MULTIPLY WARPED PRODUCT SUBMANIFOLDS OF A GENERALIZED SASAKIAN SPACE FORM

MOHAMMED JAMALI AND MOHAMMAD HASAN SHAHID
(Communicated by Cihan ÖZGÜR)

Abstract

In this article, we derive some inequalities for second fundamental form and warping functions for multiply warped product submanifolds of a generalized Sasakian space form.

1. Introduction

It is known that the notion of CR-warped product manifold was first introduced by B. Y. Chen([3],[4]). In these papers he obtained the certain sharp inequalities involving warping functions and the squared norm of second fundamental form. After that B. Sahin [11] extended the Chen's result for warped product semi-slant submanifolds of Kaehler manifold. Later I. Mihai [7] improved the same type of inequality in case of contact CR-warped products in Sasakian space form. Moreover Marian-Ioan Munteanu [8] also studied warped product contact CR-submanifolds of Sasakian space form. Some non-existence results were also obtained by M. Atceken [2] for certain class of submanifolds of a Kenmotsu manifold. In the present article we will calculate the inequalities of same kind for different types of multiply warped product submanifolds of generalized Sasakian space form.

Let $N_{1}, N_{2}, \ldots ., N_{k}$ be Riemannian manifolds and let $N=N_{1} \times N_{2} \times \ldots \times N_{k}$ be the cartesian product of $N_{1}, N_{2}, \ldots, N_{k}$. For each a, denote by $\pi_{a}: N \longrightarrow N_{a}$ the canonical projection of N onto N_{a}. We denote the horizontal lift of N_{a} in N via π_{a} by N_{a} itself.

If $\sigma_{2}, \ldots, \sigma_{k}: N_{1} \longrightarrow R^{+}$are positive valued functions, then

$$
\langle X, Y\rangle=\left\langle\pi_{*} X, \pi_{*} Y\right\rangle+\sum_{a=1}^{k}\left(\sigma_{a} \circ \pi_{1}\right)^{2}\left\langle\pi_{a *} X, \pi_{a *} Y\right\rangle
$$

defines a Riemannian metric g on N, called a multiply warped product metric. The product manifold N endowed with this metric is denoted by $N_{1} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k}$.

For a multiply warped product manifold $N_{1} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$, let D_{a} denote the distributions obtained from the vectors tangent to N_{a}.

[^0]Let $x: N_{1} \times_{\sigma_{2}} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k} \longrightarrow \bar{M}$ be an isometric immersion of of a multiply warped product $N_{1} \times \sigma_{2} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k}$ into a Riemannian manifold \bar{M}. Denote by h the second fundamental form of x. Then the immersion x is called mixed totally geodesic if $h\left(D_{a}, D_{b}\right)=0$ holds for distinct $a, b \in\{1,2, \ldots, k\}$.

Denote by trace h_{a} the trace of h restricted to N_{a}, that is

$$
\text { trace } h_{a}=\sum_{\alpha=1}^{n_{a}} h\left(e_{\alpha}, e_{\alpha}\right)
$$

for some orthonormal frame fields $e_{1}, e_{2}, \ldots, e_{n_{a}}$ of D_{a}.
A submanifold M of an almost contact manifold \bar{M} is called invariant if the almost contact structure ϕ of \bar{M} carries each tangent space of M into itself whereas it is said to be anti-invariant if the almost contact structure ϕ of \bar{M} carries each tangent space of M into its corresponding normal space.

A multiply warped product $N_{T} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ in an almost contact metric manifold \bar{M} is called a multiply CR-warped product if N_{T} is an invariant submanifold and $N_{\perp}={ }_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ is an anti-invariant submanifold of \bar{M}.

In [6] Chen and Dillen obtained the following inequality for warping functions:
Theorem 1.1. Let $x: N_{1} \times \sigma_{2} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k} \longrightarrow \bar{M}^{m}$ be an isometric immersion of a multiply warped product $N^{n}=N_{1} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k}$ into an arbitrary Riemannian manifold \bar{M}. Then we have

$$
\sum_{j=2}^{k} n_{j} \frac{\Delta \sigma_{j}}{\sigma_{j}} \leq \frac{n^{2}}{4}\|H\|^{2}+n_{1}\left(n-n_{1}\right) \max \bar{K}, \quad n=\sum_{j=1}^{k} n_{j}
$$

where $\max \bar{K}(p)$ denotes the maximum of the sectional curvature function of \bar{M}^{m} restricted to 2-planes sections of the tangent space $T_{p} N$ of N at $p=\left(p_{1}, \ldots, p_{k}\right)$.

The equality holds identically if and only if the following two statements hold:
(1) x is a mixed totally geodesic immersion satisfying trace $h_{1}=\ldots . .=$ trace h_{k}
(2) at each point $p \in N$, the sectional curvature function \bar{K} of \bar{M} satisfies $\bar{K}(u, v)=\max \bar{K}(p)$ for each unit vector u in $T_{p_{1}}\left(N_{1}\right)$ and each unit vector v in $T_{\left(p_{2}, \ldots, p_{k}\right)}\left(N_{2} \times \ldots \times N_{k}\right)$.

They also derived inequality between the squared norm of the second fundamental form h and the gradient of warping functions.

Recently, in [9][10] A. Olteanu achieved the similar results in case of multiply CR-warped product submanifolds of a Kenmotsu space form and doubly warped product submanifolds of generalized Sasakian space form. In the present article we obtain the similar inequalities for multiply CR-warped product submanifolds of a generalized Sasakian space form.

