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CURVES OF GENERALIZED AW (k)-TYPE

IN EUCLIDEAN SPACES

KADRI ARSLAN AND ŞABAN GÜVENÇ

(Communicated by Cihan ÖZGÜR )

Abstract. In this study, we consider curves of generalized AW (k)-type of
Euclidean n-space. We give curvature conditions of these kind of curves.

1. Introduction

In [7], the first author and A. West defined the notion of submanifolds of AW (k)-
type. Since then, many works have been done related to these type of manifolds
(for example, see [15], [5], [6] and [3]). In [15], the first author and B. Kılıç studied

curves and surfaces of AW (k)-type. Further, in [27], C. Özgür and F. Gezgin
carried out the results for where given in [5] to Bertrand curves and new special
curves defined in [13] by S. Izumiya and N. Takeuchi. For example, in [5] and [15],
the authors gave curvature conditions and characterizations related to these curves
in Rn. Also many results are obtained in Lorentzian spaces in [17], [22], [21], [18]
and [8]. In [32], D. Yoon investigate curvature conditions of curves of AW (k)-type

in Lie group G. Recently, C. Özgür and the second author studied some types of
slant curves of pseudo-Hermitian AW (k)-type in [26].

In the present study, we give a generalization of AW(k)-type curves in Euclidean
n-space En. We also give curvature conditions of these type of curves.

2. Basic Notation

Let γ : I ⊆ R → En be a unit speed curve in En. The curve γ is called a Frenet
curve of osculating order d if its higher order derivatives γ′(s), γ′′(s), ..., γ(d)(s)
(d ≤ n) are linearly independent and γ′(s), γ′′(s), ..., γ(d+1)(s) are no longer linearly
independent for all s ∈ I. To each Frenet curve of order d, one can associate an
orthonormal d-frame v1, v2, ..., vd along γ (such that γ′(s) = v1 ) called the Frenet
d-frame and (d− 1) functions κ1, κ2, ..., κd−1 : I → R called the Frenet curvatures
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such that the Frenet formulas are defined in the usual way:

(2.1)

Dv1v1 = κ1v2,
Dv1v2 = −κ1v1 + κ2v3,

...
Dv1vi = −κi−1vi−1 + κivi+1,
Dv1

vd = −κd−1vd−1,


where 3 ≤ i ≤ d− 1.

3. Curves of Generalized AW (k)-type

Let γ be a unit speed curve in n-dimensional Euclidean space En. By the use of
Frenet formulas (2.1), we obtain the higher order derivatives of γ as follows:

(3.1)

γ′′(s) = κ1v2,
γ′′′(s) = −κ2

1v1 + κ′
1v2 + κ1κ2v3,

γ(iv)(s) = −3κ1κ
′
1v1 +

(
κ′′
1 − κ3

1 − κ1κ
2
2

)
v2

+ (2κ′
1κ2 + κ1κ

′
2) v3 + κ1κ2κ3v4,

γ(v)(s) =
[
−3(κ′

1)
2 − 4κ1κ

′′
1 + κ4

1 + κ2
1κ

2
2

]
v1

+
(
κ′′′
1 − 6κ2

1κ
′
1 − 3κ′

1κ
2
2 − 3κ1κ2κ

′
2

)
v2

+
(
3κ′′

1κ2 + 3κ′
1κ

′
2 − κ3

1κ2 − κ1κ
3
2 + κ1κ

′′
2 − κ1κ2κ

2
3

)
v3

+ (3κ′
1κ2κ3 + 2κ1κ

′
2κ3 + κ1κ2κ

′
3)v4 + κ1κ2κ3κ4v5.


