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Abstract. We show that the second fundamental form of locally flat hyper-
surfaces defines under certain conditions, a cohomology class in the Koszul-
Vinberg complex of the multilinear maps from the algebra of smooth vector
fields on the hypersurface with values in the space of smooth functions of the

manifold. We discuss the geometric interpretation of the triviality of this class
for convex locally flat hypersurfaces.

Introduction

An algebra A over a commutative field F with characteristic zero is called a
Koszul-Vinberg algebra if for all a, b, c ∈ A, a(bc) − (ab)c = b(ac) − (ba)c. Koszul-
Vinberg algebras generalize associative algebras. In his paper [6], M.Nguiffo Boyom
defined an intrinsic cohomology theory for Koszul-Vinberg algebras and their mod-
ules. A locally flat manifold is a triple (M, g,D) where (M, g) is a Riemannian man-
ifold and D a linear torsion-free connection whose curvature tensor vanishes identi-
cally. The vector space X(M) of smooth vector fields on (M, g,D) possesses a natu-
ral structure of real Koszul-Vinberg algebra, under the multiplication XY = DXY
for all X,Y ∈ X(M). We will denote it by A = (X(M), D). Moreover, the algebra
A = (X(M), D) acts on the module C∞(M) by the map X.f = df(X), for all
X ∈ X(M) and for all f ∈ C∞(M).
In this note, we use the Koszul-Vinberg cohomology as a tool to study locally flat
hypersurfaces of Riemannian manifolds. The main purpose of the present work is to
show that the scalar second fundamental form A of a locally flat hypersurface N of
a Riemannian manifold (M, g), under certain conditions, difines a KV-cohomology
class A ∈ H2

KV (X(N), C∞(M)). We discuss also the geometric interpretation of the
class A ∈ H2

KV (X(N), C∞(M)) for convex locally flat hypersurfaces.
This paper is organized in the following way. Section 2 is devoted to the background
on the Koszul-Vinberg cohomology which will be used in the sequel. Section 3 is
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concerned with the Koszul-Vinberg class of second fundamental forms of locally flat
hypersurfaces. In the last section, we give a geometric interpretation of the class
A ∈ H2

KV (X(N), C∞(M)).

1. Preliminaries on the Koszul-Vinberg cohomology [7]

Let F be a commutative field of characteristic zero and A an algebra over F. The
multiplication on the algebra A is denoted by ab for all a, b ∈ A.
A left action (resp. a right action )of A on a A-module V is denoted by av (resp.by
va) for all a ∈ A and for all v ∈ V .

Definition 1.1. The mapp ass : A3 → A defined by ass(a, b, c) = a(bc)− (ab)c =
b(ac)− (ba)c is called the associator of A and ass(a, b, c), the associator of elements
a, b, c ∈ A.
We say that A is a Koszul-Vinberg algebra(or a KV-algeba) iff ass(a, b, c) =
ass(b, a, c) for all a, b, c ∈ A, i.e. the associator of A is symmetric in the first
two entries.

Example 1.1.

(1) Associative algebras are KV-algebras. Their associators are identically zero.
(2) The vector space C∞(R,R) of smooth real-valued functions under the mul-

tiplication fg = f dg
dx is a KV-algebra.

(3) Let (M,ω) be a symplectic manifold of dimension 2n. The vector space
X(M) of smooth vector fields on M is a KV-algebra whose multiplication
is defined by the formula iX♢Y ω = LX iY ω, where iY ω is the inner product
of the form ω by the vector field X and LXω the Lie derivative of ω in the
direction of X.

Definition 1.2. An element ξ ∈ A is called a Jacobi element of the KV-algebra A
if and only if ass(a, b, ξ) = 0,∀a, b ∈ A. The set J(A) of Jacobi elements of A is an
associative subalgebra containing the center of A.

