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CURVES OF GENERALIZED AW (k)-TYPE
IN EUCLIDEAN SPACES

KADRI ARSLAN AND SABAN GUVEN(

(Communicated by Cihan OZGUR )

ABSTRACT. In this study, we consider curves of generalized AW (k)-type of
Euclidean n-space. We give curvature conditions of these kind of curves.

1. INTRODUCTION

In [7], the first author and A. West defined the notion of submanifolds of AW (k)-
type. Since then, many works have been done related to these type of manifolds
(for example, see [15], [5], [6] and [3]). In [15], the first author and B. Kili¢ studied
curves and surfaces of AW (k)-type. Further, in [27], C. Ozgiir and F. Gezgin
carried out the results for where given in [5] to Bertrand curves and new special
curves defined in [13] by S. Izumiya and N. Takeuchi. For example, in [5] and [15],
the authors gave curvature conditions and characterizations related to these curves
in R™. Also many results are obtained in Lorentzian spaces in [17], [22], [21], [18]
and [8]. In [32], D. Yoon investigate curvature conditions of curves of AW (k)-type
in Lie group G. Recently, C. Ozgiir and the second author studied some types of
slant curves of pseudo-Hermitian AW (k)-type in [26].

In the present study, we give a generalization of AW (k)-type curves in Euclidean
n-space E™. We also give curvature conditions of these type of curves.

2. BASIC NOTATION

Let v: I CR — E™ be a unit speed curve in E”. The curve « is called a Frenet
curve of osculating order d if its higher order derivatives 7/(s),7"(s), ..., 7(?(s)
(d < n) are linearly independent and +/(s), 7" (s), ..., 7(*t1)(s) are no longer linearly
independent for all s € I. To each Frenet curve of order d, one can associate an
orthonormal d-frame vy, vs, ..., vg along v (such that 7/(s) = vy ) called the Frenet
d-frame and (d — 1) functions k1, ko, ..., kq—1 : I — R called the Frenet curvatures
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such that the Frenet formulas are defined in the usual way:

Dy, v1 = K12,

D, v = —K1v1 + Kavs,

(2.1)
Dy, vi = —Ki—10i—1 + KiVit1,
Dy, vg = —Kq—1v4—1,

where 3 <i<d-—1.

3. CURVES OF GENERALIZED AW (k)-TYPE

Let v be a unit speed curve in n-dimensional Euclidean space E™. By the use of
Frenet formulas (2.1), we obtain the higher order derivatives of v as follows:

7" (s) = K1v2,

7’”(5) = —r?vy + Kjvg + K123,
Y (s) = —3k1K)vL + (/{’1’ — K — mng) Vo

+ (2K Ko + K1Kh) U3 + K1K2K3V4,
Y (s) = [=3(k1)? — il + s + wing] vy
+ (KY" — 6K2K) — 3K K3 — 3K1KaKb) Vs
+ (3K Ko + 3KL kY — K3k — K1K3 + k1KY — K1kokE) v
+ (3K Koks + 2K1KhKs + K1Kokh)Vs + K1KaKgkaUs.

(3.1)

Let us write

N1 = K1vg,
/
(3.2) Ny = Kk1v2 + K1K203,
’ N3 = Aovg + A3v3 + Agqvy,
Ny = pova + pi3v3 + pavs + psvs,
where
s 3 2
Ao = K{ — K} — K1K5,
(3.3) A3 = 2K K + K1Kb,
)\4 = K1K2K3
and
po = Ky — 6k3K) — 3K, kS — 3K1kKaKb,
_ " 10 3 3 " 2
(3.4) ts = K1 Ko + K| Ky — K{Ke — K1Ks + K1Ky — K1KoK3,

g = 3K Kak3 + 2K1Kh K3 + K1 Kok,
M5 = K1K2K3K4
are differentiable functions.

We give the following definition:

Definition 3.1. Frenet curves are
i) of generalized AW (1)-type if they satisfy N4 = 0,
i) of generalized AW (2)-type if they satisfy

(3.5) INo||”> Ny = (N3, Ny) Ny,
i1i) of generalized AW (3)-type if they satify
(3.6) IN1||* Ny = (N, Ny) Ny,

iv) of generalized AW (4)-type if they satisfy
(3.7) IN3* Na = (N3, Na) N3,
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v) of generalized AW (5)-type if they satisfy
(3.8) Ny = a1 Ny + by No,
vi) of generalized AW (6)-type if they satisfy
(3.9) Ny = asNy + b,
vii) of generalized AW (7)-type if they satisfy
(3.10) N, = agNy + b3 N,

where a;,b; (1 <7 < 3) are non-zero real valued differentiable functions.

