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ADAPTED METRICS AND WEBSTER CURVATURE ON THREE

CLASSES OF 3-DIMENSIONAL GEOMETRIES

MIRCEA CRASMAREANU

(Communicated by Murat TOSUN)

Abstract. The Chern-Hamilton notion of adapted metric and the corre-

sponding Webster curvature W is discussed for 3-dimensional unimodular Lie
groups, Bianchi-Cartan-Vranceanu metrics and warped metrics. For the first

two metrics, we control the value of W by means of two parameters: A and B

provided by the Milnor frame in the former case respectively l and m in the
latter case. For warped metrics, the value of W depends on the derivatives

of the warping function up to order two. Bi-warped 3-metrics are introduced

and studied from the point of view of Webster curvature.

1. Introduction

Among the Riemannian manifolds of non-constant sectional curvature a special
rôle is played by the homogeneous spaces with a large isometry group. Due to
the recent approach of Hamilton-Perelman to the Poincaré conjecture (by means
of Ricci flow, [8]), a great interest is in dimension 3; for a recent survey on this
dimension see [12]. The present note aims to discuss two topics in 3-dimensional
Riemannian geometry, both considered by Chern and Hamilton in [5]: adapted
metric to a given differential 1-form and the Webster curvature W . In fact, we
generalize the concept of adapted metric by modifying the original condition of
Chern-Hamilton from the scalar 2 to a general ρ ∈ R in order to cover all possibi-
lities. The above notions are considered in three settings: unimodular Lie groups,
Bianchi-Cartan-Vranceanu geometries and warped metrics.

The Webster scalar curvature W was introduced already into the framework of
3-dimensional geometry of Lie groups by Domenico Perrone [16] in order to classify
homogeneous contact metrics on 3-manifolds. More precisely, in the cited paper was
proven that a simply connected Riemannian homogeneous contact 3-manifold is a
Lie group with a left-invariant contact Riemannian structure and the classification
is given in terms of the (non-)unimodularity of the group, its Webster curvature
and the torsion invariant τ introduced also by Chern and Hamilton.
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We propose here a new approach for computing W in geometry of a unimodular
Lie group (G, g). In fact, we use another formula of [5] which is based on structural
equations (see Section 1) through the dual of the Milnor frame ([13]) of G. The
advantage of our result from Section 3 is that we can control the value of W by
means of two parameters, denoted A and B in Section 2, provided by the orthonor-
mality of metric g with respect to Milnor frame. As example of this possibility of
control, since A and B are strictly positive, a look at our formula (3.1) yields that
the vanishing of W implies that λ and µ, the scalars given by Lie brackets of Milnor
frame, are of opposite signs.

Regarding the second setting it is well-known that the maximum dimension of
the isotropy group of a 3-dimensional manifold is 6 and the fact that there is no
metric with 5-dimensional group. The Bianchi-Cartan-Vranceanu spaces are cer-
tain 3-dimensional homogeneous Riemannian manifolds with 4-dimensional isom-
etry group. They form a two parameters family containing, among others, some
remarkable three-manifolds: R3, S3, S2 ×R, H2 ×R and the 3-dimensional Heisen-
berg group Nil3. Recently, several studies are devoted to special submanifolds in
these spaces: parallel surfaces [1], biharmonic curves [3] and [6], constant angle sur-
faces [10], graphs of constant mean curvature [11], biharmonic surfaces [15], higher
order parallel and totally umbilical surfaces [17].

Let us pointed out that two motivations for a common presentation of the uni-
modular Lie groups and Bianchi-Cartan-Vranceanu spaces are provided by:
-there exist remarkable examples belonging to both classes: some of them are listed
above,
-in both situations W is controlled by two parameters: in the latter case these are
denoted l and m and they have arbitrary signs.
We note that on this way we recover some well-known results but there are also
some new computations.