Definition 1.3. We consider a vector space W with two bilinear maps

A×W −→ W : (a,w) → aw

and

W × A −→ W : (w, a) → wa

We say that W is a two-sided module over A if and only if for all a, b ∈ A and for all
w ∈ W we have (ab)w−a(bw) = (ba)w−b(aw) and (aw)b−a(wb) = (wa)b−w(ab).
If the right action (resp. the left action) is trivial, we say that W is a left (resp. a
right) KV-module.
The subspace J(W ) of the Jacobi elements of the KV-module W is precisely the
set of elements w ∈ W such that ass(a, b, w) = 0, for all (a, b) ∈ W 2.

Example 1.2. Let V and W be two KV-bimodules on the same KV-algebra A. If
we denote by L(W,V ) the set of all linear maps from W to V , then the mappings

A× L(W,V ) −→ L(W,V ) : (a, f) → af

and
L(W,V )× A −→ L(W,V ) : (f, a) → fa
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defined by
(af)(w) = a(f(w))− f(aw)

and
(fa)w = (f(w))a

are bilinear mappings. Moreover for all a, b ∈ A and for all f ∈ L(W,V ) one shows
that (ab)f−a(fb) = (ba)f−b(af) and (af)b−a(fb) = (fa)b−f(ab). Hence L(W,V )
is a KV-bimodule over A which becomes a left KV-module if V is a left KV-module.

Generally, the vector space Lq(W,V ) of q-linear maps (q ≥ 1) from W to V en-
dowed with the actions

(af)(w1, . . . , wq) = a(f(w1, . . . , wq))−
q∑

j=1

f(w1, . . . , awj , . . . , wq)

and
(fa)(w1, . . . , wq) = (f(w1, . . . , wq))a

is a KV-bimodule over A.

Let A be a KV-algebra and W a KV-bimodule over A. The set Cq(A,W ) of all
q-linear maps from A to W is a KV-bimodule over A. For all a ∈ A and for all
integer 1 ≤ r ≤ q we consider the map

er(a) : C
q(A,W ) −→ Cq−1(A,W )

where
(er(a)f)(a1, . . . , aq−1) = f(a1, . . . , ar−1, a, ar, . . . , aq−1).

With these notations, it was shown in [6] that the map

dKV : Cq(A,W ) −→ Cq+1(A,W )

defined by

(dKV f)(a1, . . . , aq+1) =
∑

1≤j≤q

(−1)j((ajf)(a1, . . . , âj , . . . , aq+1)

+ eq(aj)(faq+1)(a1, . . . , âj , . . . , âq+1))(1.1)

is a coboundary operator, i.e d2KV = 0.
We set C(A,W ) = ⊕q≥1C

q(A,W ) and C0(A,W ) = J(W ). The map

dKV : C0(A,W ) −→ C1(A,W )

defined by dKV w(a) = −aw + wa, verifies the relation d2KV = 0 for all w ∈ J(W ).
We then obtain a complete complex

CKV (A,W ) = J(W )⊕ C(A,W ).

Definition 1.4. The cohomology of the complex CKV (A,W ) = J(W )⊕ C(A,W )
is called the Koszul-Vinberg cohomology or the KV-cohomology.
The q-order cohomology space is denoted by Hq

KV (A,W ).

In particular, if W is a left module, we have :
for q = 1,

dKV : C1(A,W ) −→ C2(A,W )

is given by
dKV (a1, a2) = (−1)1(a1f)(a2) = a1f(a2)− f(a1a2),
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and for q = 2,
dKV : C2(A,W ) −→ C3(A,W )

is defined by

dKV (a1, a2, a3) = (−1)1(a1f)(a2, a3) + (−1)2(a2f)(a1, a3)

= −(a1f(a2, a3)− f(a1a2, a3)− f(a1a3, a2))

+ (−a2f(a1, a3)− f(a2a1, a3)− f(a2a3, a1))

= −a1f(a2, a3) + f(a1a2, a3) + f(a1a3, a2)

+ −a2f(a1, a3)− f(a2a1, a3)− f(a2a3, a1)

= −a1(f(a2, a3)) + a2(f(a1, a3)) + f(a1a2 − a2a1, a3)

+ f(a2, a1a3)− f(a3, a1a2)

= −a1(f(a2, a3)) + a2(f(a1, a3)) + f([a1, a2], a3) +

+ f(a2, a1a3)− f(a3, a1a2).