2. Preliminaries

A $(2 m+1)$-dimensional Riemannian manifold \bar{M} is said to be an almost contact metric manifold if it admits an endomorphism ϕ, a vector field ξ, a 1-form η and a Riemannian metric g satisfying the following properties:

$$
\begin{gathered}
\phi^{2}=-I d+\eta \otimes \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta \circ \phi=0 \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=g(X, \xi)
\end{gathered}
$$

$$
g(X, \phi Y)=-g(\phi X, Y)
$$

for any vector fields X, Y on \bar{M}.
A plane section π in $T_{p} \bar{M}$ is called a ϕ-section if it is spanned by X and ϕX, where X is a unit tangent vector orthogonal to ξ. The sectional curvature of a ϕ-section is called a ϕ-sectional curvature. A Sasakian (resp. Kenmotsu and cosymplectic) manifold with constant ϕ-sectional curvature is a Sasakian (resp. Kenmotsu and cosymplectic) space form. In 2004 [1] Alegre, Blair and Carriazo introduced a space form called generalized Sasakian space form which generalized Sasakian, Kenmotsu and cosymplectic space forms.

An almost contact metric manifold $\bar{M}(\phi, \xi, \eta, g)$ is said to be generalized Sasakian space form if there exist three functions f_{1}, f_{2} and f_{3} on \bar{M} such that the curvature tensor \bar{R} is given by [1]

$$
\begin{gather*}
\bar{R}(X, Y) Z=f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
+f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
+f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \tag{2.1}
\end{gather*}
$$

Let $\bar{\nabla}$ denote the connection on generalized Sasakian space form \bar{M}. If M is a submanifold of a generalized Sasakian space form \bar{M}, we denote the induced metric on M by the same symbol g whereas the induced connection on M by ∇. The Gauss and Weingarten formulae are given by

$$
\begin{gathered}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \\
\bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N
\end{gathered}
$$

for each $X, Y \in T M$ and $N \in T^{\perp} M$, where ∇^{\perp} denotes the induced connection on the normal bundle $T^{\perp} M, h$ and A_{N} are the second fundamental form and the shape operator of the immersion of M into \bar{M}. The relation between h and A_{N} is given as

$$
g(h(X, Y), N)=g\left(A_{N} X, Y\right)
$$

The covariant derivative of the second fundamental form h is defined as

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)
$$

for any $X, Y, Z \in T M$.If \bar{R} and R are the curvature tensors of the connections $\bar{\nabla}$ and ∇ on \bar{M} and M respectively, the Gauss and Codazzi equation are mentioned as

$$
\begin{equation*}
(\bar{R}(X, Y) Z)^{\perp}=\left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{2.3}
\end{equation*}
$$

respectively.
Let $N=N_{T} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ be a multiply $C R$-warped product submanifold of a generalized Sasakian space form. Let D be the invariant distribution (i.e. $T N_{T}=$ $D)$ such that its orthogonal complementary distribution D^{\perp} is anti-invariant (i.e. $\left.T N_{\perp}=T\left(N_{2} \times \ldots \times N_{k}\right)=D^{\perp}\right)$. We take $\{\xi\}$ to be tangent to $T N$. Then we have the following decompositions

$$
\begin{equation*}
T N=D \oplus D^{\perp} \oplus\{\xi\} \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
T^{\perp} N=\phi D^{\perp} \oplus \lambda \tag{2.5}
\end{equation*}
$$

where λ denotes the orthogonal complementary distribution of ϕD^{\perp} and is an invariant normal subbundle of $T^{\perp} N$.

For any vector field $X \in T N$ we put

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=P_{X} Y+Q_{X} Y \tag{2.6}
\end{equation*}
$$

where $P X$ (resp. $Q X$) denotes the tangential (resp. normal) component of ϕX. Also let $p \in N$ and $\left\{e_{1}, . ., e_{n}, e_{n+1}, \ldots, e_{2 m+1}\right\}$ an orthonormal basis of the tangent space $T_{p} \bar{M}$, such that $e_{1}, \ldots e_{n}$ are tangents to N at p and. We denote by H the mean curvature vector, that is

$$
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right)
$$

N is minimal if H vanishes identically. We also set

$$
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) .
$$

Let $K\left(e_{i} \wedge e_{j}\right), 1 \leq i, j \leq n$, denote the sectional curvature of the plane section spanned by e_{i} and e_{j}. Then the scalar curvature of N is given by

$$
\begin{equation*}
\tau=\sum_{i<j} K\left(e_{i} \wedge e_{j}\right) \tag{2.7}
\end{equation*}
$$

For a differentiable function f on N, the Laplacian Δf of f is defined as

$$
\Delta f=\sum_{j=1}^{n}\left\{e_{j}\left(e_{j} f\right)-\nabla_{e_{j}} e_{j} f\right\}
$$

A submanifold N tangent to ξ is said to be invariant (resp. anti-invariant) submanifold if $\phi\left(T_{p} N\right) \subset T_{p} N, \forall p \in N\left(\right.$ resp. $\left.\phi\left(T_{p} N\right) \subset T_{p}^{\perp} N, \forall p \in N\right)$.
Lemma 2.1. [5] Let a_{1}, \ldots, a_{n} be n real numbers and let k be an integer in $[2, n-1]$. Then for any partition $\left(n_{1}, \ldots, n_{k}\right)$ of n, we have

$$
\begin{gathered}
\sum_{1 \leq i_{1}<j_{1} \leq n_{1}} a_{i_{1}} a_{j_{1}}+\sum_{n_{1}+1 \leq i_{2}<j_{2} \leq n_{1}+n_{2}} a_{i_{2}} a_{j_{2}}+\ldots+\sum_{n_{1}+\ldots+n_{k-1}+1 \leq i_{k}<j_{k} \leq n} a_{i_{k}} a_{j_{k}} \\
\geq \frac{1}{2 k}\left[\left(a_{1}+\ldots+a_{n}\right)^{2}-k\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)\right]
\end{gathered}
$$

with the equality holding if and only if $a_{1}+\ldots+a_{n_{1}}=\ldots . .=a_{n_{1}+\ldots .+n_{k-1}+1}+$ $\ldots+a_{n}$.

