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ON A SPECIAL CONFIGURATION

OF LINES AND POINTS IN PN

ALBERTO ALZATI AND GIAN MARIO BESANA

(Communicated by H. Hilmi HACISALİHOǦLU)

Abstract. This note concerns some arrangements of lines in PN (C) and the

condition under which there exists a hyperplane intersecting transversely every
line of the given arrangement at a unique point.

1. Introduction.

In this note we want to address the following combinatorial problem. Let us fix
a set L of r disjoint lines {L1, L2, . . . , Lr} in PN (C). Let us pick r distinct points
{P1, . . . , Pr} such that Pi ∈ Li for i = 1, ..., r. Under which conditions can one find a
hyperplane through P1, . . . , Pr that intersects each line Li exactly at Pi ? It easy to
see that there are situations in which no such hyperplane exists. For instance, let 〈..〉
denote the linear span of a given subset, and assume that dim(〈L1, L2, L3, L4〉) =
3 < N. Then, for any generic 4-tuple of points P1, P2, P3, P4, chosen respectively on
L1, L2, L3, L4, every hyperplane in PN that contains all of these points must also
contain all of the lines L1, L2, L3, L4.

The above example suggests that the dimension of the linear spans of subsets of L
play a significant role, and that with no additional assumptions on such dimensions
one cannot hope to find a general solution. However, if we assume that for any
subset L′ ⊆ L the dimension of the corresponding linear span depends only upon
the cardinality of L′, a suitable general result can be achieved. As we shall see, the
hypothesis above is satisfied, for instance, when L is any subset of r ≤ N fibres of
a rational scroll embedded in PN (C).

In Section 2 the main theorem is presented. Section 3 contains a few corollaries
showing that, in the situation under consideration, the set of hyperplanes in PN∗
(the dual space) satisfying the main hypothesis above with respect to L is large
enough. Section 4 studies the special case in which all lines Li are contained in a
rational ruled surface. Finally Section 5 is devoted to an application of the main
theorem which was indeed the original motivation for us to address this problem.
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2. The main theorem

Let us consider a set L as mentioned in §1. Let us fix a line L := L1 ∈ L.
Let us pick a second line L2 such that dim(〈L1, L2〉) = 3. Then, let us pick
a third line L3, if it exists, such that dim(〈L1, L2, L3〉) = 5, and so on. We
can proceed in this way, say, only for h ≥ 1 steps to get L1, L2, ..., Lh+1 with
dim(〈L1, L2, ..., Lh+1〉) = 2h + 1 ≤ N. Now we pick another line Lh+2, if it exists,
such that Lh+2 intersects 〈L1, L2, ..., Lh+1〉 at one point only; then we pick another
line Lh+3, if it exists, intersecting 〈L1, L2, ..., Lh+1, Lh+2〉 at one point only, and so
on. If possible, we can proceed in this way, say, only for another q ≥ 1 steps to get
L1, L2, ..., Lh+1, Lh+2, ...., Lh+q+1 with dim(〈L1, L2, ..., Lh+1, Lh+2, ...., Lh+q+1〉) =
2h+ q + 1 = N. Then, independently of the number of the remaining lines, if any,
dim(〈L1, L2, ..., Lh+1, Lh+2, ...., Lh+q+1, ..., Lp〉) = N for any h+ q + 2 ≤ p ≤ r.

Notice that the function d : [1, r] ⊆ N→ N such that d(n) = dim(〈L1, L2, ..., Ln〉)
depends upon the order in which our lines were chosen. Here we want to consider
only sets L of r lines in PN , r ≤ N, such that d does not depend upon the order.
In this case we can prove the following theorem, where k := h+ q.

Theorem 2.1. Let (h, k) be a given pair of integers with 1 ≤ h ≤ k, h+k+1 = N.
Let L = {L1, . . . , Lr}, with 2 ≤ r ≤ N, be any set of r distinct and disjoint lines in
PN , such that, for any subset {L1, . . . , Lρ} ⊆ L, (ρ ≤ r), one has:

1) dim(〈L1, . . . , Lρ〉) = 2ρ− 1 when 1 ≤ ρ ≤ h+ 1;
2) dim(〈L1, . . . , Lρ〉) = ρ+ h when h+ 2 ≤ ρ ≤ k + 1;
3) dim(〈L1, . . . , Lρ〉) = N when k + 2 ≤ ρ ≤ N.

Let Wr := {(P1, . . . , Pr) ∈ L1 × · · · × Lr ' (P1)×r |dim(〈P1, . . . , Pr〉) ≤ r − 2}.
Then dim(Wr) ≤ r − 2, i.e. Wr is a closed subscheme of codimension at least 2

in (P1)×r := P1×· · ·×P1 (r times). Moreover, if 2 ≤ r ≤ h+1 then Wr is empty,
if h+ 2 ≤ r ≤ k + 1 then dim(Wr) ≤ r − h− 2.

Before proving Theorem 2.1 we would like to show that there are concrete situ-
ations in which the assumptions of Theorem 2.1 are indeed satisfied.

Lemma 2.1. Let E = OP1(h) ⊕ OP1(k) with 1 ≤ h ≤ k, N = h + k + 1, and let
S = P(E), be a smooth, rational, surface embedded as a linear scroll in PN (C) by
its tautological line bundle. Let L1, L2, ..., Lr be any set of r lines in PN which are
fibres of the scroll S, with 2 ≤ r ≤ N. Then all the assumptions of Theorem 2.1
hold for L1, L2, ..., Lr.

Proof. Let T be the very ample tautological divisor of S. Let fH1 , ..., fHr be the
r fibres of S, over the points H1, ...,Hr of the base curve C ' P1, corresponding
to L1, L2, ..., Lr. If we consider the linear space of PN spanned by any subset of ρ
lines in {L1, L2, ..., Lr}, corresponding to ρ points in {H1, ...,Hr}, say H1, ...,Hρ,
we have that its dimension is

N − h0(S, T − fH1 ...− fHρ) = N − h0(C, E ⊗ OC(−H1...−Hρ))

= N − h0(P1,OP1(h− ρ)⊕

Now, if 1 ≤ ρ ≤ h the dimension is N − (h − ρ + 1 + k − ρ + 1) = 2ρ − 1. If
h < ρ ≤ k the dimension is N − (k − ρ+ 1) = ρ+ h. If k < ρ the dimension is N.
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In other words:

dim(〈L1, . . . , Lρ〉) =


2ρ− 1 if 1 ≤ ρ ≤ h+ 1

ρ+ h if h+ 2 ≤ ρ ≤ k + 1

N if k + 2 ≤ ρ ≤ N.

Hence assumptions 1), 2), 3) of Theorem 2.1 hold for L1, L2, ..., Lr. �

The following remark will be very useful for the proof of Theorem 2.1.

Remark 2.1. Let L be a set of lines in PN satisfying the assumptions of Theorem
2.1. Let L′ = {L1, . . . , Lr′} ⊆ L be any subset of L, with 2 ≤ r′ ≤ r, having a
corresponding subscheme Wr′ , defined similarly as in Theorem 2.1. Note that L′
satisfies the same assumptions as L, so that to prove Theorem 2.1 one can proceed
by induction on r : assuming that dim(Wr′) ≤ r′ − 2 for any L′ ⊆ L with r′ ≤ r,
we will show that dim(Wr) ≤ r − 2 .

