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MIRCEA CRASMAREANU

(Communicated by Murat TOSUN)

ABSTRACT. The Chern-Hamilton notion of adapted metric and the corre-
sponding Webster curvature W is discussed for 3-dimensional unimodular Lie
groups, Bianchi-Cartan-Vranceanu metrics and warped metrics. For the first
two metrics, we control the value of W by means of two parameters: A and B
provided by the Milnor frame in the former case respectively | and m in the
latter case. For warped metrics, the value of W depends on the derivatives
of the warping function up to order two. Bi-warped 3-metrics are introduced
and studied from the point of view of Webster curvature.

1. INTRODUCTION

Among the Riemannian manifolds of non-constant sectional curvature a special
role is played by the homogeneous spaces with a large isometry group. Due to
the recent approach of Hamilton-Perelman to the Poincaré conjecture (by means
of Ricci flow, [8]), a great interest is in dimension 3; for a recent survey on this
dimension see [12]. The present note aims to discuss two topics in 3-dimensional
Riemannian geometry, both considered by Chern and Hamilton in [5]: adapted
metric to a given differential 1-form and the Webster curvature W. In fact, we
generalize the concept of adapted metric by modifying the original condition of
Chern-Hamilton from the scalar 2 to a general p € R in order to cover all possibi-
lities. The above notions are considered in three settings: unimodular Lie groups,
Bianchi-Cartan-Vranceanu geometries and warped metrics.

The Webster scalar curvature W was introduced already into the framework of
3-dimensional geometry of Lie groups by Domenico Perrone [16] in order to classify
homogeneous contact metrics on 3-manifolds. More precisely, in the cited paper was
proven that a simply connected Riemannian homogeneous contact 3-manifold is a
Lie group with a left-invariant contact Riemannian structure and the classification
is given in terms of the (non-)unimodularity of the group, its Webster curvature
and the torsion invariant 7 introduced also by Chern and Hamilton.
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We propose here a new approach for computing W in geometry of a unimodular
Lie group (G, g). In fact, we use another formula of [5] which is based on structural
equations (see Section 1) through the dual of the Milnor frame ([13]) of G. The
advantage of our result from Section 3 is that we can control the value of W by
means of two parameters, denoted A and B in Section 2, provided by the orthonor-
mality of metric g with respect to Milnor frame. As example of this possibility of
control, since A and B are strictly positive, a look at our formula (3.1) yields that
the vanishing of W implies that A and p, the scalars given by Lie brackets of Milnor
frame, are of opposite signs.

Regarding the second setting it is well-known that the maximum dimension of
the isotropy group of a 3-dimensional manifold is 6 and the fact that there is no
metric with 5-dimensional group. The Bianchi-Cartan-Vranceanu spaces are cer-
tain 3-dimensional homogeneous Riemannian manifolds with 4-dimensional isom-
etry group. They form a two parameters family containing, among others, some
remarkable three-manifolds: R3, S, S% x R, H? x R and the 3-dimensional Heisen-
berg group Nil3. Recently, several studies are devoted to special submanifolds in
these spaces: parallel surfaces [1], biharmonic curves [3] and [6], constant angle sur-
faces [10], graphs of constant mean curvature [11], biharmonic surfaces [15], higher
order parallel and totally umbilical surfaces [17].

Let us pointed out that two motivations for a common presentation of the uni-
modular Lie groups and Bianchi-Cartan-Vranceanu spaces are provided by:

-there exist remarkable examples belonging to both classes: some of them are listed
above,

-in both situations W is controlled by two parameters: in the latter case these are
denoted [ and m and they have arbitrary signs.

We note that on this way we recover some well-known results but there are also
some new computations.

2. WEBSTER SCALAR CURVATURE: THE CHERN-HAMILTON FORMALISM

Fix (M3, g) a 3-dimensional Riemannian manifold and consider {w;,ws,w3} an
orthonormal basis of 1-forms on M; let {e1,e2,e3} be the corresponding orthonor-
mal basis of vector fields. There exists a unique skew-symmetric matrix of 1-forms:

0 ¥3 —¥2
—¥3 0 ¥1
w2 —p1 0

such that the structural equations:

dwy = pa Aws — Y3 A wa
dwy = p3 Awi — o1 Aws (2.1)
dws = 1 Nwa — P2 Awy

hold on M. Making one step further we derive the existence of the functions
{KZJ, 1 < Z,j < 3} such that K,’j = Kji and:

dp1 = 2 N3+ K1iws Aws + Kiaws Awr + Ki3wi A we
dpz = p3 A p1 + Kojws A wz + Koows A wi + Kazwi A ws (2.2)
des = @1 N pa + Kzjwa A ws + Kzows A wy + Kgzwi A wa.
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Recall that the subject of [5] consists in adapted metrics for a contact 1-form w
i.e. Riemannian metrics satisfying:

lw] =1, dw=2x*uw. (2.3)

If g is adapted to w3 then the Webster scalar curvature W of the triple (M, g,ws)
is defined as: )
3 (K11 + Koz + 2K33 + 4) (2.4)
and in the cited paper of Chern and Hamilton is computed for three examples: the
unit sphere S3, the unit tangent bundle of a compact orientable surface of genus
g # 1 (for ¢ = 0 it results W = 1) and the Heisenberg group Nil3. In fact:
W(S?) =1 and W(Nilz) = 0.

A second formula on Webster curvature is in [2, p. 212] and our relation (4.7)
below. Another interpretation of Webster curvature is as the scalar curvature of
the Tanaka-Webster connection which is recently studied in arbitrary dimension in
[7].

W(Mvgaw?)) =

3. 3-DIMENSIONAL UNIMODULAR LIE GROUPS AND ADAPTED METRICS

Let G be a 3-dimensional Lie group and 7 : TG — G its tangent bundle. Suppose
that G is unimodular i.e. its volume form is bi-invariant, with a left-invariant
metric g. Then on T'G there exists a left-invariant frame field {f1, fo, f3} with dual
co-frame {n*,n?, 1>} such that there exist positive constants A, B,C making g a
diagonal metric, [8, p. 170]:

g=Ant@n' + B @ n® + Cn @1 (3.1)

and the Lie brackets are:
[fis f] = € Fr- (3.2)
where ¢f; € {—2,0,2} and ¢}; = 0 unless i, j, k are distinct. This special frame

is usually called Milnor frame. In fact, we work with the associate orthonormal
frame:

=L =2 -t (3-3)
VA VB Ve
and denoting A\ = cl;, p = c%;, v = ¢}, we have [8, p. 170]:
Ak
ki (3.4)

€i, €j| = —F—5=C%
[ei, €] SN
where \; = A, A\ = B and A3 = C. Let as in previous Section {w!,w? w3} be the
dual co-frame of {e;}. More precisely, we have:

Cv A Bu

e1,62] = ———e3, |es,e3] = ——e1, |es,e1] = e 3.5
le1, 2 ABC ° le2, 2 ABC lea, e VABC (35)
which gives the structural equations:

dw; = — \/ﬁﬁWQ N\ ws

dwy = —\/%wg, N\ w1 (36)

dCU3 = 7%&]1 A w2

and then g is adapted to w3 if and only if:

VCv = —2VAB. (3.7)
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In order to enlarge the class of suitable metrics we consider the following notion
which appears (with a factor 2 in RHS) in [14]:

Definition 3.1. Fix a 1-form w on a general (M3, g) and the real number p. The
Riemannian metric g on M is called p-adapted to w if dw = p * w.

We conclude from (3.6) that:

Proposition 3.1. The metric g is: i) \/*A“‘%—adapted to the wy, ii) \/%—adapted
—Cv

m—adapted to ws in the general case.

to wo, i)

Therefore, if the triples (A, B,C), (A, u,v) are inverse proportional i.e. A\ =

Bu=Cv =athengis \/Tﬁ—adapted to all w’s. As example we have the 3-sphere

S3where A=B=C=1land \=p=v=-2.

4. WEBSTER CURVATURE

We are ready for the first main result of this note:

Proposition 4.1. If the Riemannian metric g is adapted to ws then v = —2 and
w3 is a contact form with es its Reeb vector field. The Webster curvature is:

W«Gy¢%)=—i<;-ki>. (4.1)

Proof. From (3.7) it results that v < 0 with the only possible variant v = —2 # 0
and we apply the discussion of [2, p. 223] to conclude the first part. Also, it result:

AB=_C. (4.2)
Regarding the second part we search for scalars U, V', W such that:
o1 =Uwi, @2 =Vws, ¢3=Wuws (4.3)
and it results the system:
V+W=—§
W+U=-H (4.4)
U+V=2
The solution is:
U=1+ A)\;CB;L
V=1 A*QZFB“ (4.5)
W=-1 )\2%3#

We have also:
KH:—%§—VW
Koy = —Y2t WU (4.6)
K33 =2W - UV

which gives:

AN+ VB 2
gl%¥;ﬂ—2w+4W—2UV+4:—5

which gives the final conclusion. [
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Example 4.1. T) Nilg : A= p =0, v = —2. We reobtain W (Nilz) = 0.