3. Multiply CR-warped product submanifolds of generalized SASAKIAN SPACE FORM

In 2008, Chen and Dillen [6] studied an interesting inequality between the warping functions $\sigma_{2}, \ldots ., \sigma_{k}$ and the squared norm of the second fundamental form $\|h\|^{2}$ of a multiply CR-warped product submanifold $N=N_{T} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k}$ in a general Kaehler manifold. Later in 2010, A Olteanu [10] established the same inequality in case of a multiply CR-warped product submanifolds in a Kenmotsu
space form. In the present article we achieve the inequality for multiply CR-warped product submanifolds in a generalized Sasakian space form.

From the decomposition (2.5) we may write

$$
h(X, Y)=h_{\phi D^{\perp}}(X, Y)+h_{\lambda}(X, Y)
$$

Also it is known that for multiply CR-warped submanifold of a Riemannian manifold we have

$$
\begin{equation*}
\nabla_{X} Z=\sum_{a=2}^{k}\left(X\left(\log \sigma_{a}\right)\right) Z^{a} \tag{3.1}
\end{equation*}
$$

for any vector fields X in D and Z in D^{\perp}, where Z^{a} denotes the N_{a}-component of Z.

For proving the main inequality we need the following lemmas.
Lemma 3.1. Let $N=N_{T} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ be a multiply CR-warped product submanifold of a generalized Sasakian space form \bar{M}. Then we have
(i) $h_{\phi D^{\perp}}(\phi X, Z)=\sum_{a=2}^{k}\left(X\left(\log \sigma_{a}\right)\right) \phi Z^{a}+\phi P_{Z} \phi X$,
(ii) $g\left(Q_{Z} X, \phi W\right)=g\left(P_{Z} \phi X, W\right)$,
(iii) $g(h(\phi X, Z), \phi h(X, Z))=\left\|h_{\lambda}(X, Z)\right\|^{2}-g\left(Q_{X} Z, \phi h_{\lambda}(X, Z)\right)$
for any vector fields X in D and Z, W in D^{\perp}, where Z^{a} denotes the N_{a} component of Z.
Proof. From Gauss formula we can write

$$
\nabla_{Z} \phi X+h(\phi X, Z)=P_{Z} X+Q_{Z} X+\phi \nabla_{Z} X+\phi h(Z, X)
$$

or

$$
\begin{align*}
& h(\phi X, Z)=P_{Z} X+Q_{Z} X+\phi\left(\sum_{a=2}^{k}\left(X\left(\log \sigma_{a}\right)\right) Z^{a}\right) \\
& \quad+\phi h(Z, X)-\sum_{a=2}^{k}\left(\phi X\left(\log \sigma_{a}\right)\right) Z^{a} \tag{3.2}
\end{align*}
$$

Comparing tangential parts in the above equation and then taking inner product with $W \in D^{\perp}$, we get

$$
h_{\phi D^{\perp}}(Z, X)=-\sum_{a=2}^{k}\left(\phi X\left(\log \sigma_{a}\right)\right) \phi Z^{a}+\phi P_{Z} X
$$

which may be written as

$$
h_{\phi D^{\perp}}(\phi X, Z)=\sum_{a=2}^{k}\left(X\left(\log \sigma_{a}\right)\right) \phi Z^{a}+\phi P_{Z} \phi X, \quad \forall X \in D, Z \in D^{\perp} .
$$

This is part (i) of the lemma.
Now comparing normal parts of equation (3.2) we get

$$
\begin{equation*}
h(\phi X, Z)-\phi h_{\lambda}(Z, X)=Q_{Z} X+\sum_{a=2}^{k}\left(X\left(\log \sigma_{a}\right) \phi Z^{a}\right) \tag{3.3}
\end{equation*}
$$

By taking inner product with ϕW of the above equation we obtain

$$
g\left(h_{\phi D^{\perp}}(\phi X, Z), \phi W\right)=g\left(Q_{Z} X, \phi W\right)+\sum_{a=2}^{k}\left(X\left(\log \sigma_{a}\right) g\left(\phi Z^{a}, \phi W\right)\right) .
$$

Simplifying the above equation by using part (i) of the lemma we arrive at

$$
g\left(P_{Z} \phi X, W\right)=g\left(Q_{Z} X, \phi W\right)
$$

which proves part (ii).
Taking inner product of equation (3.3) by $\phi h(X, Z)$ gives part (iii) of the lemma.