As suggested by Remark 2.1, the proof of Theorem 2.1 will proceed by induction
on r, and will make use of a few preliminary Lemmata. The following Lemma
collects two simple observations that will facilitate the induction process.

Lemma 2.2. In the assumptions of Theorem 2.1, let r ≥ 3 and let m be any fixed
positive integer. Assume that dim(Wr′) ≤ r′ − m for any subset of r′ < r lines
in L . Then, in order to prove that dim(Wr) ≤ r − m, one can assume that for
any generic configuration (P1, . . . , Pr) ∈ L1 × L2 × · · · × Lr ' (P1)×r in Wr the
following facts are true:

1) dim(〈P1, . . . , Pr〉) = r − 2

2) dim(
〈
P1, . . . , P̂i, . . . , Pr

〉
) = r − 2 for any i, where P̂i is deleted.

Proof. To prove that we can assume 1), let us consider W ′r := {(P1, . . . , Pr) ∈
L1 × L2 × · · · × Lr ' (P1)×r|dim(〈P1, . . . , Pr〉) ≤ r − 3} ⊆ Wr (if r = 3 W ′r = ∅).
If we project any r-uple of W ′r onto any product of r − 1 lines chosen in L we get
a (r − 1)-tuple of the set Wr−1 corresponding to those r − 1 lines. By assumption
dim(Wr−1) ≤ r − 1 −m, hence dim(W ′r) ≤ r − 1 −m + 1 = r −m. Therefore if
Wr = W ′r then dim(Wr) ≤ r −m, so that we can always assume that Wr ) W ′r ,
i.e. fact 1).

To prove that we can assume 2), choose any i ∈ {1, . . . , r} and let us consider the

closed subschemeWr−1 ⊆Wr corresponding to the subset {L1, . . . , L̂i, . . . , Lr} ( L,
where L̂i is removed. Obviously Wr−1 × Li ⊆ Wr . By assumption dim(Wr−1) ≤
r−1−m, hence dim(Wr−1×Li) ≤ r−1−m+1 = r−m. Therefore if Wr = Wr−1×Li
then dim(Wr) ≤ r −m, so that we can always assume that Wr ) Wr−1 × Li. As
this is true for any i ∈ {1, . . . , r} we can assume fact 2). �

Lemma 2.3. Let L1, . . . , Lh+1 be disjoint lines in P2h+1, with h ≥ 1, such that
their linear span has maximal dimension, i.e. 〈L1, . . . , Lh+1〉 = P2h+1. For any Q ∈
P2h+1 let 1 ≤ tQ ≤ h+1 be the minimum number of lines among the L′is necessary to
have Q contained in their linear span, which has dimension 2tQ−1. Let Wh+1(Q) :=

{(P1, . . . , Ph+1) ∈ L1×L2× · · · ×Lh+1 ' (P1)×(h+1)|dim(〈Q,P1, . . . , Ph+1〉) ≤ h}.
Then 0 ≤ dim(Wh+1(Q)) ≤ h+ 1− tQ and if dim(Wh+1(Q)) = 0 then Wh+1(Q) is
a single point.
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Proof. The proof will be conducted in detail for h = 2. The general case is handled
exactly in the same fashion. As the given lines have a linear span of maximal
dimension, it is possible to choose a coordinate system in the ambient space P2h+1=5

such that its 2h+2 = 6 fundamental points belong, pairwise, to the h+1 = 3 given
lines. In this situation, let us consider the (h+ 2 = 4, 2h+ 2 = 6) matrix M whose
first 3 = h + 1 rows are given by the coordinates of points on the lines L1, L2, L3,

and where the last row consists of the coordinates of Q :

M =


α1 β1 0 0 0 0
0 0 α2 β2 0 0
0 0 0 0 α3 β3

x0 x1 x2 x3 x4 x5

 .
For any Q, W3(Q) is given by all possible choices of pairs (αi : βi) 6= (0, 0)

for which rk (M) ≤ 3. It is easy to see that, for any Q, there exists at least
one such choice of pairs (αi : βi), namely (αi : βi) = (x2i−2, x2i−1) for all pairs
(x2i−2, x2i−1) 6= (0, 0)), hence dim(W3(Q)) ≥ 0.

To get the other side of the stated inequality notice that, as (αi : βi) 6= (0 : 0),
M can always be transformed into the following matrix

M1 =


1 0 0 λ1 0 0
0 1 0 0 λ2 0
0 0 1 0 0 λ3

y0 y2 y4 y1 y3 y5

 ,
where rk (M1) = rk (M), λi = αi/βi or λi = βi/αi respectively when βi 6= 0 or
αi 6= 0, and (y0, . . . , y5) is a permutation of (x0, . . . , x5). M1 can then be further
transformed, keeping its rank unaltered:

M2 =


1 0 0 λ1 0 0
0 1 0 0 λ2 0
0 0 1 0 0 λ3

0 0 0 y1 − λ1y0 y3 − λ2y2 y5 − λ3y4


It is rk (M2) ≤ 3 if and only if:

λ1y0 = y1

λ2y2 = y3

λ3y4 = y5.

As dim(W3(Q)) ≥ 0, the above system must have at least one solution. If no
equation is identically satisfied, then there exists only one solution (λ1, λ2, λ3),
corresponding to a triplet of points, one for each line; in this case dim(W3(Q)) = 0
and the Lemma is proved. If there is only one identically satisfied equation, say
y0 = y1 = 0, then dim(W3(Q)) = 1 (you can choose an arbitrary point on the first
line, but then the other two are determined) and in this case Q ∈ 〈L2, L3〉 , hence
tQ = 2 and the Lemma is proved. If exactly two equations are identically satisfied,
say y0 = y1 = y2 = y3 = 0, then dim(W3(Q)) = 2 (you can choose arbitrary points
on the first two lines, while the last point is uniquely determined), and in this case
Q ∈ 〈L3〉 hence tQ = 1 and the Lemma is proved. As (y0, . . . , y5) is a permutation
of projective coordinates of Q, not all equations can be identically satisfied, so that
the Lemma is proved for h = 2. �
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Lemma 2.4. Under the assumptions of Theorem 2.1, further assume that r ≥ h+2.
Let L′ = {L′1, L′2, . . . , L′h+1} be any subset of h+ 1 lines chosen from the given set
L = {L1, . . . , Lr}. Let L ∈ L\L′. Then L intersects the (2h+1)-dimensional linear
space

〈
L′1, L

′
2, . . . , L

′
h+1

〉
only at one point Q and such Q does not belong to any

linear space spanned by any proper subset of L′. Moreover, there exists a unique
choice of Pi ∈ L′i, such that dim(〈Q,P1, . . . , Ph+1〉) ≤ h.