II) SU(2) : A =p =v = —2. Then: W(SU(2),A,B) = 3 (4 + +) and since for
the usual metric A = B = 1 we recast W (S3) = 1.

III) SL(2,R) : A = =2, = +2,v = —2. It results: W(SL(2,R),A,B) =
1 (% —%)- Therefore W(SL(2,R),1,1) = 0. The importance of these metrics
is connected with Corollary 3.3 of [16, p. 247] that: ”the Heisenberg group and the
Lie group ﬁ(?, R) are the only simply connected 3-manifolds which admit an uni-
modular homogeneous contact Riemannian structure with Webster scalar curvature
W =0."

IV) E(2) = Isom(E?) : A = —=2,u = 0,v = —2. Then: W(E(2),4,B) = 5% > 0.

For B = 1 we reobtain the result of [16, p. 252] that W (E(2)) i
V) E(1,1) = Sol : A = +2, 1= 0,v = —2. It follows: W (Sol, A, B) = —5= < 0. O

A second and third formula for the Webster scalar formula holds if the pair
(g, e3) belongs to an almost contact structure [2, p. 213], [16, p. 245], [9, p. 222]:

4

where r is the scalar curvature of the metric g, Ric(es) is the Ricci curvature in the
direction of ez and 73 = L., g. Note also, that conform [2, p. 214], we have:
r =2K(D) + 2Ric(e3) (4.8)
where K (D) is the sectional curvature of the 2-plane D = ker ws.
For our manifold it results, in the general almost contact case:

r=-2+ %L +5 % - 2,&;0 [A2\? + B?1i? + C2?]

WM, g,ws) = %(7’ ~ Ric(es) +4) = é (r to4 ”73"2) (4.7)

. _ C?V2—(AN—Bp)?
Ric(e3) = 5 50—

K (D) = UA=DR O o) (4.9)
sl =2 [\2 _ %ﬂ 3
In the hypothesis of Proposition 4.1 it results:
r:—2—2(%+%)_%(%_%)2
oy (4.10)
K(D)=-3— (3 + %)+ 1(4 -4y

Isll = v2I5 - 41.
and, on this way we reobtain (4.1). It results that the adapted metric g is K-contact,
in fact Sasakian ([4]), if and only if AX = Bpu.

5. BIANCHI-CARTAN-VRANCEANU METRICS

Fix [ and m two real numbers and denotes by M3 the manifold {(z,y,2) €
R3; F(z,y,2) = 1+ m(2? + y?) > 0}. We shall consider on M3 the Bianchi-
Cartan-Vranceanu metric, [17, p. 343]:

IR ly lz  \?
giom = ﬁdl' + ﬁdy + (dZ + ﬁdz — ﬁdy . (51)
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An important feature of these metrics is their S'-invariance i.e. the invariance with
respect to transformations:

T cosp —sing 0 T
g | = sing cosp O Yy (5.2)
z 0 0 1 z
Also, we note the invariance:
g—lﬂ'ﬂ(x,yvz) :gl,m(fya 7‘%’2)' (53)
For other remarks concerning these metrics see [17].
An orthonormal basis in Q' (M3) is:
dx dy ly lx
= = =2 =dz+ —=dx — —=d 5.4
R Y e B ol o (5.4)
and then:
l 1
dws = —ﬁdaﬁ ANdy, *w3=wi Awy= ﬁdx A dy. (5.5)

Since the g; n,,-dual of ws is the vertical vector field E3 = % we may call vertical
adapted a metric adapted to ws. Therefore the only vertical adapted Bianchi-
Cartan-Vranceanu metrics are given by [ = —2; in particular those of the sphere
S3 and the Heisenberg group Nil3. With respect to the general definition 3.1 the
Bianchi-Cartan-Vranceanu metrics are vertical (—!)-adapted.