Theorem 3.1. Let $N=N_{T} \times_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ be multiply CR-warped product submanifold of a generalized Sasakian space form \bar{M} with $P_{D^{\perp}} D \in D$, then the squared norm of the second fundamental form satisfies

$$
\|h\|^{2} \geq \sum_{a=2}^{k} n_{a}^{2}\left\|\left(\nabla \log \sigma_{a}\right)\right\|^{2}+\left\|P_{D^{\perp}} D\right\|^{2} .
$$

Proof. Let $\left\{X_{\circ}=\xi, X_{1}, X_{2}, . ., X_{p}, X_{p+1}=\phi X_{1}, \ldots, X_{2 p}=\phi X_{p}\right\}$ be a local orthonormal frame of vector fields on N_{T} and $\left\{Z_{1}, Z_{2}, \ldots, Z_{q}\right\}$ be such that $Z_{\Delta_{a}}$ is a basis for some $N_{a}, a=2, \ldots, k$ where $\Delta_{2}=\left\{1,2, . ., n_{2}\right\}, \ldots, \Delta_{k}=\left\{n_{2}+n_{3}+\ldots+\right.$ $\left.n_{k-1}+1, \ldots, n_{1}+n_{2}+\ldots+n_{k}\right\}$ and $n_{2}+n_{3}+\ldots+n_{k}=q$. Then we have

$$
\begin{aligned}
\|h\|^{2}= & \sum_{i, j=1}^{2 p} g\left(h\left(X_{i}, X_{j}\right), h\left(X_{i}, X_{j}\right)\right)+\sum_{i=1}^{2 p} g\left(h\left(X_{i}, \xi\right), h\left(X_{i}, \xi\right)\right) \\
& +\sum_{i=1}^{2 p} \sum_{a=2}^{k} g\left(h\left(X_{i}, Z_{\Delta_{a}}\right), h\left(X_{i}, Z_{\Delta_{a}}\right)\right)+\sum_{a, b=2}^{k} g\left(h\left(Z_{\Delta_{a}}, Z_{\Delta_{b}}\right), h\left(Z_{\Delta_{a}}, Z_{\Delta_{b}}\right)\right) \\
& +\sum_{a=2}^{k} g\left(h\left(Z_{\Delta_{a}}, \xi\right), h\left(Z_{\Delta_{a}}, \xi\right)\right) .
\end{aligned}
$$

The above equation implies

$$
\|h\|^{2} \geq \sum_{i=1}^{2 p} \sum_{a=2}^{k} g\left(h\left(X_{i}, Z_{\Delta_{a}}\right), h\left(X_{i}, Z_{\Delta_{a}}\right)\right)
$$

Now using part (i) of lemma-3.1 we get
$\|h\|^{2} \geq \sum_{i=1}^{2 p} \sum_{a=2}^{k} g\left(n_{a}\left(\phi X_{i}\left(\log \sigma_{a}\right)\right) \phi Z_{\Delta_{a}}+\phi P_{Z_{\Delta_{a}}} X_{i}, n_{a}\left(\phi X_{i}\left(\log \sigma_{a}\right)\right) \phi Z_{\Delta_{a}}+\phi P_{Z_{\Delta_{a}}} X_{i}\right)$.
In view of the assumption $P_{D^{\perp}} D \in D$, the above inequality takes the form

$$
\|h\|^{2} \geq \sum_{a=2}^{k} n_{a}^{2}\left\|\nabla \log \sigma_{a}\right\|^{2}\left\|Z_{\Delta_{a}}\right\|^{2}+\left\|P_{D^{\perp}} D\right\|^{2}
$$

By Cauchy-Schwartz inequality the above equation becomes
$\sum_{a=2}^{k} n_{a}^{2}\left\|\nabla \log \sigma_{a}\right\|^{2}\left\|Z_{\Delta_{a}}\right\|^{2}+\left\|P_{D^{\perp}} D\right\|^{2} \geq \sum_{a=2}^{k} n_{a}^{2}\left\|\left(\nabla \log \sigma_{a}\right) Z_{\Delta_{a}}\right\|^{2}+\left\|P_{D^{\perp}} D\right\|^{2}$
Therefore

$$
\|h\|^{2} \geq \sum_{a=2}^{k} n_{a}^{2}\left\|\left(\nabla \log \sigma_{a}\right)\right\|^{2}+\left\|P_{D^{\perp}} D\right\|^{2}
$$

Hence we finish the proof.
We now prove the main inequality of this section
Theorem 3.2. Let $N=N_{T} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ be a multiply CR-warped product submanifold of a generalized Sasakian space form \bar{M} with $P_{D^{\perp}} D \in D$, then

$$
\|h\|^{2} \geq \sum_{a=2}^{k}\left[n_{a}\left\{\left(\Delta \log \sigma_{a}\right)+n_{a}\left\|\nabla \log \sigma_{a}\right\|^{2}\right\} g\left(Z^{a}, Z^{a}\right)\right]+2 f_{2} p q
$$

Proof. Let $X \in D$ and $Z \in D^{\perp}$, then from equation (2.1) we have

$$
\begin{equation*}
\bar{R}(X, \phi X, Z, \phi Z)=-2 f_{2} g(X, X) g(Z, Z) \tag{3.4}
\end{equation*}
$$

On the other hand from equation (2.3)

$$
\begin{equation*}
\bar{R}(X, \phi X, Z, \phi Z)=g\left(\nabla_{X}^{\perp} h(\phi X, Z), \phi Z\right)-g\left(h\left(\nabla_{X} \phi X, Z\right), \phi Z\right) \tag{3.5}
\end{equation*}
$$