Proof. Assumption 1) of Theorem 2.1 gives that L′ spans a (2h + 1)-dimensional
linear subspace. Any other line L ∈ L \ L′, cuts this subspace only at one point
Q, by assumption 2). Moreover, Q can not belong to any linear space spanned
by a proper subset of L′, otherwise the union of this proper subset and L would
contradict assumption 1) of Theorem 2.1. Therefore Lemma 2.3, gives a unique
choice of points Pi ∈ L′i such that dim(〈Q,P1, . . . , Ph+1〉) ≤ h. �

The above Lemmata will now be combined to provide a proof for Theorem 2.1.

Proof. (of Theorem 2.1).
It is convenient to divide the proof into 4 cases, according to the relative sizes

of r, h and k.
Case 1: 2 ≤ r ≤ h+ 1. In this case Wr is actually empty. To see this, choose a

coordinate system in PN such that 2r points among its N + 1 fundamental points
belong, pairwise, to the r given lines. This is possible by assumption 1). As in the
proof of Lemma 2.3, consider the following (r,N + 1) matrix whose rows are given
by the coordinates of points on each of the given r lines:

α1 β1 0 0 . . . 0 0 0 . . . 0
0 0 α2 β2 . . . 0 0 . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . αr βr 0 . . . 0

 .
As (αi : βi) 6= (0 : 0) for all i, it is clear that there always exists a non singular,

rank r, submatrix and thus Wr = ∅.
Case 2: 2 ≤ r ≤ k + 1. In this case, induction on r will show that

(2.1) dim(Wr) ≤ r − h− 2.

This slightly stronger inequality implies the statement and it will be useful in prov-
ing the remaining cases. If k = h, or 2 ≤ r ≤ h+ 1, there is nothing to prove after
Case 1, so we can assume h < k and r ≥ h+ 2 (note that this implies r ≥ 3). Our
inductive hypothesis is that the desired inequality (2.1) holds for each subset of r′

lines contained in L, with 2 ≤ r′ < r (recall remark 2.1). Moreover, for a generic
(P1, . . . , Pr) ∈Wr, it is enough to consider the cases that dim(〈P1, . . . , Pr〉) = r−2
by part 1) of Lemma 2.2.

Fix any order for L and, recalling Lemma 2.4, let Q1, Q2, . . . , Qr−h−1 be the
points of intersection of each of the last r − h − 1 lines with the linear subspace
spanned by the first h+ 1 lines. Let us choose a coordinate system in PN such that
its first 2(h+1) fundamental points belong, pairwise, to the first h+1 lines, and such
that each one of the remaining fundamental points belongs to one of the remaining
lines. Notice that these remaining fundamental points are certainly distinct from
Q1, Q2, . . . , Qr−h−1. The rows of the following (r,N + 1) matrix M are given by
the coordinates of the points of the r given lines :
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M =


α1 β1 0 0 ... 0 0 0 ... ... ... ... ... 0
0 0 α2 β2 ... 0 0 ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ... ...
0 0 0 0 ... αh+1 βh+1 0 ... ... ... ... ... 0

γ1a1 δ1 0 ... 0 0 ... 0
γ2a2 0 δ2 ... 0 ... ... ...
... ... ... ... ... ... ... ...

γr−h−1ar−h−1 0 0 ... δr−h−1 0 ... 0


where every row vector ai is determined by the coordinates of Qi.

By looking at M one sees that an r-tuple (P1, . . . , Pr) belongs to Wr (i.e.
rk (M) < r) if and only if δi = 0 for at least one i, i.e. if and only if at least
a point among Ph+2, . . . , Pr coincides with one of the points Q1, Q2, . . . , Qr−h−1.
For each of these r − h − 1 possible equalities one gets a different component
of Wr. Thus it suffices to prove (2.1) for the component with maximal dimen-
sion. Without loss of generality, let us assume that the maximal dimension is
achieved for Qr−h−1 = Pr := P , the point, on the last line, with coordinates
(γr−h−1 : δr−h−1) = (1 : 0).

Let Zr−1 = {(P1, . . . , Pr−1) ∈ L1×L2×· · ·×Lr−1|dim(
〈
P1, . . . , Pr−1, P

〉
) = r−

2}. From the above discussion we have that dim(Wr) ≤ dimZr−1. Note that we can
assume dim(

〈
P1, . . . , Pr−1, P

〉
) = r − 2 because Lemma 2.2, part 1), guarantees it

for a generic point of Wr, hence it is also true for a generic point of the component of
maximal dimension of Wr. If Zr−1 ⊆Wr−1 we would have dim(Wr) ≤ dim(Zr−1) ≤
dim(Wr−1) ≤ r−1−h−2 ≤ r−h−2, by induction, and we would be done. If not, the
generic (r−1)-tuple (P1, . . . , Pr−1) ∈ Zr−1 is such that dim(〈P1, . . . , Pr−1〉) = r−2.
This fact implies that in any matrix M corresponding to a generic point of Wr with
Pr = P , it must be δr−h−1 = 0, and δi 6= 0 for any i 6= r − h − 1. Hence, as
rk (M) < r, the submatrix M1 consisting of the first h + 1 rows and the last one
must have rk (M1) < h + 2. By Lemma 2.3, by recalling that P can not belong
to the linear subspace spanned by any proper subset of L1, . . . , Lh+1, this can
happen only for a unique choice of points (P1, . . . , Ph+1). Therefore in any matrix
M corresponding to a generic point of Wr with Pr = P all parameters appearing
in the first h+ 1 rows and in the last one are fixed. Only r− (h+ 1)−1 parameters
remain free in M and we are done.

Case 3: 2 ≤ r ≤ N and 1 ≤ r − (h + 1) ≤ h + 1. In this case, inequality
dim(Wr) ≤ r − 2 will be established by induction on r, keeping always in mind
Remark 2.1. Having established Cases 1 and 2 we can assume that k + 2 ≤ r ≤ N
and, by Lemma 2.2 part 1), we can also assume that dim(〈P1, . . . , Pr〉) = r − 2
for the generic r-tuple of Wr. Fix an order for L and let us divide any r-tuple
in Wr into two non empty subsets: (P1, . . . , Pr) = (P1, . . . , Ph+1)(Ph+2, . . . , Pr) .
As (P1, . . . , Pr) ∈ Wr we have: dim(〈P1, . . . , Ph+1〉 ∪ 〈Ph+2, . . . , Pr〉) ≤ r − 2 and,
by Case 1, dim(〈P1, . . . , Ph+1〉) = h and dim(〈Ph+2, . . . , Pr〉) = r − (h + 1) − 1 .
Hence dim(〈P1, . . . , Ph+1〉 ∩ 〈Ph+2, . . . , Pr〉) ≥ h+ r − (h+ 1)− 1− r + 2 = 0 and
therefore there always exists at least a point Q ∈ 〈P1, . . . , Ph+1〉 ∩ 〈Ph+2, . . . , Pr〉 .
Moreover, as for the generic r-tuple of Wr it is true that dim(〈P1, . . . , Pr〉) =
dim(〈P1, . . . , Ph+1〉 ∪ 〈Ph+2, . . . , Pr〉) = r − 2, we can also say that for the generic
r-tuple of Wr there exists a unique point Q ∈ 〈P1, . . . , Ph+1〉 ∩ 〈Ph+2, . . . , Pr〉 .