2. Webster scalar curvature: the Chern-Hamilton formalism

Fix (M3, g) a 3-dimensional Riemannian manifold and consider {ω1, ω2, ω3} an
orthonormal basis of 1-forms on M ; let {e1, e2, e3} be the corresponding orthonor-
mal basis of vector fields. There exists a unique skew-symmetric matrix of 1-forms: 0 ϕ3 −ϕ2

−ϕ3 0 ϕ1

ϕ2 −ϕ1 0


such that the structural equations: dω1 = ϕ2 ∧ ω3 − ϕ3 ∧ ω2

dω2 = ϕ3 ∧ ω1 − ϕ1 ∧ ω3

dω3 = ϕ1 ∧ ω2 − ϕ2 ∧ ω1

(2.1)

hold on M . Making one step further we derive the existence of the functions
{Kij ; 1 ≤ i, j ≤ 3} such that Kij = Kji and: dϕ1 = ϕ2 ∧ ϕ3 +K11ω2 ∧ ω3 +K12ω3 ∧ ω1 +K13ω1 ∧ ω2

dϕ2 = ϕ3 ∧ ϕ1 +K21ω2 ∧ ω3 +K22ω3 ∧ ω1 +K23ω1 ∧ ω2

dϕ3 = ϕ1 ∧ ϕ2 +K31ω2 ∧ ω3 +K32ω3 ∧ ω1 +K33ω1 ∧ ω2.
(2.2)
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Recall that the subject of [5] consists in adapted metrics for a contact 1-form ω
i.e. Riemannian metrics satisfying:

‖ω‖ = 1, dω = 2 ∗ ω. (2.3)

If g is adapted to ω3 then the Webster scalar curvature W of the triple (M, g, ω3)
is defined as:

W (M, g, ω3) =
1

8
(K11 +K22 + 2K33 + 4) (2.4)

and in the cited paper of Chern and Hamilton is computed for three examples: the
unit sphere S3, the unit tangent bundle of a compact orientable surface of genus
g 6= 1 (for g = 0 it results W = 1) and the Heisenberg group Nil3. In fact:
W (S3) = 1 and W (Nil3) = 0.

A second formula on Webster curvature is in [2, p. 212] and our relation (4.7)
below. Another interpretation of Webster curvature is as the scalar curvature of
the Tanaka-Webster connection which is recently studied in arbitrary dimension in
[7].

3. 3-dimensional unimodular Lie groups and adapted metrics

Let G be a 3-dimensional Lie group and π : TG→ G its tangent bundle. Suppose
that G is unimodular i.e. its volume form is bi-invariant, with a left-invariant
metric g. Then on TG there exists a left-invariant frame field {f1, f2, f3} with dual
co-frame {η1, η2, η3} such that there exist positive constants A,B,C making g a
diagonal metric, [8, p. 170]:

g = Aη1 ⊗ η1 +Bη2 ⊗ η2 + Cη3 ⊗ η3 (3.1)

and the Lie brackets are:

[fi, fj ] = ckijfk. (3.2)

where ckij ∈ {−2, 0, 2} and ckij = 0 unless i, j, k are distinct. This special frame
is usually called Milnor frame. In fact, we work with the associate orthonormal
frame:

e1 =
f1√
A
, e2 =

f2√
B
, e3 =

f3√
C

(3.3)

and denoting λ = c123, µ = c231, ν = c312 we have [8, p. 170]:

[ei, ej ] =
λkc

k
ij√

λ1λ2λ3
ek (3.4)

where λ1 = A, λ2 = B and λ3 = C. Let as in previous Section {ω1, ω2, ω3} be the
dual co-frame of {ei}. More precisely, we have:

[e1, e2] =
Cν√
ABC

e3, [e2, e3] =
Aλ√
ABC

e1, [e3, e1] =
Bµ√
ABC

e2 (3.5)

which gives the structural equations:
dω1 = − Aλ√

ABC
ω2 ∧ ω3

dω2 = − Bµ√
ABC

ω3 ∧ ω1

dω3 = − Cν√
ABC

ω1 ∧ ω2

(3.6)

and then g is adapted to ω3 if and only if:
√
Cν = −2

√
AB. (3.7)
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In order to enlarge the class of suitable metrics we consider the following notion
which appears (with a factor 2 in RHS) in [14]:

Definition 3.1. Fix a 1-form ω on a general (M3, g) and the real number ρ. The
Riemannian metric g on M is called ρ-adapted to ω if dω = ρ ∗ ω.