Let us write

(3.2)

N1 = κ1v2,
N2 = κ′

1v2 + κ1κ2v3,
N3 = λ2v2 + λ3v3 + λ4v4,
N4 = µ2v2 + µ3v3 + µ4v4 + µ5v5,


where

(3.3)
λ2 = κ′′

1 − κ3
1 − κ1κ

2
2,

λ3 = 2κ′
1κ2 + κ1κ

′
2,

λ4 = κ1κ2κ3

and

(3.4)

µ2 = κ′′′
1 − 6κ2

1κ
′
1 − 3κ′

1κ
2
2 − 3κ1κ2κ

′
2,

µ3 = 3κ′′
1κ2 + 3κ′

1κ
′
2 − κ3

1κ2 − κ1κ
3
2 + κ1κ

′′
2 − κ1κ2κ

2
3,

µ4 = 3κ′
1κ2κ3 + 2κ1κ

′
2κ3 + κ1κ2κ

′
3,

µ5 = κ1κ2κ3κ4

are differentiable functions.
We give the following definition:

Definition 3.1. Frenet curves are
i) of generalized AW (1)-type if they satisfy N4 = 0,
ii) of generalized AW (2)-type if they satisfy

(3.5) ∥N2∥2 N4 = ⟨N2, N4⟩N2,

iii) of generalized AW (3)-type if they satify

(3.6) ∥N1∥2 N4 = ⟨N1, N4⟩N1,

iv) of generalized AW (4)-type if they satisfy

(3.7) ∥N3∥2 N4 = ⟨N3, N4⟩N3,
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v) of generalized AW (5)-type if they satisfy

(3.8) N4 = a1N1 + b1N2,

vi) of generalized AW (6)-type if they satisfy

(3.9) N4 = a2N1 + b2N3,

vii) of generalized AW (7)-type if they satisfy

(3.10) N4 = a3N2 + b3N3,

where ai, bi (1 ≤ i ≤ 3) are non-zero real valued differentiable functions.

Remark 3.1. We use notation GAW (k)-type for the curves of generalized AW (k)-
type.

Geometrically, a curve of GAW (k)-type is a curve whose fifth derivative’s normal
part is either zero or linearly dependent with one or two of its previous derivatives’
normal parts.

Firstly, we give the following proposition:

Proposition 3.1. The osculating order of a Frenet curve of any GAW (k)-type can
not be bigger than or equal to 5.

Proof. Let γ : I ⊆ R → En be a Frenet curve of osculating order d. If γ is of any
GAW (k)-type, since none of Ni (1 ≤ i ≤ 3) contains a component in the direction
of v5, we find µ5 = κ1κ2κ3κ4 = 0. This concludes d ≤ 4, which completes the
proof. �

Using equations 3.2 and Definition 3.1, we obtain the following main theorem:

Theorem 3.1. Let γ be a unit speed Frenet curve of osculating order d ≤ 4 in
n-dimensional Euclidean space En. Then γ is

i) of GAW (1)-type if and only if

µ2 = µ3 = µ4 = 0,

ii) of GAW (2)-type if and only if

µ4 = 0,

κ1κ2µ2 − κ′
1µ3 = 0,

iii) of GAW (3)-type if and only if

µ3 = µ4 = 0,

iv) of GAW (4)-type if and only if

λ2µ3 − λ3µ2 = 0,

λ2µ4 − λ4µ2 = 0,

v) of GAW (5)-type if and only if

µ2 = a1κ1 + b1κ
′
1,

µ3 = b1κ1κ2,

µ4 = 0,

vi) of GAW (6)-type if and only if

µ2 = a2κ1 + b2λ2,
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µ3 = b2λ3,

µ4 = b2λ4,

vii) of GAW (7)-type if and only if

µ2 = a3κ
′
1 + b3λ2,

µ3 = a3κ1κ2 + b3λ3,

µ4 = b3λ4.

Proof. i) Let γ be of GAW (1)-type. Then, from equations (3.2) and Definition 3.1 ,
we have N4 = µ2v2+µ3v3+µ4v4 = 0. Since v2, v3 and v4 are linearly independent,
we get µ2 = µ3 = µ4 = 0. The sufficiency is trivial.

ii) Let γ be of GAW (2)-type. If we calculate ∥N2∥2 and ⟨N2, N4⟩, by the use of
equations (3.2) and (3.5), we obtain

[(κ′
1)

2 + κ2
1κ

2
2](µ2v2 + µ3v3 + µ4v4) = (κ′

1µ2 + κ1κ2µ3)(κ
′
1v2 + κ1κ2v3).