$-g\left(h\left(\phi X, \nabla_{X} Z\right), \phi Z\right)-g\left(\nabla_{\phi X}^{\perp} h(X, Z), \phi Z\right)+g\left(h\left(\nabla_{\phi X} X, Z\right), \phi Z\right)+g\left(h\left(X, \nabla_{\phi X} Z\right), \phi Z\right)$.
We will calculate each term of the above expression to get the required inequality. Now

$$
\begin{equation*}
g\left(\nabla_{X}^{\perp} h(\phi X, Z), \phi Z\right)=X g(h(\phi X, Z), \phi Z)-g\left(h(\phi X, Z), \bar{\nabla}_{X} \phi Z\right) \tag{3.6}
\end{equation*}
$$

Using equation (3.3) we get the value of first term of the above equation as

$$
X g(h(\phi X, Z), \phi Z)=X\left\{\sum_{a=2}^{k}\left(X\left(\log \sigma_{a}\right) g\left(Z^{a}, Z^{a}\right)\right)\right\}
$$

or equivalently

$$
\begin{equation*}
X g(h(\phi X, Z), \phi Z)=\sum_{a=2}^{k}\left[\left\{X\left(X \log \sigma_{a}\right)+2\left(X \log \sigma_{a}\right)^{2}\right\} g\left(Z^{a}, Z^{a}\right)\right] \tag{3.7}
\end{equation*}
$$

Also the second term in equation (3.6) is obtained as

$$
g\left(h(\phi X, Z), \bar{\nabla}_{X} \phi Z\right)=g\left(h(\phi X, Z),\left(\bar{\nabla}_{X} \phi\right) Z\right)+g\left(h(\phi X, Z), \phi\left(\bar{\nabla}_{X} Z\right)\right)
$$

Using equation (3.1) and part-(iii) of lemma-3.1, it follows that

$$
\begin{aligned}
g\left(h(\phi X, Z), \bar{\nabla}_{X} \phi Z\right)= & g\left(h(\phi X, Z)-\phi h(X, Z), Q_{X} Z\right) \\
& +\sum_{a=2}^{k}\left(\left(X \log \sigma_{a}\right) g\left(h(\phi X, Z), \phi Z^{a}\right)\right)+\left\|h_{\lambda}(X, Z)\right\|^{2} .
\end{aligned}
$$

Now making use of equation (3.3) and part-(ii) of lemma-3.1 in the above equation we get finally
(3.8) $g\left(h(\phi X, Z), \bar{\nabla}_{X} \phi Z\right)=\sum_{a=2}^{k}\left(\left(X \log \sigma_{a}\right)^{2} g\left(Z^{a}, Z^{a}\right)\right)-\left\|Q_{X} Z\right\|^{2}+\left\|h_{\lambda}(X, Z)\right\|^{2}$.

Putting equations (3.7) and (3.8) in equation (3.6) we have

$$
\begin{align*}
g\left(\nabla \frac{\perp}{X} h(\phi X, Z), \phi Z\right) & =\sum_{a=2}^{k}\left[\left\{X\left(X \log \sigma_{a}\right)+\left(X \log \sigma_{a}\right)^{2}\right\} g\left(Z^{a}, Z^{a}\right)\right] \\
& +\left\|Q_{X} Z\right\|^{2}-\left\|h_{\lambda}(X, Z)\right\|^{2} \tag{3.9}
\end{align*}
$$

Similarly we obtain

$$
\begin{align*}
& g\left(\nabla_{\phi X}^{\perp} h(\phi X, Z), \phi Z\right)=\sum_{a=2}^{k}\left[\left\{\phi X\left(\phi X \log \sigma_{a}\right)+\left(\phi X \log \sigma_{a}\right)^{2}\right\} g\left(Z^{a}, Z^{a}\right)\right] \\
& \tag{3.10}\\
& \\
& \hline 0)
\end{align*}
$$

Again using part-(i) of lemma-3.1 we evaluate

$$
\begin{equation*}
g\left(h\left(\phi X, \nabla_{X} Z\right), \phi Z\right)=\sum_{a=2}^{k}\left\{\left(X \log \sigma_{a}\right)^{2} g\left(Z^{a}, Z^{a}\right)\right\} . \tag{3.11}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
g\left(h\left(X, \nabla_{X} Z\right), \phi Z\right)=-\sum_{a=2}^{k}\left\{\left(\phi X \log \sigma_{a}\right)^{2} g\left(Z^{a}, Z^{a}\right)\right\} . \tag{3.12}
\end{equation*}
$$

Using again part-(i) of lemma-3.1 we have

$$
\begin{equation*}
g\left(h\left(\nabla_{\phi X} X, Z\right), \phi Z\right)=-\sum_{a=2}^{k}\left\{\left(\phi \nabla_{\phi X} X \log \sigma_{a}\right)^{2} g\left(Z^{a}, Z^{a}\right)\right\} . \tag{3.13}
\end{equation*}
$$

Similarly we have

$$
g\left(h\left(\nabla_{X} \phi X, Z\right), \phi Z\right)=-\sum_{a=2}^{k}\left\{\left(\phi \nabla_{X} \phi X \log \sigma_{a}\right)^{2} g\left(Z^{a}, Z^{a}\right)\right\}
$$

The last equation may further be simplified by using the fact that N_{T} is totally geodesic in N, equation (3.1) and Gauss equation as

$$
g\left(h\left(\nabla_{X} \phi X, Z\right), \phi Z\right)=\sum_{a=2}^{k}\left\{\left(\nabla_{X} X \log \sigma_{a}\right) g\left(Z^{a}, Z^{a}\right)\right\}
$$

$$
\begin{equation*}
+\sum_{a=2}^{k}\left\{\left(\nabla_{\phi X} \phi X \log \sigma_{a}\right) g\left(Z^{a}, Z^{a}\right)\right\}-\sum_{a=2}^{k}\left\{\left(\phi \nabla_{\phi X} X \log \sigma_{a}\right) g\left(Z^{a}, Z^{a}\right)\right\} \tag{3.14}
\end{equation*}
$$