Remark 3.1. We use notation GAW (k)-type for the curves of generalized AW (k)-
type.

Geometrically, a curve of GAW (k)-type is a curve whose fifth derivative’s normal
part is either zero or linearly dependent with one or two of its previous derivatives’
normal parts.

Firstly, we give the following proposition:

Proposition 3.1. The osculating order of a Frenet curve of any GAW (k)-type can
not be bigger than or equal to 5.

Proof. Let v: I CR — E™ be a Frenet curve of osculating order d. If v is of any
G AW (k)-type, since none of N; (1 <4 < 3) contains a component in the direction
of vs, we find pus = kK1kokszkge = 0. This concludes d < 4, which completes the
proof. O

Using equations 3.2 and Definition 3.1, we obtain the following main theorem:

Theorem 3.1. Let v be a unit speed Frenet curve of osculating order d < 4 in
n-dimensional Euclidean space E™. Then 7y s

i) of GAW(1)-type if and only if

p2 = 3 = p1qg =0,
i1) of GAW(2)-type if and only if

pa =0,

Kikafiy — Kiptz = 0,

i) of GAW (3)-type if and only if
py = pa =0,

iv) of GAW (4)-type if and only if

Aopiz — Agpz =0,

Azpta — Aap2 = 0,
v) of GAW (5)-type if and only if
p2 = a1k1 + b1k,
p3 = bik1ka,
Ha = 0,
vi) of GAW (6)-type if and only if

fo = azk1 + bada,
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H3 = baAs,
Ha = baAg,
vit) of GAW (7)-type if and only if
po = ask] + baAa,
H3 = azkike + b3z,
Ha = b3y
Proof. i) Let y be of GAW (1)-type. Then, from equations (3.2) and Definition 3.1,
we have Ny = povg + p3vs + pqvg = 0. Since vs, v3 and vy are linearly independent,
we get o = uz = ug = 0. The sufficiency is trivial.
ii) Let v be of GAW (2)-type. If we calculate || Na|® and (N, Ny), by the use of
equations (3.2) and (3.5), we obtain
()% + £TR3) (202 + pavs + prava) = (Kypo + Rakops) (K v + Kikovs).
Since vy, v3 and vy are linearly independent, we find py = 0 and K1kap2 — Kz = 0.
Conversely, if pug = 0 and K1koug — K3 = 0, one can easily show that equation
(3.5) is satisfied.
iii) Let v be of GAW (3)-type. We get | N1||* = x2 and (Ny, Ny) = k1p2. So, if
we write these equations in (3.6), we have
"9%(#2112 + p1303 + pava) = K12 (K1v2).
Thus, pu3 = ug = 0. Converse theorem is clear.
iv) Let y be of GAW (4)-type. We can easily calculate |[Ns||> = A2 + A2 + A2
and (N3, Ny) = Aopo + Asus + Aapea. So equation (3.7) gives us
(A3 + A3+ AD) (2v2 + pavs + pava) = (Aapio + Aaprz + Aagia) (A2va + Agvz + Aqva).

Hence, we can write

(3.11) (A3 + A3+ ADu2 = (Mapiz + Aspis + Aagia) Ao,
(3.12) (A3 + A3+ A s = (Aapa + Azpis + Aajra) Az,
(3.13) (A2 4+ 22+ XD g = Moz + Aspiz + Aajia) \a.

If we multiply (3.11) with A3 and use equation (3.12), we find Aopz — Azpz = 0.
Multiplying (3.11) with A4 and using equation (3.13), we have Aoy — Agpo = 0.
Conversely, it is easy to show that equation (3.7) is satisfied if Aopg — Agug = 0 and
Aopty — Agpi2 = 0.

v) Let v be of GAW (5)-type. Then, in view of equations (3.8) and (3.2), we can
write

pave + pigvs + pavs = a1 (k1ve) + by (Kve + K1koV3),
which gives us po = a1k1 + b1k}, s = bik1ke and py = 0. Conversely, if these last
three equations are satisfied, one can show that Ny = a1 Ny + b1 No.

vi) Let v be of GAW (6)-type. By definition, we have Ny = asN; + by N3, that
is,

HaVs + p3vs + vy = ag(k1v2) + ba(A2v2 + Asvs + Agv4).
Since ve, vs and v4 are linearly independent, we can write

Ho = asky + baXg,
13 = baAs,
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Ha = b2/\4.
Conversely, if these last equations are satisfied, then we easily show that Ny, =
a2N1 + bQNg.
vi3) Let v be of GAW (7)-type. Then using equations (3.10) and (3.2), we obtain

poV2 + 303 + pavs = az(K1v2 + K1k2v3) + b3(Aava + Agvs + Agva).