Now, let us consider 〈L1, . . . , Lh+1〉 and 〈Lh+2, Lh+3, . . . , Lr〉 . As 1 ≤ r − (h +
1) ≤ h + 1 by assumption 1) we can say that dim(〈L1, . . . , Lh+1〉) = 2(h + 1) − 1
and dim( 〈Lh+2, Lh+3, . . . , Lr〉) = 2(r − h− 1)− 1. As k + 2 ≤ r ≤ N we can say
that dim( 〈L1, . . . , Lh+1〉 ∪ 〈Lh+2, Lh+3, . . . , Lr〉) = dim(〈L1, . . . , Lr〉) = N. Hence,
if we define A := 〈L1, . . . , Lh+1〉 ∩ 〈Lh+2, Lh+3, . . . , Lr〉 , we have that dim(A) =
2h + 1 + 2r − 2h − 3 − N = 2r − 2 − N ≤ r − 2. Moreover, as we saw that
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for the generic r-tuple of Wr there exists a (unique) point Q ∈ 〈P1, . . . , Ph+1〉 ∩
〈Ph+2, . . . , Pr〉 ⊆ A, we can also say that A is not empty (unless Wr is empty, in
which case there is nothing to prove). The linear space A contains all intersections
points of lines Lh+1, Lh+2, . . . , Lr with 〈L1, . . . , Lh+1〉 , and these intersection points
surely exist by assumption 2). Therefore A can not be contained in a linear subspace
of 〈L1, . . . , Lh+1〉 spanned by a proper subset of these lines because no one of those
points belong to such a space, thanks to Lemma 2.4. Lemma 2.3 then implies that,
for a generic Q ∈ A, there exists a unique (h+ 1)-tuple of points P1, . . . , Ph+1, such
that dim(〈Q,P1, . . . , Ph+1〉) ≤ h.

Let us introduce in L1 × L2 × · · · × Lr × A ' (P1)×r × P2r−2−N the following
(non empty) incidence variety:

J : = {(P1, . . . , Pr, Q) ∈ (P1)×r ×A|Q ∈ 〈P1, . . . , Ph+1〉 ∩ 〈Ph+2, . . . , Pr〉}
= {(P1, . . . , Pr, Q) ∈ (P1)×r ×A|dim(〈Q,P1, . . . , Ph+1〉) ≤ h

and dim(〈Q,Ph+2, . . . , Pr〉) ≤ r − (h+ 1)− 1}.

Let p : J → (P1)×r and f : J → A be the natural projections. It is p(J) ⊆ Wr

because if (P1, . . . , Pr, Q) ∈ J then the points (P1, . . . , Pr) can not be linearly
independent in PN . On the other hand we have seen that for any r-tuple of Wr

there exist at least a point Q ∈ 〈P1, . . . , Ph+1〉 ∩ 〈Ph+2, . . . , Pr〉 ⊆ A and that for
the generic r-tuple of Wr there exist a unique point Q. Hence Im(p) = Wr and
dim(J) = dim(Wr). Then dim(Wr) = dim(J) = dim(Im(f)) + dim(generic fibre
of f).

Let us consider any point Q ∈ A. As Q ∈ 〈L1, . . . , Lh+1〉 , Lemma 2.3 im-
plies that there exists at least an (h + 1)-tuple of points (P1, . . . , Ph+1) such that
dim(〈Q,P1, . . . , Ph+1〉) ≤ h. As Q ∈ 〈Lh+2, Lh+3, . . . , Lr〉 , Lemma 2.3 implies
that there exists at least an (r − h − 1)-tuple of points (Ph+2, . . . , Pr) such that
dim(〈Q,Ph+2, . . . , Pr〉) ≤ r − h− 2. Therefore Im(f) = A.

In order to estimate the dimension of a generic fiber of f, let Q be now a generic
point of A. Lemma 2.3 implies that A can not be contained in a linear subspace
of 〈L1, . . . , Lh+1〉 spanned by a proper subset of these lines and that there exists a
unique (h+1)-tuple of points (P1, . . . , Ph+1) such that dim(〈Q,P1, . . . , Ph+1〉) ≤ h.
Hence to get a bound for dim(f−1(Q)) it suffices to consider the (r−h−1)-tuples of
points Ph+2, . . . , Pr such that dim(〈Q,Ph+2, . . . , Pr〉) ≤ r−h−2. With the notation
introduced in the proof of Lemma 2.3, it is true that
dim(f−1(Q)) = dim(Wr−h−1(Q)) =
dim({(Ph+2, . . . , Pr) ∈ Lh+1×Lh+2×· · ·×Lr|dim(〈Q,Ph+2, . . . , Pr〉) ≤ r−h−2}).

If A is not contained in a linear subspace of 〈Lh+1, . . . , Lr〉 spanned by a proper
subset of these lines, Lemma 2.3 gives that for the generic point Q ∈ A there exists
only one (r−h−1)-tuple of points (Ph+2, . . . , Pr) such that dim(〈Q,Ph+2, . . . , Pr〉) ≤
r − h − 2. In this case dim(f−1(Q)) = 0 and therefore dim(Wr) = dim(J) =
dim(Im(f)) + dim(generic fibre of f) = dim(A) = 2r− 2−N ≤ r− 2 and we are
done.

If A is contained in at least one linear subspace spanned by a proper subset of
{Lh+1, . . . , Lr}, let 2t − 1 be the dimension of the space, spanned by t lines, with
the minimal dimension among them. Note that 1 ≤ t < r − (h + 1) ≤ h + 1.
For all Q ∈ A Lemma 2.3 gives dim[Wr−h−1(Q)] ≤ r − h − 1 − t. Then we have
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dim(Wr) = dim(J) = dim(Im(f))+dim(generic fibre of f) ≤ 2t−1+r−h−1−t =
t+ r − h− 2 < h+ 1 + r − h− 2 = r − 1, i.e. dim(Wr) ≤ r − 2.

Case 4: 2 ≤ r ≤ N and h+ 2 ≤ r − (h+ 1) < k + 1. Because of Cases 1, 2 and
3 we can assume k + 2 ≤ r ≤ N and, by Lemma 2.2 part 1), we can also assume
that dim(〈P1, . . . , Pr〉) = r − 2 for the generic r-tuple of Wr. From Case 2 we have
dim(Wr−h−1) ≤ r − h− 1− h− 2 = r − 2h− 3.

As before, fix an order for L and let us divide every r-tuple in Wr into two non
empty subsets (P1, . . . , Pr) = (P1, . . . , Ph+1)(Ph+2, . . . , Pr) . As (P1, . . . , Pr) ∈ Wr

we have that dim(〈P1, . . . , Ph+1〉 ∪ 〈Ph+2, . . . , Pr〉) ≤ r − 2 and, from Case 1,
dim(〈P1, . . . , Ph+1〉) = h. Moreover, Lemma 2.2 part 2) gives dim(〈Ph+2, . . . , Pr〉) =
r − h− 2 for the generic r-tuple of Wr.