Since v2, v3 and v4 are linearly independent, we find µ4 = 0 and κ1κ2µ2−κ′
1µ3 = 0.

Conversely, if µ4 = 0 and κ1κ2µ2 − κ′
1µ3 = 0, one can easily show that equation

(3.5) is satisfied.

iii) Let γ be of GAW (3)-type. We get ∥N1∥2 = κ2
1 and ⟨N1, N4⟩ = κ1µ2. So, if

we write these equations in (3.6), we have

κ2
1(µ2v2 + µ3v3 + µ4v4) = κ1µ2(κ1v2).

Thus, µ3 = µ4 = 0. Converse theorem is clear.
iv) Let γ be of GAW (4)-type. We can easily calculate ∥N3∥2 = λ2

2 + λ2
3 + λ2

4

and ⟨N3, N4⟩ = λ2µ2 + λ3µ3 + λ4µ4. So equation (3.7) gives us

(λ2
2 + λ2

3 + λ2
4)(µ2v2 + µ3v3 + µ4v4) = (λ2µ2 + λ3µ3 + λ4µ4)(λ2v2 + λ3v3 + λ4v4).

Hence, we can write

(3.11) (λ2
2 + λ2

3 + λ2
4)µ2 = (λ2µ2 + λ3µ3 + λ4µ4)λ2,

(3.12) (λ2
2 + λ2

3 + λ2
4)µ3 = (λ2µ2 + λ3µ3 + λ4µ4)λ3,

(3.13) (λ2
2 + λ2

3 + λ2
4)µ4 = (λ2µ2 + λ3µ3 + λ4µ4)λ4.

If we multiply (3.11) with λ3 and use equation (3.12), we find λ2µ3 − λ3µ2 = 0.
Multiplying (3.11) with λ4 and using equation (3.13), we have λ2µ4 − λ4µ2 = 0.
Conversely, it is easy to show that equation (3.7) is satisfied if λ2µ3−λ3µ2 = 0 and
λ2µ4 − λ4µ2 = 0.

v) Let γ be of GAW (5)-type. Then, in view of equations (3.8) and (3.2), we can
write

µ2v2 + µ3v3 + µ4v4 = a1(κ1v2) + b1(κ
′
1v2 + κ1κ2v3),

which gives us µ2 = a1κ1 + b1κ
′
1, µ3 = b1κ1κ2 and µ4 = 0. Conversely, if these last

three equations are satisfied, one can show that N4 = a1N1 + b1N2.
vi) Let γ be of GAW (6)-type. By definition, we have N4 = a2N1 + b2N3, that

is,
µ2v2 + µ3v3 + µ4v4 = a2(κ1v2) + b2(λ2v2 + λ3v3 + λ4v4).

Since v2, v3 and v4 are linearly independent, we can write

µ2 = a2κ1 + b2λ2,

µ3 = b2λ3,
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µ4 = b2λ4.

Conversely, if these last equations are satisfied, then we easily show that N4 =
a2N1 + b2N3.

vii) Let γ be of GAW (7)-type. Then using equations (3.10) and (3.2), we obtain

µ2v2 + µ3v3 + µ4v4 = a3(κ
′
1v2 + κ1κ2v3) + b3(λ2v2 + λ3v3 + λ4v4).

Thus
µ2 = a3κ

′
1 + b3λ2,

µ3 = a3κ1κ2 + b3λ3,

µ4 = b3λ4.

Conversely, let γ be a curve satisfying the last three equations. It is easily found
that N4 = a3N2 + b3N3. �

From now on, we consider Frenet curves whose first curvature κ1 is a constant.
We give curvature conditions of such a curve to be of GAW (k)-type. We can state
following propositions:

Proposition 3.2. Let γ : I ⊆ R → En be a unit speed Frenet curve of osculating
order d ≤ 4 with κ1 =constant. Then γ is of GAW (1)-type if and only if it is a
straight line or a circle.