Thus
pi2 = asky + bgAg,
M3 = azkike + b3z,
M4 = b3>\4.
Conversely, let v be a curve satisfying the last three equations. It is easily found
that N4 = agNQ + b3N3. [l

From now on, we consider Frenet curves whose first curvature k1 is a constant.
We give curvature conditions of such a curve to be of GAW (k)-type. We can state
following propositions:

Proposition 3.2. Let v: I C R — E" be a unit speed Frenet curve of osculating
order d < 4 with k1 =constant. Then ~ is of GAW (1)-type if and only if it is a
straight line or a circle.

Proof. Let v be of GAW (1)-type. Since k1 =constant, using (3.4) and Theorem
3.1, we find

(3.14) po = —3k1kaky = 0,
(3.15) f3 = —K3ko — K1KS + k1KY — K1kaks = 0,
(3.16) fia = 2K1K5k3 + Kikoky = 0.

If k1 = 0, then ~y is a straight line and above three equations are satisfied. Let x1
be a non-zero constant. If ko = 0, then + is a circle and equations (3.14), (3.15) and
(3.16) are satisfied again. Assume that k2 # 0. Then (3.14) gives us k5 = 0, that
is, ko is a constant. In this case, from equation (3.15), we get (k7 + K3 + K3) = 0,
which means k1 = k9 = k3 = 0. This is a contradiction. So k9 = 0.

Conversely, let v be a straight line or a circle. Thus k; = 0; or k1 =constant
and ko = 0. So us = pg = pug = 0, which completes the proof. O

Proposition 3.3. Let v : I CR — E" be a unit speed Frenet curve of osculating
order d < 4 with k1 =constant. Then v is of GAW (2)-type if and only if

i) it is a straight line; or

i) it is a circle; or

i) it is a heliz of order 3 or 4.
Proof. Let v be of GAW (2)-type. Since k1 =constant, using (3.4) and Theorem
3.1, we obtain

(3.17) pa = 2K1K5kK3 + K1kaks = 0,

(3.18) K1k (—3k1kaKy) = 0.

One can easily see that ko and k3 must be constants. Thus, v can be a straight
line, a circle or a helix of order 3 or 4. Conversely, if  is one of these curves, the
proof is clear using Theorem 3.1. (]
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Proposition 3.4. Let v: I CR — E" be a unit speed Frenet curve of osculating
order d < 4 with k1 =constant. Then ~y is of GAW (3)-type if and only if
i) it is a straight line; or
i) it is a circle; or
iii) it is a Frenet curve of osculating order 3 satisfying the second order non-
linear ODE
Ky = ko(K3 4+ K3); or

iv) it is a Frenet curve of osculating order 4 with

and its third curvature satisfies the second order non-linear ODE
3(r5)?
2I€3

(3.19) Ky — + 2k3(K3 + K3) +2¢* =0,

and where ¢ > 0 is an arbitrary constant.

Proof. Let v be of GAW (3)-type. Since k1 =constant, using (3.4) and Theorem
3.1, we have

3 3 2
(3.20) U3 = —KikKe — K1K5 + K1k — K1kaks = 0,

(3.21) pa = 2K1K5k3 + Kikaky = 0.