Thus dim(〈P1, . . . , Ph+1〉∩〈Ph+2, . . . , Pr〉) ≥ h+r−h−2−r+2 = 0 and therefore
there always exists at least one pointQ ∈ 〈P1, . . . , Ph+1〉∩〈Ph+2, . . . , Pr〉 .Moreover,
as dim(〈P1, . . . , Pr〉) = dim(〈P1, . . . , Ph+1〉 ∪ 〈Ph+2, . . . , Pr〉) = r − 2, for a generic
r-tuple of Wr, it follows that there exists a unique point Q ∈ 〈P1, . . . , Ph+1〉 ∩
〈Ph+2, . . . , Pr〉 .

As in the previous case let us consider 〈L1, . . . , Lh+1〉 and 〈Lh+2, . . . , Lr〉 . As
h+2 ≤ r−(h+1) < k+1 by assumptions 1) and 2) we have dim( 〈L1, . . . , Lh+1〉) =
2(h+1)−1 and dim(〈Lh+2, Lh+3, . . . , Lr〉) = r−h−1+h = r−1. As k+2 ≤ r ≤ N
we have dim(〈L1, . . . , Lh+1〉 ∪ 〈Lh+2, Lh+3, . . . , Lr〉) = dim(〈L1, . . . , Lr〉) = N. As
in the previous case, let A = 〈L1, . . . , Lh+1〉 ∩ 〈Lh+2, Lh+3, . . . , Lr〉 . It is dim(A) =
2h+ 1 + r − 1−N = 2h+ r −N. Moreover, as for the generic r-tuple of Wr there
exists a (unique) point Q ∈ 〈P1, . . . , Ph+1〉 ∩ 〈Ph+2, . . . , Pr〉 ⊆ A, A is non empty,
unless Wr is empty, in which case there is nothing to prove. Note that A contains
all the intersection points of each of the lines Lh+2, . . . , Lr with 〈L1, . . . , Lh+1〉 and
such points certainly exist by assumption 2). Hence A is not contained in any linear
subspace of 〈L1, . . . , Lh+1〉 , spanned by a proper subset of these lines because none
of the intersections points mentioned above can be contained in such a subspace by
Lemma 2.4. Lemma 2.3 then gives, for a generic point Q ∈ A, a unique (h+1)-tuple
of points P1, . . . , Ph+1, such that dim(〈Q,P1, . . . , Ph+1〉) ≤ h.

As in the previous case, let us introduce in L1 × L2 × · · · × Lr × A ' (P1)×r ×
P2h+r−N the following (non empty) incidence variety:

J :={(P1, . . . , Pr, Q) ∈ (P1)×r ×A|Q ∈ 〈P1, . . . , Ph+1〉 ∩ 〈Ph+2, . . . , Pr〉}
={(P1, . . . , Pr, Q) ∈ (P1)×r ×A|dim(〈Q,P1, . . . , Ph+1〉) ≤ h

and dim(〈Q,Ph+2, . . . , Pr〉) ≤ r − (h+ 1)− 1}.

Let p : J → (P1)×r and f : J → A be the natural projections. Note that p(J) ⊆
Wr because if (P1, . . . , Pr, Q) ∈ J then (P1, . . . , Pr) are not linearly independent
in PN . On the other hand we have seen that for every r-tuple of Wr there exists
at least a point Q ∈ 〈P1, . . . , Ph+1〉 ∩ 〈Ph+2, . . . , Pr〉 ⊆ A and that for the generic
r-tuple of Wr there exists a unique such Q. Hence Im(p) = Wr and dim(J) =
dim(Wr). Then dim(Wr) = dim(J) = dim(Im(f)) + dim(generic fibre of f) ≤
dim(A) + dim[f−1(Q)] = 2h + r − N + dim[f−1(Q)] where Q is now any fixed
point of Im(f). Pick Q := 〈L1, . . . , Lh+1〉 ∩ Lh+2. Obviously Q ∈ A. Moreover,
as Q is the intersection point of Lh+2 with 〈L1, . . . , Lh+1〉 , we know that it does
not belong to any linear subspace of 〈L1, . . . , Lh+1〉 spanned by a proper subset
of these lines. Hence there exists a unique (h + 1)-tuple of points P1, . . . , Ph+1,
such that dim(

〈
Q,P1, . . . , Ph+1

〉
) ≤ h. Choosing Ph+2 = Q one sees that there
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exists also a (r − h − 1)-tuple of points (Ph+2, . . . , Pr) ∈ Lh+2 × Lh+3 × · · · × Lr
such that dim(

〈
Q,Ph+2, . . . , Pr

〉
) ≤ r − (h + 1) − 1. Hence Q ∈ Im(f) and, to

estimate dim(f−1(Q)), consider the (r − h− 1)-tuples of points Ph+2, . . . , Pr such
that dim(

〈
Q,Ph+2, . . . , Pr

〉
) ≤ r − h − 2, i.e. the set Z(Q) := {(Ph+2, . . . , Pr) ∈

Lh+2×Lh+3×· · ·×Lr|dim(
〈
Q,Ph+2, . . . , Pr

〉
) ≤ r−h−2}. Note that, as r−(h+1) ≥

h+ 2 ≥ 3, we have r ≥ h+ 4. Hence in Z(Q) there are at least pairs of points.
Notice that, for the generic (r − h − 1)-tuple (Ph+2, . . . , Pr) ∈ Z(Q), we have

dim(
〈
Q,Ph+2, . . . , Pr

〉
) = r − h − 2 = dim(〈Ph+2, . . . , Pr〉). Indeed the generic

(r − h − 1)-tuple (Ph+2, . . . , Pr) ∈ Z(Q) is a proper subset of a generic r-tuple
of Wr and by Lemma 2.2, part 2), we have dim(〈Ph+2, . . . , Pr〉) = r − h − 2.
On the other hand dim(〈Ph+2, . . . , Pr〉) ≤ dim(

〈
Q,Ph+2, . . . , Pr

〉
) ≤ r − h − 2

by the definition of Z(Q). Then one can define a map ψ : Z → Wr−h−1, where
Z is a non empty Zariski-open subset of Z(Q), by setting ψ(Ph+2, . . . , Pr) =
(P, Ph+3, . . . , Pr), where (Ph+2, . . . , Pr) is a generic element of Z(Q) and P is the
unique intersection, in

〈
Q,Ph+2, . . . , Pr

〉
= 〈Ph+2, . . . , Pr〉 of the line Lh+2 with

the linear subspace 〈Ph+3, . . . , Pr〉 . Notice that 〈Ph+3, . . . , Pr〉 has codimension 1
in
〈
Q,Ph+2, . . . , Pr

〉
= 〈Ph+2, . . . , Pr〉 and it does not contain Lh+2. Obviously

(P, Ph+3, . . . , Pr) ∈Wr−h−1. The generic fibre of ψ is contained in Lh+2 and there-
fore it has dimension 1 at most. It follows that dim[Z(Q)] ≤ dim(Wr−h−1) + 1. So
we get: dim[Z(Q)] ≤ dim(Wr−h−1) + 1 ≤ r − 2h − 3 + 1 = r − 2h − 2 by induc-
tion. Hence dim(Wr) ≤ 2h + r − N + dim[f−1(Q)] ≤ 2h + r − N + dim[Z(Q)] ≤
2h+ r −N + r − 2h− 2 = 2r −N − 2 ≤ r − 2 and we are done. �

3. Corollaries of the main theorem

In this section we give a list of 5 corollaries of Theorem 2.1. The first two
corollaries contain our answer to the question in Section 1. The third one proves
a property of the open Zariski set Ar which is defined in the previous corollaries.
The last two show that, under the assumption r + 1 ≤ N, we can say more about
the hyperplanes cutting P1, . . . , Pr on the lines of L.