Substituting equations (3.9)-(3.14) into equation (3.5) it becomes

$$
\begin{gathered}
\bar{R}(X, \phi X, Z, \phi Z)=\sum_{a=2}^{k}\left\{\left(X\left(X \log \sigma_{a}\right)+\phi X\left(\phi X \log \sigma_{a}\right)-\nabla_{X} X \log \sigma_{a}-\nabla_{\phi X} \phi X \log \sigma_{a}\right) g\left(Z^{a}, Z^{a}\right)\right\} \\
+\left\|Q_{X} Z\right\|^{2}+\left\|Q_{\phi X} Z\right\|^{2}-\left\|h_{\lambda}(X, Z)\right\|^{2}-\left\|h_{\lambda}(\phi X, Z)\right\|^{2}
\end{gathered}
$$

Putting the bases of $N_{T}, N_{2}, \ldots N_{k}$ and summing over them we find

$$
\sum_{i=1}^{p} \sum_{\Delta_{a}} \bar{R}\left(X_{i}, \phi X_{i}, Z_{\Delta_{a}}, \phi Z_{\Delta_{a}}\right)=\sum_{a=2}^{k} n_{a}\left(\Delta \log \sigma_{a}\right) g\left(Z^{a}, Z^{a}\right)
$$

$$
\begin{equation*}
+\left\|Q_{D} D^{\perp}\right\|^{2}-\left\|h_{\lambda}\left(D, D^{\perp}\right)\right\|^{2} \tag{3.15}
\end{equation*}
$$

On the other hand equation (3.4) gives

$$
\begin{equation*}
\sum_{i=1}^{p} \sum_{\Delta_{a}} \bar{R}\left(X_{i}, \phi X_{i}, Z_{\Delta_{a}}, \phi Z_{\Delta_{a}}\right)=-2 f_{2} p q \tag{3.16}
\end{equation*}
$$

Combining equations (3.15) and (3.16) we get

$$
\begin{equation*}
\left\|h_{\lambda}\left(D, D^{\perp}\right)\right\|^{2}=\sum_{a=2}^{k} n_{a}\left(\Delta \log \sigma_{a}\right) g\left(Z^{a}, Z^{a}\right)+\left\|Q_{D} D^{\perp}\right\|^{2}+2 f_{2} p q \tag{3.17}
\end{equation*}
$$

It is easy to see from part-(i) of lemma-3.1 that

$$
\begin{equation*}
\left\|h_{\phi D^{\perp}}\left(D, D^{\perp}\right)\right\|^{2}=\sum_{a=2}^{k} n_{a}^{2}\left\|\nabla \log \sigma_{a}\right\|^{2} g\left(Z^{a}, Z^{a}\right)+\left\|P_{D^{\perp}} D\right\|^{2} \tag{3.18}
\end{equation*}
$$

Therefore equations (3.17) and (3.18) give

$$
\begin{aligned}
\|h\|^{2}= & \sum_{a=2}^{k} n_{a}\left(\Delta \log \sigma_{a}\right) g\left(Z^{a}, Z^{a}\right)+\left\|Q_{D} D^{\perp}\right\|^{2}+2 f_{2} p q \\
& +\sum_{a=2}^{k} n_{a}^{2}\left\|\nabla \log \sigma_{a}\right\|^{2} g\left(Z^{a}, Z^{a}\right)+\left\|P_{D^{\perp}} D\right\|^{2}
\end{aligned}
$$

which proves that

$$
\|h\|^{2} \geq \sum_{a=2}^{k}\left[n_{a}\left\{\left(\Delta \log \sigma_{a}\right)+n_{a}\left\|\nabla \log \sigma_{a}\right\|^{2}\right\} g\left(Z^{a}, Z^{a}\right)\right]+2 f_{2} p q
$$

4. Anti-Invariant multiply warped product submanifolds of a generalized Sasakian space form

In 2008 Chen and Dillen [6] obtained a sharp inequality for warping functions $\sigma_{2}, \ldots, \sigma_{k}$ of a multiply warped product submanifold $N=N_{1} \times_{\sigma_{2}} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k}$ isometrically immersed in an arbitrary Riemannian manifold and the squared mean curvature $\|H\|^{2}$. Later in 2010, A. Olteanu [10] established the similar inequality in case of anti-invariant submanifold of a Kenmotsu space form. In this paper we achieve the same type of inequality for anti-invariant submanifold of a Generalized Sasakian space form.

We know from [10] that the following relation holds for warping functions

$$
\begin{equation*}
\Delta \sigma_{a}=\sigma_{a} \sum_{j=1}^{n_{1}} K\left(e_{j} \wedge X_{a}\right) \tag{4.1}
\end{equation*}
$$

for any unit vector tangent X_{a} tangent to N_{a}, where $\left\{e_{1}, e_{2}, \ldots, e_{n_{1}}\right\}$ is an orthonormal basis of $T_{\pi_{1}(p)} N_{1}$.

Case I- When ξ is tangent to N.