We conclude from (3.6) that:

Proposition 3.1. The metric g is: i) −Aλ√
ABC

-adapted to the ω1, ii) −Bµ√
ABC

-adapted

to ω2, iii) −Cν√
ABC

-adapted to ω3 in the general case.

Therefore, if the triples (A,B,C), (λ, µ, ν) are inverse proportional i.e. Aλ =
Bµ = Cν = α then g is −α√

ABC
-adapted to all ω’s. As example we have the 3-sphere

S3 where A = B = C = 1 and λ = µ = ν = −2.

4. Webster curvature

We are ready for the first main result of this note:

Proposition 4.1. If the Riemannian metric g is adapted to ω3 then ν = −2 and
ω3 is a contact form with e3 its Reeb vector field. The Webster curvature is:

W (G, g, ω3) = −1

4

(
λ

B
+
µ

A

)
. (4.1)

Proof. From (3.7) it results that ν < 0 with the only possible variant ν = −2 6= 0
and we apply the discussion of [2, p. 223] to conclude the first part. Also, it result:

AB = C. (4.2)

Regarding the second part we search for scalars U , V , W such that:

ϕ1 = Uω1, ϕ2 = V ω2, ϕ3 = Wω3 (4.3)

and it results the system: 
V +W = −AλC
W + U = −BµC
U + V = 2.

(4.4)

The solution is: 
U = 1 + Aλ−Bµ

2C

V = 1− Aλ−Bµ
2C

W = −1− Aλ+Bµ
2C .

(4.5)

We have also: 
K11 = −UAλC − VW
K22 = −V BµC −WU
K33 = 2W − UV

(4.6)

which gives:

8W (G, g, ω3) = −UAλ+ V Bµ

C
− 2W + 4W − 2UV + 4 = − 2

C
(Aλ+Bµ)

which gives the final conclusion. �
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Example 4.1. I) Nil3 : λ = µ = 0, ν = −2. We reobtain W (Nil3) = 0.

II) SU(2) : λ = µ = ν = −2. Then: W (SU(2), A,B) = 1
2

(
1
A + 1

B

)
and since for

the usual metric A = B = 1 we recast W (S3) = 1.

III) SL(2,R) : λ = −2, µ = +2, ν = −2. It results: W (SL(2,R), A,B) =
1
2

(
1
B −

1
A

)
. Therefore W (SL(2,R), 1, 1) = 0. The importance of these metrics

is connected with Corollary 3.3 of [16, p. 247] that: ”the Heisenberg group and the

Lie group S̃L(2,R) are the only simply connected 3-manifolds which admit an uni-
modular homogeneous contact Riemannian structure with Webster scalar curvature
W = 0.”

IV) E(2) = Isom(E2) : λ = −2, µ = 0, ν = −2. Then: W (E(2), A,B) = 1
2B > 0.

For B = 1 we reobtain the result of [16, p. 252] that W (Ẽ(2)) = 1
2 .

V) E(1, 1) = Sol : λ = +2, µ = 0, ν = −2. It follows: W (Sol, A,B) = − 1
2B < 0. �

A second and third formula for the Webster scalar formula holds if the pair
(g, e3) belongs to an almost contact structure [2, p. 213], [16, p. 245], [9, p. 222]:

W (M, g, ω3) =
1

8
(r −Ric(e3) + 4) =

1

8

(
r + 2 +

‖τ3‖2

4

)
(4.7)

where r is the scalar curvature of the metric g, Ric(e3) is the Ricci curvature in the
direction of e3 and τ3 = Le3g. Note also, that conform [2, p. 214], we have:

r = 2K(D) + 2Ric(e3) (4.8)

where K(D) is the sectional curvature of the 2-plane D = kerω3.
For our manifold it results, in the general almost contact case:

r = −2 + λµ
C + µν

A + νλ
B −

1
2ABC

[
A2λ2 +B2µ2 + C2ν2

]
Ric(e3) = C2ν2−(Aλ−Bµ)2

2ABC

K(D) = (Aλ−Bµ)2+Cν(2Aλ+2Bµ−3Cν)2
4ABC

‖τ3‖ = 2
[
|2− C2ν2−(Aλ−Bµ)2

2ABC |
] 1

2

.