Corollary 3.1. With the same assumptions of Theorem 2.1 there exists a non
empty, Zariski-open set Ar ⊆ L1 × L2 × · · · × Lr ' (P1)×r such that, for every
(P1, . . . , Pr) ∈ Ar, it is dim(〈P1, . . . , Pr〉) = r − 1, and the generic hyperplane of
PN passing through P1, . . . , Pr does not contain any line of L.

Proof. Let J1, J2, . . . , Jr be the r varieties defined by removing, respectively, the
first, the second,. . . , the rth factor of (P1)×r. Let p1, p2, . . . , pr be the natural pro-
jections pi : (P1)×r → Ji. By Theorem 2.1 we know that dim(Wr) ≤ r−2 in (P1)×r,
hence p−1

i (pi(Wr)) is a closed subscheme of dimension ≤ r − 1 in (P1)×r, for any
i = 1, . . . , r. In (P1)×r, let Ar be the complement of the union of the r closed sub-
schemes p−1

i (pi(Wr)). Obviously Ar is a non empty Zariski-open set in (P1)×r and
dim(〈P1, . . . , Pr〉) = r−1 for every r-tuple (P1, . . . , Pr) ∈ Ar because (P1, . . . , Pr) /∈
Wr. Choose Lt ∈ L and, by contradiction, let us assume that every hyperplane
in PN passing through P1, . . . , Pr contains Lt. This would imply that there ex-
ists a point Q ∈ Lt (Q 6= Pt) such that dim(〈P1, . . . , Pt−1, Q, Pt+1, . . . , Pr〉) =
r − 2 and therefore (P1, . . . , Pt−1, Q, Pt+1, . . . , Pr) ∈ Wr. In fact: if all the hyper-
planes passing through P1, . . . , Pr contain Lt, this line belongs to 〈P1, . . . , Pr〉,
which is the intersection of all hyperplanes passing through P1, . . . , Pr; in the
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(r − 1)-dimensional linear space 〈P1, . . . , Pr〉 there is the (r − 2)-dimensional sub-
space 〈P1, . . . , Pt−1, Pt+1, . . . , Pr〉 and the line Lt cuts this subspace at a point
Q. But (P1, . . . , Pt−1, Q, Pt+1, . . . , Pr) cannot belong to Wr because (P1, . . . , Pr) ∈
p−1
t (pt(P1, . . . , Pt−1, Q, Pt+1, . . . , Pr)) and if (P1, . . . , Pt−1, Q, Pt+1, . . . , Pr) ∈ Wr

the r-tuple (P1, . . . , Pr) would belong to the complement of Ar. �

Corollary 3.2. With the same assumptions of Theorem 2.1, there exists a non
empty, Zariski-open set H ⊆ PN ∗ whose points correspond to hyperplanes in PN
cutting the set of lines L1, . . . , Lr only at an r-tuple of points P1, . . . , Pr, with
(P1, . . . , Pr) ∈ Ar; moreover, for any non empty Zariski-open sets H′ ⊆ H and
A′r ⊆ Ar and for any generic (P1, . . . , Pr) ∈ A′r there is at least a point in H′
corresponding to a hyperplane in PN cutting the set of lines L1, . . . , Lr only at the
r-tuple of points P1, . . . , Pr.

Proof. To prove Corollary 3.2, let us consider the incidence variety:
I = {(H,P1, . . . , Pr) ∈ PN ∗ × (P1)×r|P1, . . . , Pr ∈ H}

and its natural projections α : I → PN ∗ and β : I → (P1)×r. Note that α is
surjective and the dimension of the generic fibre of α is zero because a generic
hyperplane of PN intersects every line of L at one point only; thus dim(I) = N.
For any fixed r-tuple of points (P1, . . . , Pr) ∈ Ar, there exists a linear subspace
Λ(P1,...,Pr) in PN ∗, given by the hyperplanes of PN passing through P1, . . . , Pr; we
have dim(Λ(P1,...,Pr)) = N − r, because P1, . . . , Pr are linearly independent. It

follows that dim(β−1(Ar)) = r+N − r = N for the non empty Zariski-open subset

β−1(Ar) ⊆ I, and therefore I = β−1(Ar). Moreover, as every hyperplane either
cuts every line L1, . . . , Lr at one point only or it contains the line entirely, the
generic hyperplane of Λ(P1,...,Pr) contains only the fixed r-tuple. If it contains other
r-tuples it will then contain at least one of the lines in L but this is not possible as
(P1, . . . , Pr) ∈ Ar.

The above discussion shows that a generic point of β−1(Ar) can be represented
as a pair {H, (P1, . . . , Pr)} where H is a hyperplane cutting every L1, . . . , Lr only
at the points P1, . . . , Pr with (P1, . . . , Pr) ∈ Ar. Hence there exists a subset I† ⊆
β−1(Ar) given by these pairs and I† is a non empty Zariski-open set of I. To see
this, for any i = 1, . . . , r, let Ci be the Zariski closed set in PN ∗ given by all
hyperplanes containing Li. Every Ci× (P1)×r is a closed set of PN ∗× (P1)×r. Let T
be the complement of the union of these closed sets in PN ∗× (P1)×r, then I† is the

intersection of the non empty Zariski-open set T with I, so that I† = β−1(Ar) = I.
Then dim(α(I†)) = dim(α(I)) = N and therefore the interior of α(I†) is not empty.
Letting H be the interior of α(I†), one concludes the proof of the first part of
Corollary 3.2. To prove the second part it suffices to change Ar with A′r : the
interior of α(I ′†) will intersect any non empty Zariski-open set H′. �

Corollary 3.3. With the same assumptions of Theorem 2.1, for every Lj ∈ L there
exists a finite subset of points Kj ( Lj, possibly empty, such that for every point

Pj ∈ Lj\Kj, the intersection Ar,Pj := Ar∩[L1×L2×. . . , {Pj}, · · ·×Lr ' (P1)×(r−1)]

is an open, non empty, Zariski set of (P1)×(r−1).

Proof. To prove Corollary 3.3 it is sufficient to remark that, as Ar is a non empty
Zariski-open set in (P1)×r, its projection onto any factor Lj ' P1 is a non empty
Zariski-open set in Lj . This open set is the complement of a finite set Kj of points
(possibly empty). For every point Pj ∈ Lj\Kj , Ar can not be contained in the
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complement of the closed set L1 × L2 × . . . , {Pj}, · · · × Lr and Ar intersects this
closed set along a non empty Zariski-open subset of it. �

Corollary 3.4. Let us assume that r + 1 ≤ N, and that there exist r + 1 lines
L0, L1, . . . , Lr satisfying the assumptions of Theorem 2.1. Let P be any point on
L0 and let ZP ∈ PN ∗ be the dual hyperplane of P. Then there exists a non empty
Zariski-open set AP ⊆ ZP 'PN−1 such that every hyperplane in PN corresponding
to a point in AP cuts the lines L1, . . . , Lr only at an r-tuple of points P1, . . . , Pr,
with (P1, . . . , Pr) ∈ Ar.