Theorem 4.1. Let ψ be an anti-invariant isometric immersion of an n-dimensional multiply warped $N=N_{1} \times \sigma_{\sigma_{2}} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k}$ into a $(2 m+1)$-dimensional generalized Sasakian space form \bar{M} with ξ tangent to N. Then

$$
\sum_{a=2}^{k} n_{a} \frac{\Delta \sigma_{a}}{\sigma_{a}} \leq n_{1}\left(n-n_{1}\right) f_{1}-f_{3}+\frac{n^{2}}{2}\left(1-\frac{1}{k}\right)\|H\|^{2}
$$

Proof. Let $N=N_{1} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k}$ be an anti-invariant multiply warped product submanifold in a generalized Sasakian space form \bar{M}.Then from equation (2.1) and (2.2) the sectional curvature $K_{N}(X \wedge Y)$ determined by orthonormal vectors X and Y is given by
(4.2) $K_{N}(X \wedge Y)=f_{1}-f_{3}\left\{\eta(X)^{2}+\eta(Y)^{2}\right\}+g(h(X, X), h(Y, Y))-\|h(X, Y)\|^{2}$.

Since ξ is tangent to N, using equation (2.7) the above equation becomes

$$
\sum_{i \neq j} K_{N}\left(e_{i} \wedge e_{j}\right)=2 \tau=n(n-1) f_{1}-2 f_{3}+n^{2}\|H\|^{2}-\|h\|^{2}
$$

We put [6]

$$
\begin{equation*}
\eta=2 \tau-n^{2}\|H\|^{2}-n(n-1) f_{1}+2 f_{3}+\frac{n^{2}}{k}\|H\|^{2} \tag{4.3}
\end{equation*}
$$

and hence we have

$$
n^{2}\|H\|^{2}=k\left(\eta+\|h\|^{2}\right)
$$

We choose an orthonormal basis $e_{1}, e_{2}, \ldots, e_{2 m+1}$ at p such that, for each $j \in \Delta_{a}$, e_{j} is tangent to N_{a} for $a=1, \ldots, k$. Moreover we choose the normal vector field e_{n+1} in the direction of the mean curvature vector at p. Therefore the above equation yields

$$
\frac{1}{2 k}\left[\left(\sum_{A=1}^{n} a_{A}\right)^{2}-k \sum_{A=1}^{n} a_{A}^{2}\right]=\frac{1}{2}\left[\eta+\sum_{A \neq B}\left(h_{A B}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{A, B=1}^{n}\left(h_{A B}^{r}\right)^{2}\right]
$$

Now applying basic lemma-2.1 in the above equation we get

$$
\begin{gathered}
\sum_{\alpha_{1}<\beta_{1}} a_{\alpha_{1}} a_{\beta_{1}}+\sum_{\alpha_{2}<\beta_{2}} a_{\alpha_{2}} a_{\beta_{2}}+\ldots+\sum_{\alpha_{k}<\beta_{k}} a_{\alpha_{k}} a_{\beta_{k}} \geq \\
\frac{\eta}{2}+\sum_{A<B}\left(h_{A B}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{A, B=1}^{n}\left(h_{A B}^{r}\right)^{2} .
\end{gathered}
$$

Now using equation (4.1) we may write

$$
\begin{array}{r}
\quad \sum_{a=2}^{k} n_{a} \frac{\Delta \sigma_{a}}{\sigma_{a}}=\sum_{j \in \Delta_{1}} \sum_{\beta \in \Delta_{2} \cup \ldots \cup \Delta_{k}} K\left(e_{j} \wedge e_{\beta}\right)+\sum_{1 \leq j_{1}<j_{2} \leq n_{1}} K\left(e_{j_{1}} \wedge e_{j_{2}}\right) \\
+\sum_{n_{1}+1 \leq \alpha<\beta \leq n} K\left(e_{\alpha} \wedge e_{\beta}\right)-\sum_{1 \leq j_{1}<j_{2} \leq n_{1}} K\left(e_{j_{1}} \wedge e_{j_{2}}\right)-\sum_{n_{1}+1 \leq \alpha<\beta \leq n} K\left(e_{\alpha} \wedge e_{\beta}\right),
\end{array}
$$

from which we have

$$
\sum_{a=2}^{k} n_{a} \frac{\Delta \sigma_{a}}{\sigma_{a}} \leq \tau-\frac{n(n-1)}{2} f_{1}+n_{1}\left(n-n_{1}\right) f_{1}-\frac{\eta}{2}
$$

By putting the value of η from equation (4.2) in the above equation we obtain the required inequality.

We note easily the following corollaries from the theorem as obtained in [9]-
Corollary 4.1. Let $N=N_{1} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ be a multiply warped product into a generalized Sasakian space form \bar{M} such that $N=N_{1} \times_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ is an anti-invariant submanifold tangent to ξ. If the warping functions $\sigma_{a}, a=2, \ldots, k$ are harmonic, then $N=N_{1} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ admits no minimal immersion into a generalized Sasakian space form \bar{M} with $f_{1}<0$ and $f_{3}>0$.

Corollary 4.2. If the warping functions $\sigma_{a}, a=2, \ldots, k$ of an anti-invariant multiply warped product submanifold $N=N_{1} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k}$ tangent to ξ in a generalized Sasakian space form \bar{M} are eigen functions of the Laplacian with corresponding eigenvalues $\lambda_{a}>0, a=2, \ldots, k$ respectively, then $N=N_{1} \times_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ admits no minimal immersion in a generalized Sasakian space form \bar{M} with $f_{1} \leq 0$ and $f_{3} \geq 0$.

