ltr}(TM)} = \mp I_{\text{ltr}(TM)}$.

Proof. By the assumption: $J|_{\text{Rad}(TM)} = I_{\text{Rad}(TM)}$ or $J|_{\text{Rad}(TM)} = -I_{\text{Rad}(TM)}$, we have k(r-k) = 0. Then, from Lemma 3.2, it follows $B_+ = O$ or/and $B_- = O$ for any $(\xi; \eta)$ and $(\xi'; \eta')$ on U and U' respectively. Therefore, we obtain

$$\operatorname{ltr}(TM,\xi) = \operatorname{ltr}(TM,\xi') \quad \text{on} \quad U \cap U'.$$

Thus the lightlike transversal bundle is globally and uniquely determined on M. When $J|_{\text{Rad}(TM)} = I_{\text{Rad}(TM)}$, since all signatures ε_i (i = 1, ..., k) in equations (3.1) in Theorem 3.2 are equal to +1, we obtain $\widetilde{J}|_{\text{ltr}(TM)} = -I_{\text{ltr}(TM)}$. By a similar way, we can see $\widetilde{J}|_{\text{ltr}(TM)} = I_{\text{ltr}(TM)}$, if $J|_{\text{Rad}(TM)} = -I_{\text{Rad}(TM)}$. We have proved the theorem.

4. PARACOMPLEX LIGHTLIKE SUBMANIFOLDS IN PARAKÄHLER MANIFOLDS

In this section, we consider minimal lightlike submanifolds in semi-Riemannian manifolds. Sakaki [5] gives a definition of minimal lightlike submanifolds which is independent of the choice of the screen distribution and the screen transversal vector bundle as follows:

Definition 4.1. We say that a lightlike submanifold (M, g) in a semi-Riemannian manifolds $(\widetilde{M}, \widetilde{g})$ is *minimal* if:

- (a) $h(X,\xi) = 0$ for any $X \in \Gamma(TM), \xi \in \Gamma(\text{Rad}(TM))$, and
- (b) trace (h) = 0, where the trace is written with respect to g restricted to S(TM).

Remark 4.1. We also refer Bejan and Duggal [2] for another (original) definition of minimal lightlike submanifolds.

From now on, we take a parakähler manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$ as the ambient space. Moreover, for a paracomplex *r*-lightlike submanifold M of $(\widetilde{M}, \widetilde{g}, \widetilde{J})$, we choose vector bundles S(TM), $S(TM^{\perp})$ and $\operatorname{ltr}(TM)$ are \widetilde{J} -invariant ones given in Theorem 3.3.

Proposition 4.1. Let $(M, g, J, S(TM), S(TM^{\perp}))$ be a paracomplex *r*-lightlike submanifold of a parakähler manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$. Then *J* is parallel with respect to the induced connection ∇ and the second fundamental form *h* satisfies $h(X, JY) = \widetilde{J}h(X, Y)$ for any $X, Y \in \Gamma(TM)$.

Proof. Taking a local basis $\xi = (\xi_1, \ldots, \xi_r)$ as in Lemma 3.1, we fix the J-invariant lightlike transversal bundle ltr (TM). Then, for the induced connection ∇ , we have

$$\overline{\nabla}_X(JY) = (\overline{\nabla}_X J)(Y) + J(\overline{\nabla}_X Y) = J(\nabla_X Y) + J(h(X,Y)).$$

On the other hands, we get

$$\nabla_X(JY) = \nabla_X(JY) + h(X, JY) = (\nabla_X J)(Y) + J(\nabla_X Y) + h(X, JY).$$

Because TM and tr (TM) are J-invariant, we obtain $(\nabla_X J)(Y) = 0$ and $h(X, JY) = \tilde{J}h(X, Y)$, which complete the proof.

The decomposition $\operatorname{tr}(TM) = S(TM^{\perp}) \oplus \operatorname{ltr}(TM)$ introduces

$$h(X,Y) = h^s(X,Y) + h^l(X,Y) \quad \text{for } X, Y \in TM,$$

where h^s (resp. h^l) is called the *screen* (resp. *lightlike*) second fundamental form of M. Since $S(TM^{\perp})$ and ltr(TM) are \tilde{J} -invariant, we obtain the following lemma:

Lemma 4.1. Under the above notations,

$$h^s(X, JY) = \widetilde{J}h^s(X, Y), \quad h^l(X, JY) = \widetilde{J}h^l(X, Y) \quad for \ X, Y \in TM.$$

Lemma 4.2. Let $(M, g, J, S(TM), S(TM^{\perp}))$ be a paracomplex *r*-lightlike submanifold in a parakähler manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$. When $J|_{\text{Rad}(TM)} = I_{\text{Rad}(TM)}$ (resp. $J|_{\text{Rad}(TM)} = -I_{\text{Rad}(TM)}$), we have for $X, Y \in \Gamma(TM)$,

$$h^l(X,JY) = -h^l(X,Y) \quad (resp. \ h^l(X,JY) = h^l(X,Y)).$$

In particular, we obtain

$$h^{l}(X^{+}, Y^{-}) = 0 \text{ for } X^{+} \in \Gamma(TM^{+}) \text{ and } Y^{-} \in \Gamma(TM^{-}).$$

Proof. When $J|_{\text{Rad}(TM)} = I_{\text{Rad}(TM)}$, a local basis $\eta = (\eta_1, \ldots, \eta_r)$ of ltr(TM) as in Theorem 3.2 satisfy $\tilde{J}\eta_i = -\eta_i$ $(i = 1, \ldots, r)$. Writing the lightlike second fundamental form h^l as follows

$$h^{l}(X,Y) = \sum_{i=1}^{r} h^{l}_{i}(X,Y)\eta_{i},$$

we have

$$h^{l}(X, JY) = \widetilde{J}h^{l}(X, Y) = \widetilde{J}\left(\sum_{i=1}^{r} h_{i}^{l}(X, Y)\eta_{i}\right)$$
$$= \sum_{i=1}^{r} h_{i}^{l}(X, Y)\widetilde{J}\eta_{i} = -\sum_{i=1}^{r} h_{i}^{l}(X, Y)\eta_{i} = -h^{l}(X, Y).$$

We can similarly prove, in the case of $J|_{\operatorname{Rad}(TM)} = -I_{\operatorname{Rad}(TM)}$.