If d =1 or d = 2, we obtain line and circle cases, both of which do not contradict
above two equations. Let d = 3. Then k1 =constant> 0, kg > 0 and k3 = 0. (3.21)
is satisfied directly and (3.20) gives us

Ky = ra(KT + K3),

which is a second order non-linear ODE. Now, let d = 4. Thus, k1 =constant> 0,
kg > 0 and k3 > 0. If we solve (3.21), we find

(3.22) Ko =

Ky = ——%7
3/2°
QHS/

3(k4)2 Y 1

4k 2k3?
If we multiply equation (3.20) with 2, using (3.22) and (3.23), we obtain the second

order non-linear ODE (3.19). Conversely, if « is one of these curves, one can show
that us = pug = 0. |

(3.23) Ky = c. [

Proposition 3.5. Let v: I CR — E" be a unit speed Frenet curve of osculating
order d < 4 with k1 =constant. Then ~y is of GAW (4)-type if and only if

i) it is a straight line; or

i1) it s a circle; or

iii) it is a Frenet curve of osculating order 3 satisfying the second order non-
linear ODE

(3.24) 3ko(kh)? = (K2 + K32) [/{’2/ — ra(K2 + ﬁ%)] ;or
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i) it is a Frenet curve of osculating order 4 with

(3.25) Kkaks = c. (K] + 52)3/2

and its curvatures satify
3ka(kh)? = (k] + Kk3) [Kh — Ka(K] + K3+ K3)] -
Here, c is an arbitrary constant.

Proof. Let v be of GAW (4)-type. Since k; =constant, using (3.3), (3.4) and The-
orem 3.1, we find

(3.26) (—kK3 — K1K3)(—Kike — K1Ks + K1k — K1kaks) — (K1kb)(—3k1kaKY) = 0,
(3.27) (—K3 — K1K3) (261 Khk3 + Kikoky) — (K1keks)(—3k1kakh) = 0.
(3.26) and (3.27) give us

(3.28) Ba(w3)” = (k1 + #3) [y — ko (KT + K5 + K3)]

(3.29) (262 — K3) K3kl + Ka(K3 + K3k = 0.

Now, if K1 = 0, then v is a straight line and equations (3.26) and (3.27) are satisfied.
Let x1 be a non-zero constant. If ko = 0, then + is a circle. Let ko > 0 and k3 = 0.
Then, from equation (3.28), we obtain (3.24). Now, let d = 4. Then, using equation

(3.29), we can write
242 —
/(F&1 Kg 2+/—d/{3—lnc
K2 (KT + K3)

Remember that k1 > 0 is a constant. So we find
3 (k2 4 2 _
21In(ks) 5 In(k] + k3) + In(k3) = Inc,

which gives us (3.25). Furthermore, v must also satisfy (3.28). Conversely, if v is
one of the curves above, we can show that (3.26) and (3.27) are satisfied. O

Proposition 3.6. Let v : 1 CR — E" be a unit speed Frenet curve of osculating
order d < 4 with k1 =constant. Then vy is of GAW (5)-type if and only if

i) it is a straight line; or

i) it is a Frenet curve of osculating order 3 with

Ko # constant
and
b # ko (K] 4+ K3) ; or
iit) it is a Frenet curve of osculating order 4 with
Ko # constant, k3 # constant,
Ky # ko (K + K3 + K3)

and

where ¢ > 0 is an arbitrary constant.
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Proof. Let v be of GAW (5)-type. Since k1 =constant, by the use of Theorem 3.1
and equations (3.4), we have

(3.30) —3k1kokh = a1k,
(3.31) — KKy — K1k + k1KY — K1koka = bik1ka,
(3.32) 261 khk3 + K1kaky = 0.

If d =1, then + is a straight line and above equations are satisfied. If d = 2, then
v is a circle. From (3.30), we find a; = 0, which contradicts the definition. Now,
let d = 3. Then, using (3.30) and (3.31), we find

!
a; = 73%2&2,
4
K
by = -2 — k2 — k2.
1 2
K2

Since a; and by are non-zero functions, then kg #constant and k4 # ko (/{% + n%)
Finally, let d = 4. Then, equation (3.32) gives us

(3.33) Ko = ——,

where ¢ > 0 is an arbitrary constant. In this case, from (3.30) and (3.31), we find

(3.34) a1 = —3kakY,
_ Ky o 9 o
(3.35) by = K] — K3 — K3.
K2

Thus, (3.33) and (3.34) give us
(3.36) Ko # constant, k3 # constant.
Also, from (3.35), we can write
(3.37) KY # ko (K] + K3 + K3) .
Converse proposition is trivial. O
Proposition 3.7. Let v: I CR — E" be a unit speed Frenet curve of osculating
order d < 4 with k1 =constant. Then vy is of GAW (6)-type if and only if

i) it is a straight line; or

i) it is a circle; or

iii) it is a Frenet curve of osculating order 3 with

Ko # constant,
KY # ko (K] + K3)

and )
312 (1))
K2 4+ K3’

iv) it is a Frenet curve of osculating order 4 with

Kl # ko (K] +K3) +
Ko # constant,

2K K K K
2 3 2 2,2
7+**7/*T(’11+”2+“3)
K9 K3 Ko Ko
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and

kg (kh)?
3.38 Ky # ko (K2 + K2+ K2) + ——2 .
( ) 2 # 2( 1 2 3) K2+ K2
Here, ¢ > 0 is an arbitrary constant.