Proof. Let us fix P ∈ L0. By Theorem 2.1 applied to the r+ 1 lines L0, L1, . . . , Lr,
we have dim(Wr+1) ≤ r − 1, hence dim(Wr+1 ∩ ({P} × (P1)×r ' (P1)×r)) ≤
r − 1. Therefore there exists a non empty Zariski-open set BP ⊆ (P1)×r such that
dim(〈P, P1, . . . , Pr〉) = r for every choice of (P1, . . . , Pr) ∈ BP .

By Corollary 3.1 we know that there exists a non empty Zariski-open set Ar in
(P1)×r such that dim(〈P1, . . . , Pr〉) = r − 1 for every choice of (P1, . . . , Pr) ∈ Ar
(and the generic hyperplane of PN passing through P1, . . . , Pr does not contain
any line of L). Let CP = BP ∩ Ar. Then CP is a Zariski-open set in (P1)×r such
that dim(〈P1, . . . , Pr〉) = r − 1 and dim(〈P, P1, . . . , Pr〉) = r for every choice of
(P1, . . . , Pr) ∈ CP (and the generic hyperplane of PN passing through P1, . . . , Pr
does not contain any line of L).

Now, to prove Corollary 3.4, let us consider the incidence variety:
I = {(H,P1, . . . , Pr) ∈ ZP ×L1×L2×· · ·×Lr ' PN−1×(P1)×r|P1, . . . , Pr ∈ H}

and its natural projections α : I → ZP and β : I → (P1)×r. As in the proof of
Corollary 3.2, the dimension of the generic fibre of α is zero, because a generic
hyperplane of ZP cuts every line L1, . . . , Lr at one point only, hence dim(I) = N−1.
For every r-tuple (P1, . . . , Pr) ∈ CP , β−1(P1, . . . , Pr) is given by the hyperplanes

of ZP passing through P1, . . . , Pr, i.e. by the hyperplanes of PN passing through
P, P1, . . . , Pr. As dim(〈P, P1, . . . , Pr〉) = r we have that dim(β−1(P1, . . . , Pr)) =
N − (r + 1) ≥ 0. As CP is a non empty Zariski-open set of (P1)×r, N − (r + 1)
is also the dimension of the generic fibre of β and therefore dim(β−1(CP )) = N −
(r + 1) + r = N − 1 and thus I = β−1(CP ) . Then dim(α(β−1(CP ))) = N − 1 and
therefore its interior U0 ⊆ ZP is not empty. Hence there exists a non empty Zariski-
open set U0 ⊆ ZP such that every point of U0 corresponds to a hyperplane in PN
containing P and an r-tuple of points P1, . . . , Pr with (P1, . . . , Pr) ∈ Ar. On the
other hand, for every line Li ∈ L, there exists a non empty Zariski-open set Ui ⊆ ZP
given by the hyperplanes of ZP not containing Li. Let AP = U0∩U1∩· · ·∩Ur. AP
is a non empty Zariski-open set in ZP such that each one of its points corresponds
to a hyperplane in PN passing through P and cutting the lines L1, . . . , Lr at r
points P1, . . . , Pr only, with (P1, . . . , Pr) ∈ Ar. �

Corollary 3.5. With the same assumptions of Corollary 3.4, let A′r ⊆ Ar be
any non empty Zariski-open subset. Then for every point P ∈ L0, there exists a
non empty Zariski-open set A′P ⊆ ZP ' PN−1 such that every hyperplane in PN
corresponding to a point in A′P cuts the lines L1, . . . , Lr only at an r-tuple of points
P1, . . . , Pr, with (P1, . . . , Pr) ∈ A′r; moreover, for any non empty Zariski-open sets

A′′P ⊆ ZP and for any generic (P1, . . . , Pr) ∈ A′r there is at least a point in A′′P
corresponding to a hyperplanes in PN cutting the set of lines L1, . . . , Lr only at the
r-tuple of points P1, . . . , Pr.
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Proof. To prove the first part of Corollary 3.5 it suffices to change A′r ⊆ Ar with
Ar in the proof of Corollary 3.4. To prove the second part it suffices to intersect
A′′P with A′P . �

4. Lines on rational scrolls

Let S be a smooth, rational, scroll surface in PN such that S = P(E), where
E = OP1(h) ⊕ OP1(k) with 1 ≤ h ≤ k, N = h + k + 1, and S is embedded in
PN by its tautological line bundle. Such scrolls are surfaces of minimal degree and
projectively normal. By Lemma 2.1 we know that the assumptions of Theorem 2.1
are satisfied when L = {L1, . . . , Lr} is any set of r lines in PN which are fibres
of a scroll such S, with 2 ≤ r ≤ N. As usual C0 and f will be the numerical
classes of the fundamental section and of any fibre of S, respectively. We have that
−C2

0 = e = k−h, where e is the invariant of S (see [2, V.2] for all references about
ruled surfaces).

In this section we will always assume that L = {L1, . . . , Lr} is a set as above
and r ≥ 3. We will show that Theorem 2.1 can be made more precise for these sets
of lines when r ≥ k + 2 by using the existence of a well known incidence relation
Ir, see below, however the theorem cannot be improved in this way.

First of all, let us recall that, by Lemma 2.2 1), to get any bound on the di-
mension on Wr, when L = {L1, . . . , Lr} is a set as above, we can assume that
dim(〈P1, . . . , Pr〉) = r − 2 for any generic (P1, ..., Pr) ∈ Wr. Hence let us consider

the set Ŵr := {(P1, . . . , Pr) ∈ S(r) | P1, . . . , Pr are distinct, belonging to r distinct
lines of S and dim(〈P1, . . . , Pr〉) = r−2}. Because we can choose r lines amomg the

fibres of S in ∞r ways, we have dim(Ŵr) = dim(Wr) + r. Hence, to get a bound
on the dimension on Wr, when L = {L1, . . . , Lr} is a set as above, it suffices to get

a bound for the dimension of Ŵr.
Let G be the Grassmannian G(r− 2, N) of the (r− 2)-dimensional linear spaces

of PN , let S(r) be the r-symmetric product of S. We can consider the incidence
variety Ir ⊆ S(r) ×G such that:
Ir := {((P1, . . . , Pr),Π) ∈ S(r) ×G | P1, . . . , Pr ∈ Π} (∗)

with the two natural projections p : Ir → S(r) and q : Ir → G. Note that Ŵr ⊆
Im(p), moreover the fibre of p over Ŵr is given by only one (r − 2)-dimensional

linear space, so that dim(Ŵr) = dim[p−1(Ŵr)]. Therefore to get bounds on the

dimension of Ŵr it is sufficient to get bounds on the dimension of p−1(Ŵr) by
using q.