Corollary 4.3. Let $N=N_{1} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k}$ be an anti-invariant multiply warped product submanifold tangent to ξ in a generalized Sasakian space form \bar{M}. If σ_{a}, $a=2, . ., k_{1}$ are harmonic and $\sigma_{b}, b=1, \ldots, k_{2}$ are eigen functions of the Laplacian with corresponding eigenvalues $\lambda_{b}, b=1, . ., k_{2}$ respectively, where $k_{1}+k_{2}=k$, then $N=N_{1} \times_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ admits no minimal immersion into a generalized Sasakian space form \bar{M} with $f_{1} \leq 0$ and $f_{3} \geq 0$.

Case-II When ξ is normal to N.

Theorem 4.2. Let ψ be an anti-invariant isometric immersion of an n-dimensional multiply warped $N=N_{1} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k}$ into a $(2 m+1)$-dimensional generalized Sasakian space form \bar{M} with ξ normal to N. Then

$$
\sum_{a=2}^{k} n_{a} \frac{\Delta \sigma_{a}}{\sigma_{a}} \leq n_{1}\left(n-n_{1}\right) f_{1}+\frac{n^{2}}{2}\left(1-\frac{1}{k}\right)\|H\|^{2}
$$

Proof. Since ξ is normal to N we have from equation (4.2)

$$
\sum_{i, j} K_{N}\left(e_{i} \wedge e_{j}\right)=2 \tau=n(n-1) f_{1}+n^{2}\|H\|^{2}-\|h\|^{2}
$$

Then proceed as in case-I, we obtain the final inequality as

$$
\sum_{a=2}^{k} n_{a} \frac{\Delta \sigma_{a}}{\sigma_{a}} \leq n_{1}\left(n-n_{1}\right) f_{1}+\frac{n^{2}}{2}\left(1-\frac{1}{k}\right)\|H\|^{2}
$$

Hence the theorem is proved.
We extract the following straight corollaries from this theorem-
Corollary 4.4. Let $N=N_{1} \times_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ be a multiply warped product into a generalized Sasakian space form \bar{M} such that $N=N_{1} \times_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ is an anti-invariant submanifold normal to ξ. If the warping functions σ_{a}, $a=2, \ldots, k$ are harmonic, then $N=N_{1} \times{ }_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ admits no minimal immersion into a generalized Sasakian space form \bar{M} with $f_{1}<0$.

Corollary 4.5. If the warping functions $\sigma_{a}, a=2, \ldots, k$ of an anti-invariant multiply warped product submanifold $N=N_{1} \times_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ normal to ξ in a generalized Sasakian space form \bar{M} are eigen functions of the Laplacian with corresponding eigenvalues $\lambda_{a}>0, a=2, \ldots, k$ respectively, then $N=N_{1} \times_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ admits no minimal immersion in a generalized Sasakian space form \bar{M} with $f_{1} \leq 0$.

Corollary 4.6. Let $N=N_{1} \times_{\sigma_{2}} N_{2} \times \ldots \times{ }_{\sigma_{k}} N_{k}$ be an anti-invariant multiply warped product submanifold normal to ξ in a generalized Sasakian space form \bar{M}. If σ_{a}, $a=2, . ., k_{1}$ are harmonic and $\sigma_{b}, b=1, \ldots, k_{2}$ are eigen functions of the Laplacian with corresponding eigenvalues $\lambda_{b}, b=1, . ., k_{2}$ respectively, where $k_{1}+k_{2}=k$, then $N=N_{1} \times_{\sigma_{2}} N_{2} \times \ldots \times_{\sigma_{k}} N_{k}$ admits no minimal immersion into a generalized Sasakian space form \bar{M} with $f_{1} \leq 0$.

References

[1] Alegre, P., Blair, D. E. and Carriazo, A., Generalized Sasakian space forms, Israel J. Math., 141(2004), 157-183.
[2] Atceken, M., Warped product semi-slant submanifolds in Kenmotsu manifolds, Turk. J. Math., 34(2010), 425-433.
[3] Chen, B. Y., Geometry of warped product CR-submanifolds in Kaehler manifold, Monatsh. Math., 133(2001), 177-195.
[4] Chen, B. Y., Geometry of warped product CR-submanifolds in Kaehler manifold II, Monatsh. Math., 134(2001), 103-119.
[5] Chen, B. Y., Ricci curvature of real hypersurfaces in complex hyperbolic space, Arch. Math. (Brno) 38(2002), 73-80.
[6] Chen, B. Y. and Dillen, F., Optimal inequalities for multiply warped product submanifolds, Int. Electron. J. Geom., 1(2008), 1-11.
[7] Mihai, I., Contact CR-warped product submanifolds in Sasakian space forms, Geom. Dedicata, 109(2004), 165-173.
[8] Munteanu, M. I., Warped product contact CR-submanifolds of Sasakian space form, Publ. Math. Debrecen, 66(6)(2005), 75-120.
[9] Olteanu, A., A general inequality for doubly warped product submanifolds, Math. J. Okayama Univ., 52(2010), 133-142.
[10] Olteanu, A., Multiply warped product submanifolds in Kenmotsu space forms, Bull. Inst. Math. Acad. Sinica(New Series), 5(2010), No-2, 201-214.
[11] Sahin, B., Non-existence of warped product semi-slant submanifolds of Kaehler manifold, Geom. Dedicata, 117(2006), 195-202.

Department of Mathematics, Jamia Millia Islamia, New Delhi-25-India
E-mail address: jamalidbdyahoo@gmail.com and hasan_jmi@yahoo.com

[^0]: Date: Received: December 2, 2012, Accepted: October 9, 2013.
 2010 Mathematics Subject Classification. 53C40, 53C25.
 Key words and phrases. Multiply warped product, Generalized Sasakian space form.