Proof. Let γ be of GAW (1)-type. Since κ1 =constant, using (3.4) and Theorem
3.1, we find

(3.14) µ2 = −3κ1κ2κ
′
2 = 0,

(3.15) µ3 = −κ3
1κ2 − κ1κ

3
2 + κ1κ

′′
2 − κ1κ2κ

2
3 = 0,

(3.16) µ4 = 2κ1κ
′
2κ3 + κ1κ2κ

′
3 = 0.

If κ1 = 0, then γ is a straight line and above three equations are satisfied. Let κ1

be a non-zero constant. If κ2 = 0, then γ is a circle and equations (3.14), (3.15) and
(3.16) are satisfied again. Assume that κ2 ̸= 0. Then (3.14) gives us κ′

2 = 0, that
is, κ2 is a constant. In this case, from equation (3.15), we get (κ2

1 + κ2
2 + κ2

3) = 0,
which means κ1 = κ2 = κ3 = 0. This is a contradiction. So κ2 = 0.

Conversely, let γ be a straight line or a circle. Thus κ1 = 0; or κ1 =constant
and κ2 = 0. So µ2 = µ3 = µ4 = 0, which completes the proof. �
Proposition 3.3. Let γ : I ⊆ R → En be a unit speed Frenet curve of osculating
order d ≤ 4 with κ1 =constant. Then γ is of GAW (2)-type if and only if

i) it is a straight line; or
ii) it is a circle; or
iii) it is a helix of order 3 or 4.

Proof. Let γ be of GAW (2)-type. Since κ1 =constant, using (3.4) and Theorem
3.1, we obtain

(3.17) µ4 = 2κ1κ
′
2κ3 + κ1κ2κ

′
3 = 0,

(3.18) κ1κ2 (−3κ1κ2κ
′
2) = 0.

One can easily see that κ2 and κ3 must be constants. Thus, γ can be a straight
line, a circle or a helix of order 3 or 4. Conversely, if γ is one of these curves, the
proof is clear using Theorem 3.1. �
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Proposition 3.4. Let γ : I ⊆ R → En be a unit speed Frenet curve of osculating
order d ≤ 4 with κ1 =constant. Then γ is of GAW (3)-type if and only if

i) it is a straight line; or
ii) it is a circle; or
iii) it is a Frenet curve of osculating order 3 satisfying the second order non-

linear ODE
κ′′
2 = κ2(κ

2
1 + κ2

2); or

iv) it is a Frenet curve of osculating order 4 with

κ2 =
c

√
κ3

and its third curvature satisfies the second order non-linear ODE

(3.19) κ′′
3 − 3(κ′

3)
2

2κ3
+ 2κ3(κ

2
1 + κ2

3) + 2c2 = 0,

and where c > 0 is an arbitrary constant.

Proof. Let γ be of GAW (3)-type. Since κ1 =constant, using (3.4) and Theorem
3.1, we have

(3.20) µ3 = −κ3
1κ2 − κ1κ

3
2 + κ1κ

′′
2 − κ1κ2κ

2
3 = 0,

(3.21) µ4 = 2κ1κ
′
2κ3 + κ1κ2κ

′
3 = 0.

If d = 1 or d = 2, we obtain line and circle cases, both of which do not contradict
above two equations. Let d = 3. Then κ1 =constant> 0, κ2 > 0 and κ3 = 0. (3.21)
is satisfied directly and (3.20) gives us

κ′′
2 = κ2(κ

2
1 + κ2

2),

which is a second order non-linear ODE. Now, let d = 4. Thus, κ1 =constant> 0,
κ2 > 0 and κ3 > 0. If we solve (3.21), we find

(3.22) κ2 =
c

√
κ3

,

where c > 0 is an arbitrary constant. Then

κ′
2 =

−cκ′
3

2κ
3/2
3

,

(3.23) κ′′
2 = c.

[
3(κ′

3)
2

4κ
5/2
3

− κ′′
3

2κ
3/2
3

]
.