(4.9)

In the hypothesis of Proposition 4.1 it results:

r = −2− 2( λB + µ
A )− 1

2

(
λ
B −

µ
A

)2
Ric(e3) = 2− 1

2 ( λB −
µ
A )2

K(D) = −3− ( λB + µ
A ) + 1

4 ( λB −
µ
A )2

‖τ3‖ =
√

2| λB −
µ
A |.

(4.10)

and, on this way we reobtain (4.1). It results that the adapted metric g isK-contact,
in fact Sasakian ([4]), if and only if Aλ = Bµ.

5. Bianchi-Cartan-Vranceanu metrics

Fix l and m two real numbers and denotes by M3
m the manifold {(x, y, z) ∈

R3;F (x, y, z) = 1 + m(x2 + y2) > 0}. We shall consider on M3
m the Bianchi-

Cartan-Vranceanu metric, [17, p. 343]:

gl,m =
1

F 2
dx2 +

1

F 2
dy2 +

(
dz +

ly

2F
dx− lx

2F
dy

)2

. (5.1)
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An important feature of these metrics is their S1-invariance i.e. the invariance with
respect to transformations: x̃

ỹ
z̃

 =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 x
y
z

 (5.2)

Also, we note the invariance:

g−l,m(x, y, z) = gl,m(−y,−x, z). (5.3)

For other remarks concerning these metrics see [17].
An orthonormal basis in Ω1(M3

m) is:

ω1 =
dx

F
, ω2 =

dy

F
, ω3 = dz +

ly

2F
dx− lx

2F
dy (5.4)

and then:

dω3 = − l

F 2
dx ∧ dy, ∗ω3 = ω1 ∧ ω2 =

1

F 2
dx ∧ dy. (5.5)

Since the gl,m-dual of ω3 is the vertical vector field E3 = ∂
∂z we may call vertical

adapted a metric adapted to ω3. Therefore the only vertical adapted Bianchi-
Cartan-Vranceanu metrics are given by l = −2; in particular those of the sphere
S3 and the Heisenberg group Nil3. With respect to the general definition 3.1 the
Bianchi-Cartan-Vranceanu metrics are vertical (−l)-adapted.

A straightforward computation gives:

ϕ1 = − l

2F
dx, ϕ2 = − l

2F
dy, ϕ3 =

l

2
dz+

(l2 − 8m)y

4F
dx− (l2 − 8m)x

4F
dy. (5.6)

Also, we derive the matrix of K’s:

diag

(
l2

4
,
l2

4
,

16m− 3l2

4

)
(5.7)

which yields the second main result:

Proposition 5.1. The Webster scalar curvature of the triple (M3
m, gl,m, ω3) is:

W = m+
4− l2

8
. (5.8)

Remark 5.1. Recall the formula (4.7). The Ricci tensor field of (0, 2)-type for
Bianchi-Cartan-Vranceanu metrics is computed in [3, p. 124]:

Ric11 = Ric22 = 4m− l2

2
, Ric33 = Ric(ξ) =

l2

2
. (5.9)

Then an almost contact Bianchi-Cartan-Vranceanu metric has:

r = Ric11 +Ric22 +Ric33 = 8m− l2

2
, K(D) = 4m− 3l2

4
, ‖τ3‖ = 2

√
2− l2

2
(5.10)

which yields again (5.8) and implies that l must be considered only in the interval
[−2, 2]. Then the triple (M3

m, gl,m, ω3) is a Sasakian manifold (i.e. K-contact
manifold since in dimension 3 these notions coincides) if and only if l ∈ {−2, 2}.
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Example 5.1. 1) m = 0, l = −2 is Nil3 and then we recast: W (Nil3) = 0.
2) if 4m = l2 (e.q. m = 1, l = −2) then (M3, gl,m) is S3(m) \ {∞} and then:

W (S3(m)) = m+1
2 . We recover: W (S3) = 1.

3) m = 0 = l is the Euclidean R3, thus: W (E3) = 1
2 .

4) if m > 0 and l = 0 then we have M3
m = (S2(4m) \ {∞}) × R and thus:

W (S2(m)× R) = m
4 + 1

2 .