A straightforward computation gives:

l l l (I — 8m)y (12 — 8m)x
p1 = —ﬁdx, g = —ﬁdy7 p3 = §dz+ a dx— ¥ dy. (5.6)
Also, we derive the matrix of K’s:
) 12 12 16m — 312

which yields the second main result:
Proposition 5.1. The Webster scalar curvature of the triple (M3, g m,ws) is:

4_2
W=m+ 81' (5.8)

Remark 5.1. Recall the formula (4.7). The Ricci tensor field of (0,2)-type for
Bianchi-Cartan-Vranceanu metrics is computed in [3, p. 124]:

2 12
RiCn = RiCQQ =4m — 5, RiC33 = RZC(f) = E (59)

Then an almost contact Bianchi-Cartan-Vranceanu metric has:

. . . 12 312 12
’I":R1011+R1622+R'LC33:8TI’L7§, K(D):Zlm—j, 3] = 2 2—5

(5.10)
which yields again (5.8) and implies that [ must be considered only in the interval

[—2,2]. Then the triple (M2, gi.m,ws) is a Sasakian manifold (i.e. K-contact

m
manifold since in dimension 3 these notions coincides) if and only if [ € {—2,2}.
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Example 5.1. 1) m = 0,1 = —2 is Nils and then we recast: W (Nil3) = 0.

2) if 4m = 12 (e.q. m = 1,1 = —2) then (M3, g.m) is S3(m) \ {oco} and then:
W(S3(m)) = 2. We recover: W (S?%) = 1.

3) m = 0 = [ is the Euclidean R?, thus: W (E®) = 1.

4) if m > 0 and | = 0 then we have M2 = (S?(4m) \ {oo}) x R and thus:
W(S%(m) xR) =2 + 1.

5) if m < 0 and | = 0 then we have M? = H?(4m) x R where H?(k) is the
hyperbolic plane of constant Gaussian curvature k < 0. Then: W (H?(m) x R) =
mo 1
! 6) 2ifm >0 and I # 0 we get SU(2) \ {o0}.

7) if m < 0 and [ # 0 we have SL(2,R). In conclusion, for [ € (0,2) we get:

W(SL(2,R)7gl 2,)=0. O

Obviously, an important problem is to obtain metrics with prescribed Webster
scalar curvature. We conclude with:

Proposition 5.2. Fizm € R and let ¢ € (—oo,m+ %). Then the Bianchi-Cartan-
Vranceanu metrics g+i,m with:

l=+44+8(m—c¢) (5.11)

have the Webster scalar curvature equal to c. In particular, we can obtain Bianchi-

Cartan-Vranceanu metrics with vanishing Webster scalar curvature only for m >
1

5
6. WARPED METRICS

Let B and N be two smooth manifolds endowed with the Riemannian metrics
gp and gy of dimension b and n respectively. Let f : B — R be a smooth and
strictly positive function. The warped product of B and F with warping function f
is the Riemannian manifold:

B xf N = (Myin,g) =(BxN,gs+ f*gn) (6.1)

where in the right-hand-side of above equation the function f is in fact f o 7w with
m: B x N — B the projection on the first factor.

In the following we restrict to the case: B = I is an open real interval with
the Euclidean metric gp(z) = dz? and N = E? the Euclidean plane. We use
the classical coordinates (z,y) on E? and z on I; therefore the main vector field
considered below on (Ms, g) = I x ¢ E?, namely % = 0, will be called the vertical
vector field. The warping function is then f = f(z) and for further use we consider
the function F': B — R:

F=Inf (6.2)
Since the warped metric g is:
9= f*(z) (do® + dy®) + d2* (6.3)
we have the orthonormal basis:
w1 = f(2)dx, we= f(2)dy, w3=4dz (6.4)

with the derivatives:

dwiy = —f'(2)dx Ndz, dws = —f"(z)dy Ndz, dws=0 (6.5)
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and hence:
¢1=f(2)dy, ¢2=—f"(2)dz, ¢3=0. (6.6)
Also, we derive the matrix of K’s:

which yields the another main result:

Proposition 6.1. The warped metric (6.3) is not vertically adapted but formally
the Webster scalar curvature of the triple (I x s E?, g, w3) is:

W(E2, f) = i (2-F'(2) —2(7(2))%). (6.8)

Proof. Since dws = 0 # 2 % w3 = 2w; Aws = 2f2dx A dy we have the first part
of conclusion; in fact the metric is 0-adapted to ws. The matrix (6.7) implies:

) e

and a straightforward computation of F’ and F” gives the claimed formula (6.8).
]

WE, ) = §

As in the previous section we obtain for the almost contact case:

r:—4f/l—2<f/>2, K(D)z—(fl>27 73] = 2 2(1+f”> (6.10)

f f f f
which yields the necessary condition regarding the warping function:
" (z)+ f(z) > 0. (6.11)

Example 6.1. For f(z) = 1 we get the Euclidean R® and (6.8) yields again:
W(E?) = 1. The relations (6.10) give:
r=K(D)=0, || =2v2 (6.12)

similar to (5.10) for m = = 0 and then the Euclidean 3-geometry with e3 = % is

not an almost contact geometry.

Example 6.2. Let A, B € R such that the function:
f(z) = Acosz+ Bsinz (6.13)

is strictly positive on I. We have the equality case of (6.11) and then es = 8%
is a Killing vector field for the warped metric g. The functions r and K (D) are
non-constant and r < —4, K(D) < 0.

Example 6.3. In order to find a constant Webster curvature we have to solve the
differential equation:

F"+2 (F')2 = C = constant (6.14)

For C = 0 we have the 1-parameter family of solutions: f.(z) = v/2z + ¢ for ¢ a
real constant. Hence, with ¢ = 0 and condition (6.11) we obtain I = (3, +00) and:

W(E?, f(2) = Vz) = %, g=z(dx+ dy)2 +d2?, 7(2) 1 = —2K(D)(2).

T 22
(6.15)
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For C = X > 0 we have the 1-parameter family of solutions:

folz) = \/cosh (V2re) +e. (6.16)

For ¢ = 0 the condition (6.11) means tanh*(v/2Az) < 2(1 + %) and since the range
of tanh is (—1,1) it follows that I = R and:

W (E?, f(2) = 4/cosh (\/ﬁz)) =22 <1 g=rcosh (\/ﬁz) (dz? + dy?) + d=? .
r(2) = —4X + Mtanh®*(vV2X\2) < 0, K(D) = -3 tanh?(v/2)z)

(6.17)
For C = —X < 0 we get again a 1-parameter family of solutions:
fe(z) =4/ cos (v 2)\2) +ec. (6.18)

For ¢ = 0 the condition (6.11) means z > \/#27\ arctan (2(1 — 1)) and then A € (0,1).

With T = (O, \/% arctan (2(1 — 1)) < 2\;5) we have:

W (E2, f(z) = {/cos (\/ﬁz)) =28 ¢ (1,3) g =cos (\/ﬁz) (da? + dy?) + d2? .
r(z) = —4X — 3Atan?(V2X2) <0, K(D) = —3 tan?(vV2\z)

(6.19)
Let us remark that for all three metrics above we have K(D) < 0. O

In order to enlarge the class of metrics we consider a more general 2-manifold
instead of E2:

9= f*(z) (do’ + v (z)dy®) + d2° (6.20)
which can be called a bi-warped metric. Then the orthonormal basis is:
w1 = f(z)dx, we = f(2)u(z)dy, ws=dz (6.21)
and hence:
pr=f'(2Ju)dy, @2 =—f'(2)dx, @3 =—u'(2)dy. (6.22)
The matrix of K’s is:
" " 12 %
diag <’; J%, W) (6.23)

which yields:

Proposition 6.2. The pair (bi-warped metric (6.20), ws = dz) has the Webster
scalar curvature:

u//

af2u’
Example 6.4. Let us consider the three 2-dimensional geometries of constant
curvature:

i) Euclidean: u(z) = 2. We reobtain (6.8).

ii) Elliptic i.e. N = $* u(z) = sinz. We have W(S?, f) = W(E?, f) + 7.

iii) Hyperbolic i.e. N = H?: u(x) = sinhx. We derive W (H?, f) = W(E?, f) — ﬁ.

B LII 3 (f/)2u+u//

W (u, f) = % (2 7 f2u> =W(E% f) - (6.24)
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For the almost contact case we get the same ||73|| but:

f// (f/)2u+u” (f/)qurUH
R ks K(D) = - 7 (6.25)
and it follows:
(1S @D f KD S KOED (o
T(H27f):T(E27f)_%7 K(D)(H27f):K(D)(E27f)_f712 .
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