We call a *r*-lightlike submanifold (M, g) co-isotropic if $r = \operatorname{codim} M$. Then we recognize $S(TM^{\perp})$ as the zero vector bundle, hence $h^s = 0$.

Theorem 4.1. Let (M, g, J, S(TM)) be a co-isotropic paracomplex submanifold of a parakähler manifold $(\widetilde{M}, \widetilde{g}, \widetilde{J})$. If $J|_{\text{Rad}(TM)} = \pm I_{\text{Rad}(TM)}$, then (M, g) is minimal in the sense of Definition 4.1.

Proof. Without a loss of generalities, we can assume $J|_{\text{Rad}(TM)} = I_{\text{Rad}(TM)}$. By the assumption, S(TM) is a parahermitian vector bundle. Thus, we can take a local orthonormal basis $X_1, X_2, \ldots, X_{2s-1}, X_{2s}$ of S(TM) such that $g(X_i, X_j) = (-1)^i \delta_{ij}$ for $i, j = 1, \ldots, 2s$, and $X_{2i} = J(X_{2i-1})$ for $i = 1, \ldots, s$, where rank (S(TM)) = 2s

and index (S(TM)) = s. Then we obtain

trace
$$(h) = \sum_{i=1}^{s} (-h(X_{2i-1}, X_{2i-1}) + h(X_{2i}, X_{2i}))$$

 $= \sum_{i=1}^{s} (-h(X_{2i-1}, X_{2i-1}) + h(J(X_{2i-1}), J(X_{2i-1}))))$
 $= \sum_{i=1}^{s} (-h(X_{2i-1}, X_{2i-1}) + h(X_{2i-1}, X_{2i-1})) = 0.$

Hence the condition (b) in Definition 4.1 holds.

Since (M, g) is co-isotropic, we have $h^s = 0$. In general, we can see that the lightlike second fundamental form h^l is vanishing on Rad (TM), from [3, p.157, Proposition. 2.2] or [4, p.199. Proposition. 5.1.3]. According the decomposition: $TM = S(TM) \oplus \text{Rad}(TM)$, we decompose $X \in TM$ as $X = X_S + X_R$. Moreover, for any $X \in S(TM)$, we decompose X as $X = X^+ + X^-$, where $J(X^{\pm}) = \pm X$. Then we obtain

$$h(X,\xi) = h^{l}(X,\xi) = h^{l}(X_{S} + X_{R},\xi) = h^{l}(X_{S},\xi) + h^{l}(X_{R},\xi) = h^{l}(X_{S},\xi)$$
$$= h^{l}(X_{S}^{+} + X_{S}^{-},\xi) = h^{l}(X_{S}^{+},\xi) + h^{l}(X_{S}^{-},\xi).$$

By virtue of Lemma 4.2 and $\xi \in \text{Rad}(TM) = \text{Rad}(TM)^+$, $h^l(X_S^-,\xi) = 0$. From Lemma 4.2 and $J|_{\text{Rad}(TM)} = I_{\text{Rad}(TM)}$ again, we have $h^l(X_S^+,\xi) = h^l(X_S^+,J\xi) = -h^l(X_S^+,\xi)$, thus $h^l(X_S^+,\xi) = 0$. Hence the condition (a) in Definition 4.1 holds. \Box

Remark 4.2. Sakaki gives examples of minimal lightlike submanifolds in [5, Theorem 5.1]. The examples satisfy the conditions as in Theorem 4.1.

From Corollary 3.1 and Theorem 4.1, we obtain

Corollary 4.1. Any paracomplex lightlike hypersurfaces in a parakähler manifold are 1-lightlike and minimal.

Acknowledgement. The author would like to express his sincere gratitude to Professor Naoto Abe and Professor Makoto Sakaki for their valuable advices.

References

- Al-Aqeel, A. and Bejancu, A., On the geometry of paracomplex submanifolds, Demonstratio Math. 34 (2001), No. 4, 919–932.
- [2] Bejan C. L. and Duggal, K. L., Global lightlike manifolds and harmonicity, Kodai Math. J., 28 (2005), 131–145.
- [3] Duggal, K.L. and Bejancu, A., Lightlike submanifolds of semi-Riemannian manifolds and applications, Kluwer Academic Publishers, Dordrecht, 1996.
- [4] Duggal, K. L. and Sahin, B., Differential geometry of lightlike submanifolds, Birkhäuser Verlag, Basel, 2010.
- [5] Sakaki, M., On the definition of minimal lightlike submanifolds, Int. Electron. J. Geom. 3 (2010), No. 1, 16–23.

Department of mathematics, Faculty of science, Tokyo university of science, 1-3 Kagurazaka Shinjuku-ku, Tokyo, 162-8601, Japan

E-mail address: kmiura@rs.tus.ac.jp