Proof. Let v be of GAW (6)-type. Since k; =constant, by the use of equations
(3.3), (3.4) and Theorem 3.1, we have

(3.39) —3K1Kaky = agki + by (—f{‘;’ — mn%) ,
(3.40) — KKy — K1k + K1KY — K1koka = bokiKh,
(3.41) 2K1KhK3 + K1kakh = bakikaks.

If k1 = 0, then v is a straight line. Let d = 2. Then + is a circle and from (3.39),
we obtain

ag — bgli% = O7
which is satisfied for some ag, b2 non-zero differentiable functions. (3.40) and (3.41)
are also satisfied. Now, let d = 3. Then we have

(3.42) —3kokh = az — by (k] + K3),
(3.43) Kl — kg(K3 4+ K3) = bokh.
Thus k2 can not be constant. So (3.42) and (3.43) give us
K Ko
b — e 22 2
2 /"‘3/2 H/Q (K;l + ’%2>7
KY K
az = =3naky + (7 + ) — (5] + K3)°,
k2 Ra

both of which must be non-zero. Finally, let d = 4. From (3.40), ko #constant. In
this case, by the use of (3.39), (3.40) and (3.41), we obtain

2 ! !/ 1!
(3.44) bp= 2422 P 2k,

Ke  Ks  Kh Kb

KY K
(3.45) as = —3kakh + H—?(/ﬁ? + K3) — ,72('%% + k3) (K3 + K3 + K3).
2 2

Thus, from equation (3.44), we have
c
K2 7& \/773’
where ¢ > 0 is an arbitrary constant. We also have (3.38) from (3.45).
Converse proposition is done easily. ([

Proposition 3.8. Let v: I CR — E" be a unit speed Frenet curve of osculating
order d < 4 with k1 =constant. Then v is of GAW (7)-type if and only if

i) it is a straight line; or

i) it is a Frenet curve of osculating order 3 satisying

Ko # constant,

0, 3K2 (5/2)2 2 2
M7 a g T ka(KT + K3); or
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iv) it is a Frenet curve of osculating order 4 satisfying

Ko # constant,

C
KQ#\/T?’

/ / /
3raky  2Kq n K3

)
K3+ K3 K2 K3

2
2 2 2
+ Ka(k1 + K3 + K3),
where ¢ is an arbitrary constant.

Proof. Let v be of GAW (7)-type. If we use equations (3.3), (3.4) and Theorem 3.1,
we obtain

(3.46) —3K1koky = by(—K3 — K1K3),
(3.47) — KKy — KRS + K1KY — K1kok2 = agkikg + b3kiky,
(348) 2:‘{1/{/253 + lilligﬁé = bglﬁ:lliglig.

If d =1, v is a straight line. Let d = 2. Then, from (3.46), we find k1 = 0. This is
a contradiction. Let d = 3. Then, using (3.46), k2 can not be constant. By the use
of (3.46) and (3.47), we get

3Kakh
3.49 ba =
(349 =i
Ky 3k (14)?
03:—2— 2(2) —(Ii?-’-lﬁ%),

K2 k2 (K] +K3)
both of which are non-zero differentiable functions. Again, equation (3.49) requires
K9 is not a constant. We also have

2
—5 + + .
o 12 Ko (KT + K3)

Now, let d = 4. Then, using equations (3.46), (3.47) and (3.48), we obtain

3 / 2 / /
(3.50) by = 22— 22 B3
KT + K3 K2 K3
Ky kg (kh)®
a3:—2— 2( 2) —(I{%—f-/ﬁ%—f—ﬁ?%),

2 2
Ky ke (K] +K3)
which give us
Ko # constant,

K2 7& La
VK3
3k ()’
K2 + K3
Here, c is an arbitrary constant.
Converse proposition is trivial. O

"
2
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