To investigate the fibre of the restriction of q to p−1(Ŵr), let us put W r :=

q[p−1(Ŵr)] and let us consider the fibre over the generic Π ∈ W r. Π is a linear
space of dimension r − 2 cutting S at r distinct point belonging to r distinct lines
of S. The fibre of q over Π has positive dimension, for instance, when Π contains a
curve Γ which is a smooth, irreducible section of S, and in this case the fibre has
dimension r, because we could choose any set of r points on Γ. About such a section
Γ, we have the following

Lemma 4.1. Let S be a surface as above. Let Γ be a smooth, irreducible section
of S, Γ = C0 + bf, such that dim(〈Γ〉) = N − t, t ≥ 1. Then b = k + 1 − t and
1 ≤ t ≤ h+ 1.
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Proof. Let H = C0 + kf be the numerical class of the hyperplane section of S.
Obviously b ≤ k, and k − h ≤ b, as Γ is supposed to be a smooth, irreducible
section of S. Let us consider the exact sequence: 0→ H − Γ→ H → H|Γ → 0. As

h1(S,H − Γ) = h1(P1,OP1(k − b)) = 0, we have:
N+1 = h+k+2 = h0(S,H) = h0(S,H−Γ)+h0(Γ, H|Γ) = (k−b+1)+(N−t+1).
Hence: b = k+1− t and it must be: k−h ≤ k+1− t ≤ k, i.e. 1 ≤ t ≤ h+1. �

Now let us return to the fibre over the generic Π ∈ W r. By Lemma 4.1, if Π
contains a section Γ as above, given that 〈Γ〉 ⊆ Π, then N−t ≤ r−2 with t ≤ h+1,
hence N + 2− r ≤ h+ 1, hence h+ k + 3− r ≤ h+ 1, hence r ≥ k + 2. It follows
that r ≥ k + 2 is exactly the range for which sections as Γ can occur.

Let V be the subvariety of G parametrizing (r − 2)-dimensional linear spaces of
PN which are (r−1)-secant S. Obviously Im(q) ⊆ V, but Im(q) 6= V and dim(V ) =

2(r − 1), so that dim(Im(q)) < 2r − 2. If dim{q[p−1(Ŵr)]} = dim[p−1(Ŵr)], then

dim(Ŵr) = dim[p−1(Ŵr)] < 2r − 2, hence dim(Wr) < r − 2 thus giving a stronger

bound; but we saw above that fibres of the restriction of q to p−1(Ŵr) can be of
positive dimension when r ≥ k + 2, hence we cannot use Ir to improve Theorem
2.1. However we can prove the following

Proposition 4.1. Let S be a surface as above and let Ŵr be defined as above.

Assume that N ≥ r ≥ k + 2, then dim(Ŵr) = 2r − 2 and dim(Wr) = r − 2.

Proof. We know that dim(Ŵr) = dim(Wr) + r, so we can consider only Ŵr. By

Theorem 2.1 it is sufficient to show that dim(Ŵr) ≥ 2r − 2.
Let us put r = k+2+η with 0 ≤ η ≤ h−1. Utilizing again the incidence relation

(∗) introduced above, we will show that dim(Ŵr) = dim[p−1(Ŵr)] ≥ e+ 2η+ 1 + r

for any η with 0 ≤ η ≤ h− 1. By choosing η = h− 1 we will have dim[p−1(Ŵr)] ≥
2r − 2.

Let us fix k − (e + η) = h − η ≥ 1 distinct fibres on S and let us consider all
hyperplanes in PN containing such fibres: h0(S,H − (h − η)f) = h0(S,C0 + (e +
η)f) = e + 2η + 2 ≥ 2. This means that on S there exist a family of dimension
at least e + 2η + 1 of curves Γ = C0 + (e + η)f, possibly reducible, such that
dim(〈Γ〉) = N − h0(S,H −Γ) = N − h0(P1,OP1(h− η)) = N − (h− η+ 1) = r− 2.
Note that in any 〈Γ〉 ' Pr−2 there are at most a finite number of curves as Γ,
otherwise S would be contained in a projective space of dimension r − 2 < N.

Now let us recall the incidence variety Ir : by the previous remark we have that
the subvariety VΓ ⊆W r ⊆ G parametrizing subspaces as 〈Γ〉 has dimension at least
e+ 2η + 1, hence dim(W r) ≥ e+ 2η + 1, moreover the fibre of q over any point of

VΓ has dimension at least r, hence dim[p−1(Ŵr)] ≥ e+ 2η + 1 + r. �

5. A simple application

To conclude the paper we give a simple application of Corollary 3.2. As men-
tioned in the introduction, this was the original situation that brought us to consider
the problem addressed in this note.

Proposition 5.1. Let {S1, S2} be a pair of surfaces in PN as in Section 4. Assume
that the intersection S1 ∩ S2 in PN consists only of r common fibres L1, ..., Lr and
that, at a generic point P ∈ Li, the tangent planes to S1 and S2 at P are distinct.
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Then, for any generic choice of r points P1, ..., Pr, Pi ∈ Li, there is a hyperplane
of PN intersecting transversally S1 ∩ S2 only at P1, ..., Pr.

Proof. Apply Corollary 3.2 to L := {L1, ..., Lr}, keeping in mind that the assump-
tions of Theorem 2.1 are satisfied for any set of r fibres on surfaces as above. �

Remark 5.1. Note that the set up of Proposition 5.1 is achieved, for instance, when
every Sj is P(E|Γj ), where E is a rank 2 vector bundle over a smooth variety Y , Γ1

and Γ2 are rational curves in Y whose intersection is transverse and consists of r
distinct points, and P(E) is embedded in PN as a scroll.

Following Remark 5.1, let E be a rank 2 vector bundle over a smooth surface Y
which is rationally connected; let X be P(E), let T be its tautological divisor and
let π : X → Y be the natural projection. In order to prove that the linear system
|T | separates two distinct points P and Q of X you can consider a rational smooth
curve Γ (if it exists) passing through π(P ) and π(Q), and the surface S := P(E|Γ).
If |T ||S is very ample and |T | → |T ||S is surjective then |T | separates P from Q.
The difficult part of this strategy is often to prove the surjectivity (see for instance
[1]). The usual exact sequence 0→ E ⊗OY (−Γ)→ E → E|Γ → 0 gives the required

surjectivity if h1(Y, E ⊗ OY (−Γ)) = 0. Unfortunately, this vanishing is not always
easy to control. One may choose a set {Γ = Γ1, ....Γq} of q >> 1 suitable smooth
rational curves in order to get h1(Y, E ⊗ OY (−Γ1... − Γq)) = 0 and then use a
reducible surface S′ := S1 ∪ ... ∪ Sq, instead of S, with Sj := P(E|Γj). With this
approach one needs to consider elements of |T |S′ . Even when |T ||Sj is very ample
for any j, and Γi ∩ Γj is a set of distinct points for any i, j, to get sections of
|T |S′ it is crucial to know what elements of |T | cut Si ∩ Sj only at distinct points.
Proposition 5.1 gives the answer.
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