If we multiply equation (3.20) with κ2

κ1
, using (3.22) and (3.23), we obtain the second

order non-linear ODE (3.19). Conversely, if γ is one of these curves, one can show
that µ3 = µ4 = 0. �

Proposition 3.5. Let γ : I ⊆ R → En be a unit speed Frenet curve of osculating
order d ≤ 4 with κ1 =constant. Then γ is of GAW (4)-type if and only if

i) it is a straight line; or
ii) it is a circle; or
iii) it is a Frenet curve of osculating order 3 satisfying the second order non-

linear ODE

(3.24) 3κ2(κ
′
2)

2 = (κ2
1 + κ2

2)
[
κ′′
2 − κ2(κ

2
1 + κ2

2)
]
; or
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iv) it is a Frenet curve of osculating order 4 with

(3.25) κ2
2κ3 = c.

(
κ2
1 + κ2

2

)3/2
and its curvatures satify

3κ2(κ
′
2)

2 = (κ2
1 + κ2

2)
[
κ′′
2 − κ2(κ

2
1 + κ2

2 + κ2
3)
]
.

Here, c is an arbitrary constant.

Proof. Let γ be of GAW (4)-type. Since κ1 =constant, using (3.3), (3.4) and The-
orem 3.1, we find

(3.26) (−κ3
1 − κ1κ

2
2)(−κ3

1κ2 − κ1κ
3
2 + κ1κ

′′
2 − κ1κ2κ

2
3)− (κ1κ

′
2)(−3κ1κ2κ

′
2) = 0,

(3.27) (−κ3
1 − κ1κ

2
2)(2κ1κ

′
2κ3 + κ1κ2κ

′
3)− (κ1κ2κ3)(−3κ1κ2κ

′
2) = 0.

(3.26) and (3.27) give us

(3.28) 3κ2(κ
′
2)

2 = (κ2
1 + κ2

2)
[
κ′′
2 − κ2(κ

2
1 + κ2

2 + κ2
3)
]
,

(3.29) (2κ2
1 − κ2

2)κ3κ
′
2 + κ2(κ

2
1 + κ2

2)κ
′
3 = 0.

Now, if κ1 = 0, then γ is a straight line and equations (3.26) and (3.27) are satisfied.
Let κ1 be a non-zero constant. If κ2 = 0, then γ is a circle. Let κ2 > 0 and κ3 = 0.
Then, from equation (3.28), we obtain (3.24). Now, let d = 4. Then, using equation
(3.29), we can write ∫

(2κ2
1 − κ2

2)

κ2(κ2
1 + κ2

2)
dκ2 +

∫
1

κ3
dκ3 = ln c.

Remember that κ1 > 0 is a constant. So we find

2 ln(κ2)−
3

2
ln(κ2

1 + κ2
2) + ln(κ3) = ln c,

which gives us (3.25). Furthermore, γ must also satisfy (3.28). Conversely, if γ is
one of the curves above, we can show that (3.26) and (3.27) are satisfied. �

Proposition 3.6. Let γ : I ⊆ R → En be a unit speed Frenet curve of osculating
order d ≤ 4 with κ1 =constant. Then γ is of GAW (5)-type if and only if

i) it is a straight line; or
ii) it is a Frenet curve of osculating order 3 with

κ2 ̸= constant

and

κ′′
2 ̸= κ2

(
κ2
1 + κ2

2

)
; or

iii) it is a Frenet curve of osculating order 4 with

κ2 ̸= constant, κ3 ̸= constant,

κ′′
2 ̸= κ2

(
κ2
1 + κ2

2 + κ2
3

)
and

κ2 =
c

√
κ3

,

where c > 0 is an arbitrary constant.
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Proof. Let γ be of GAW (5)-type. Since κ1 =constant, by the use of Theorem 3.1
and equations (3.4), we have

(3.30) −3κ1κ2κ
′
2 = a1κ1,

(3.31) −κ3
1κ2 − κ1κ

3
2 + κ1κ

′′
2 − κ1κ2κ

2
3 = b1κ1κ2,

(3.32) 2κ1κ
′
2κ3 + κ1κ2κ

′
3 = 0.