5) if m < 0 and l = 0 then we have M3
m = H2(4m) × R where H2(k) is the

hyperbolic plane of constant Gaussian curvature k < 0. Then: W (H2(m) × R) =
m
4 + 1

2 .
6) if m > 0 and l 6= 0 we get SU(2) \ {∞}.
7) if m < 0 and l 6= 0 we have S̃L(2,R). In conclusion, for l ∈ (0, 2) we get:

W
(
S̃L(2,R), g

l, l
2−4
8

)
= 0. �

Obviously, an important problem is to obtain metrics with prescribed Webster
scalar curvature. We conclude with:

Proposition 5.2. Fix m ∈ R and let c ∈ (−∞,m+ 1
2 ). Then the Bianchi-Cartan-

Vranceanu metrics g±l,m with:

l =
√

4 + 8(m− c) (5.11)

have the Webster scalar curvature equal to c. In particular, we can obtain Bianchi-
Cartan-Vranceanu metrics with vanishing Webster scalar curvature only for m ≥
− 1

2 .

6. Warped metrics

Let B and N be two smooth manifolds endowed with the Riemannian metrics
gB and gN of dimension b and n respectively. Let f : B → R∗+ be a smooth and
strictly positive function. The warped product of B and F with warping function f
is the Riemannian manifold:

B ×f N = (Mb+n, g) = (B ×N, gB + f2gN ) (6.1)

where in the right-hand-side of above equation the function f is in fact f ◦ π with
π : B ×N → B the projection on the first factor.

In the following we restrict to the case: B = I is an open real interval with
the Euclidean metric gB(z) = dz2 and N = E2 the Euclidean plane. We use
the classical coordinates (x, y) on E2 and z on I; therefore the main vector field
considered below on (M3, g) = I ×f E2, namely ∂

∂z = ∂z will be called the vertical
vector field. The warping function is then f = f(z) and for further use we consider
the function F : B → R:

F = ln f. (6.2)

Since the warped metric g is:

g = f2(z)
(
dx2 + dy2

)
+ dz2 (6.3)

we have the orthonormal basis:

ω1 = f(z)dx, ω2 = f(z)dy, ω3 = dz (6.4)

with the derivatives:

dω1 = −f ′(z)dx ∧ dz, dω2 = −f ′(z)dy ∧ dz, dω3 = 0 (6.5)
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and hence:

ϕ1 = f ′(z)dy, ϕ2 = −f ′(z)dx, ϕ3 = 0. (6.6)

Also, we derive the matrix of K’s:

diag

(
−f
′′

f
,−f

′′

f
,−
(
f ′

f

)2
)

(6.7)

which yields the another main result:

Proposition 6.1. The warped metric (6.3) is not vertically adapted but formally
the Webster scalar curvature of the triple (I ×f E2, g, ω3) is:

W (E2, f) =
1

4

(
2− F ′′(z)− 2 (F ′(z))

2
)
. (6.8)

Proof. Since dω3 = 0 6= 2 ∗ ω3 = 2ω1 ∧ ω2 = 2f2dx ∧ dy we have the first part
of conclusion; in fact the metric is 0-adapted to ω3. The matrix (6.7) implies:

W (E2, f) =
1

4

[
2− f ′′

f
−
(
f ′

f

)2
]
. (6.9)

and a straightforward computation of F ′ and F ′′ gives the claimed formula (6.8).
�

As in the previous section we obtain for the almost contact case:

r = −4
f ′′

f
− 2

(
f ′

f

)2

, K(D) = −
(
f ′

f

)2

, ‖τ3‖ = 2

√
2

(
1 +

f ′′

f

)
(6.10)

which yields the necessary condition regarding the warping function:

f ′′(z) + f(z) ≥ 0. (6.11)

Example 6.1. For f(z) = 1 we get the Euclidean R3 and (6.8) yields again:
W (E3) = 1

2 . The relations (6.10) give:

r = K(D) = 0, ‖τ3‖ = 2
√

2 (6.12)

similar to (5.10) for m = l = 0 and then the Euclidean 3-geometry with e3 = ∂
∂z is

not an almost contact geometry.

Example 6.2. Let A,B ∈ R such that the function:

f(z) = A cos z +B sin z (6.13)

is strictly positive on I. We have the equality case of (6.11) and then e3 = ∂
∂z

is a Killing vector field for the warped metric g. The functions r and K(D) are
non-constant and r < −4, K(D) < 0.