If d = 1, then γ is a straight line and above equations are satisfied. If d = 2, then
γ is a circle. From (3.30), we find a1 = 0, which contradicts the definition. Now,
let d = 3. Then, using (3.30) and (3.31), we find

a1 = −3κ2κ
′
2,

b1 =
κ′′
2

κ2
− κ2

1 − κ2
2.

Since a1 and b1 are non-zero functions, then κ2 ̸=constant and κ′′
2 ̸= κ2

(
κ2
1 + κ2

2

)
.

Finally, let d = 4. Then, equation (3.32) gives us

(3.33) κ2 =
c

√
κ3

,

where c > 0 is an arbitrary constant. In this case, from (3.30) and (3.31), we find

(3.34) a1 = −3κ2κ
′
2,

(3.35) b1 =
κ′′
2

κ2
− κ2

1 − κ2
2 − κ2

3.

Thus, (3.33) and (3.34) give us

(3.36) κ2 ̸= constant, κ3 ̸= constant.

Also, from (3.35), we can write

(3.37) κ′′
2 ̸= κ2

(
κ2
1 + κ2

2 + κ2
3

)
.

Converse proposition is trivial. �

Proposition 3.7. Let γ : I ⊆ R → En be a unit speed Frenet curve of osculating
order d ≤ 4 with κ1 =constant. Then γ is of GAW (6)-type if and only if

i) it is a straight line; or
ii) it is a circle; or
iii) it is a Frenet curve of osculating order 3 with

κ2 ̸= constant,

κ′′
2 ̸= κ2

(
κ2
1 + κ2

2

)
and

κ′′
2 ̸= κ2

(
κ2
1 + κ2

2

)
+

3κ2 (κ
′
2)

2

κ2
1 + κ2

2

; or

iv) it is a Frenet curve of osculating order 4 with

κ2 ̸= constant,

κ2 ̸= c
√
κ3

,

2κ′
2

κ2
+

κ′
3

κ3
=

κ′′
2

κ′
2

− κ2

κ′
2

(κ2
1 + κ2

2 + κ2
3)
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and

(3.38) κ′′
2 ̸= κ2

(
κ2
1 + κ2

2 + κ2
3

)
+

3κ2 (κ
′
2)

2

κ2
1 + κ2

2

.

Here, c > 0 is an arbitrary constant.

Proof. Let γ be of GAW (6)-type. Since κ1 =constant, by the use of equations
(3.3), (3.4) and Theorem 3.1, we have

(3.39) −3κ1κ2κ
′
2 = a2κ1 + b2

(
−κ3

1 − κ1κ
2
2

)
,

(3.40) −κ3
1κ2 − κ1κ

3
2 + κ1κ

′′
2 − κ1κ2κ

2
3 = b2κ1κ

′
2,

(3.41) 2κ1κ
′
2κ3 + κ1κ2κ

′
3 = b2κ1κ2κ3.

If κ1 = 0, then γ is a straight line. Let d = 2. Then γ is a circle and from (3.39),
we obtain

a2 − b2κ
2
1 = 0,

which is satisfied for some a2, b2 non-zero differentiable functions. (3.40) and (3.41)
are also satisfied. Now, let d = 3. Then we have

(3.42) −3κ2κ
′
2 = a2 − b2

(
κ2
1 + κ2

2

)
,

(3.43) κ′′
2 − κ2(κ

2
1 + κ2

2) = b2κ
′
2.

Thus κ2 can not be constant. So (3.42) and (3.43) give us

b2 =
κ′′
2

κ′
2

− κ2

κ′
2

(κ2
1 + κ2

2),

a2 = −3κ2κ
′
2 +

κ′′
2

κ′
2

(κ2
1 + κ2

2)−
κ2

κ′
2

(κ2
1 + κ2

2)
2,

both of which must be non-zero. Finally, let d = 4. From (3.40), κ2 ̸=constant. In
this case, by the use of (3.39), (3.40) and (3.41), we obtain

(3.44) b2 =
2κ′

2

κ2
+

κ′
3

κ3
=

κ′′
2

κ′
2

− κ2

κ′
2

(κ2
1 + κ2

2 + κ2
3),

(3.45) a2 = −3κ2κ
′
2 +

κ′′
2

κ′
2

(κ2
1 + κ2

2)−
κ2

κ′
2

(κ2
1 + κ2

2)(κ
2
1 + κ2

2 + κ2
3).