Example 6.3. In order to find a constant Webster curvature we have to solve the
differential equation:

F ′′ + 2 (F ′)
2

= C = constant (6.14)

For C = 0 we have the 1-parameter family of solutions: fc(z) =
√

2z + c for c a
real constant. Hence, with c = 0 and condition (6.11) we obtain I = ( 1

2 ,+∞) and:

W (E2, f(z) =
√
z) =

1

2
, g = z (dx+ dy)

2
+ dz2, r(z) =

1

2z2
= −2K(D)(z).

(6.15)



ADAPTED METRICS AND WEBSTER CURVATURE... 45

For C = λ > 0 we have the 1-parameter family of solutions:

fc(z) =

√
cosh

(√
2λz

)
+ c. (6.16)

For c = 0 the condition (6.11) means tanh2(
√

2λz) ≤ 2(1 + 1
λ ) and since the range

of tanh is (−1, 1) it follows that I = R and: W (E2, f(z) =

√
cosh

(√
2λz

)
) = 2−λ

4 < 1
2 , g = cosh

(√
2λz

) (
dx2 + dy2

)
+ dz2

r(z) = −4λ+ λ tanh2(
√

2λz) < 0, K(D) = −λ2 tanh2(
√

2λz)

.

(6.17)
For C = −λ < 0 we get again a 1-parameter family of solutions:

fc(z) =

√
cos
(√

2λz
)

+ c. (6.18)

For c = 0 the condition (6.11) means z ≥ 1√
2λ

arctan
(
2(1− 1

λ )
)

and then λ ∈ (0, 1).

With I =
(

0, 1√
2λ

arctan
(
2(1− 1

λ )
)
< π

2
√
2λ

)
we have: W (E2, f(z) =

√
cos
(√

2λz
)

) = 2+λ
4 ∈ ( 1

2 ,
3
4 ), g = cos

(√
2λz

) (
dx2 + dy2

)
+ dz2

r(z) = −4λ− 3λ tan2(
√

2λz) < 0, K(D) = −λ2 tan2(
√

2λz)

.

(6.19)
Let us remark that for all three metrics above we have K(D) < 0. �

In order to enlarge the class of metrics we consider a more general 2-manifold
instead of E2:

g = f2(z)
(
dx2 + u2(x)dy2

)
+ dz2 (6.20)

which can be called a bi-warped metric. Then the orthonormal basis is:

ω1 = f(z)dx, ω2 = f(z)u(x)dy, ω3 = dz (6.21)

and hence:

ϕ1 = f ′(z)u(x)dy, ϕ2 = −f ′(z)dx, ϕ3 = −u′(x)dy. (6.22)

The matrix of K’s is:

diag

(
−f
′′

f
,−f

′′

f
,− (f ′)2u+ u′′

f2u

)
(6.23)

which yields:

Proposition 6.2. The pair (bi-warped metric (6.20), ω3 = dz) has the Webster
scalar curvature:

W (u, f) =
1

4

(
2− f ′′

f
− (f ′)2u+ u′′

f2u

)
= W (E2, f)− u′′

4f2u
. (6.24)

Example 6.4. Let us consider the three 2-dimensional geometries of constant
curvature:
i) Euclidean: u(x) = x. We reobtain (6.8).
ii) Elliptic i.e. N = S2: u(x) = sinx. We have W (S2, f) = W (E2, f) + 1

4f2 .

iii) Hyperbolic i.e. N = H2: u(x) = sinhx. We derive W (H2, f) = W (E2, f)− 1
4f2 .
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For the almost contact case we get the same ‖τ3‖ but:

r = −4
f ′′

f
− 2

(f ′)2u+ u′′

f2u
, K(D) = − (f ′)2u+ u′′

f2u
(6.25)

and it follows:{
r(S2, f) = r(E2, f) + 2

f2 , K(D)(S2, f) = K(D)(E2, f) + 1
f2

r(H2, f) = r(E2, f)− 2
f2 , K(D)(H2, f) = K(D)(E2, f)− 1

f2 .
(6.26)
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