Thus, from equation (3.44), we have

κ2 ̸= c
√
κ3

,

where c > 0 is an arbitrary constant. We also have (3.38) from (3.45).
Converse proposition is done easily. �

Proposition 3.8. Let γ : I ⊆ R → En be a unit speed Frenet curve of osculating
order d ≤ 4 with κ1 =constant. Then γ is of GAW (7)-type if and only if

i) it is a straight line; or
ii) it is a Frenet curve of osculating order 3 satisying

κ2 ̸= constant,

κ′′
2 ̸= 3κ2 (κ

′
2)

2

κ2
1 + κ2

2

+ κ2(κ
2
1 + κ2

2); or
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iv) it is a Frenet curve of osculating order 4 satisfying

κ2 ̸= constant,

κ2 ̸= c
√
κ3

,

3κ2κ
′
2

κ2
1 + κ2

2

=
2κ′

2

κ2
+

κ′
3

κ3
,

κ′′
2 ̸= 3κ2 (κ

′
2)

2

κ2
1 + κ2

2

+ κ2(κ
2
1 + κ2

2 + κ2
3),

where c is an arbitrary constant.

Proof. Let γ be of GAW (7)-type. If we use equations (3.3), (3.4) and Theorem 3.1,
we obtain

(3.46) −3κ1κ2κ
′
2 = b3(−κ3

1 − κ1κ
2
2),

(3.47) −κ3
1κ2 − κ1κ

3
2 + κ1κ

′′
2 − κ1κ2κ

2
3 = a3κ1κ2 + b3κ1κ

′
2,

(3.48) 2κ1κ
′
2κ3 + κ1κ2κ

′
3 = b3κ1κ2κ3.

If d = 1, γ is a straight line. Let d = 2. Then, from (3.46), we find κ1 = 0. This is
a contradiction. Let d = 3. Then, using (3.46), κ2 can not be constant. By the use
of (3.46) and (3.47), we get

(3.49) b3 =
3κ2κ

′
2

κ2
1 + κ2

2

,

a3 =
κ′′
2

κ2
− 3κ2 (κ

′
2)

2

κ2 (κ2
1 + κ2

2)
− (κ2

1 + κ2
2),

both of which are non-zero differentiable functions. Again, equation (3.49) requires
κ2 is not a constant. We also have

κ′′
2 ̸= 3κ2 (κ

′
2)

2

κ2
1 + κ2

2

+ κ2(κ
2
1 + κ2

2).

Now, let d = 4. Then, using equations (3.46), (3.47) and (3.48), we obtain

(3.50) b3 =
3κ2κ

′
2

κ2
1 + κ2

2

=
2κ′

2

κ2
+

κ′
3

κ3
,

a3 =
κ′′
2

κ2
− 3κ2 (κ

′
2)

2

κ2 (κ2
1 + κ2

2)
− (κ2

1 + κ2
2 + κ2

3),

which give us

κ2 ̸= constant,

κ2 ̸= c
√
κ3

,

κ′′
2 ̸= 3κ2 (κ

′
2)

2

κ2
1 + κ2

2

+ κ2(κ
2
1 + κ2

2 + κ2
3).

Here, c is an arbitrary constant.
Converse proposition is trivial. �
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[3] Arslan, K., Çelik, Y., Deszcz, R., Özgür, C., Submanifolds all of whose normal sections are
W-curves, Far East J. Math. Sci. 5, 4 (1997), 537-544.
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[27] Özgür, C. and Gezgin, F. On Some Curves of AW(k)-type, Differ. Geom. Dyn. Syst., 7 (2005),
74-80.
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