Hence, for all f ∈ C2(A,W ) and for all a1, a2, a3 ∈ A
dKV f(a1, a2, a3) = −a1(f(a2, a3)) + a2(f(a1, a3)) + f([a1, a2], a3)

+f(a2, a1a3)− f(a3, a1a2)

A 2-cochain f ∈ C2(A,W ) is a KV-cocycle if and only if for all a1, a2, a3 ∈ A,
f([a1, a2], a3) = a1(f(a2, a3))− a2(f(a1, a3)) + f(a3, a1a2)− f(a2, a1a3).

2. The class of the scalar second fundamental form

Definition 2.1. Let (M, g) be a Riemannian manifold, D the Levi-Civita connec-
tion of (M, g) and R the curvature tensor of (M, g,D). A submanifold N of M is

called a locally flat submanifold if R̃(X,Y )Z = 0 for all smooth vector fields X,Y, Z

on N , where D̃ is the Levi-Civita connection induced by the inclusion of N in M
and R̃ the curvature tensor of D̃.

Proposition 2.1. Let N be a locally flat submanifold of (M, g,D). The vector
space X(N) of smooth vector fields on N is a KV-algebra under the multiplication
given by

X(N)× X(N) −→ X(N) : (X,Y ) → XY = D̃XY.

We denote this algebra by A = (X(N), D̃). Moreover, the vector space C∞(M) of

smooth functions of M is a left KV-module over the KV-algebra A = (X(N), D̃)
under the action X.f = df(X).

Proof. We will use the flatness of the curvature tensor R̃ and the fact that D̃ is
a torsion free connection to show that the associator of the algebra A = (X(N), D̃)
is symmetric in the two first entries. For all smooth vector fields on N , we have
the following equivalent statements:

(XY )Z −X(Y Z) = (Y X)Z − Y (XZ)

⇐⇒
(D̃XY )Z −X(D̃Y Z) = (D̃Y X)Z − Y (D̃XZ).

⇐⇒
D̃D̃XY Z − D̃XD̃Y Z = D̃D̃Y XZ − D̃Y D̃XZ

⇐⇒



96 ALAIN MUSESA LANDA

(D̃D̃XY − D̃D̃Y X)Z = (D̃XD̃Y − D̃Y D̃X)Z

⇐⇒
D̃D̃XY−D̃Y XZ = [D̃X , D̃Y ]Z.

Since D̃ is a torsion-free connection, D̃XY − D̃Y X = [X,Y ] and the last equa-

tion becomes: D̃[X,Y ]Z = [D̃X , D̃Y ]Z or D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z = 0, i.e.

R̃(X,Y, Z) = 0. �

Example 2.1.

(1) A foliation F on a smooth manifold M is said to be an affine foliation if
the vector space X(F) of smooth vector fields tangent to the leaves of F is
a KV-algebra whose commutator Lie algebra is a subalgebra of X(M). The
leaves of an affine foliation are locally flat submanifolds of M.

(2) A Lagrangian foliation F on a 2n-symplectic manifold (M,ω) is a foliation
whose leaves are Lagrangian submanifolds of M , i.e., each leaf F is a n-
dimensional submanifold of M and ω(X,Y ) = 0 for all vector fields X,Y
tangent to the leaves of F. The symplectic structure of M defines on each
leaf F of F, a connection whose curvature and torsion vanish identically.
Therefore, the leaves of a Lagrangian foliation on a symplectic manifold are
locally flat submanifolds of M.

(3) Let X ∈ X(M) be a smooth vector field on a manifold M. The vector
space A = {fX : f ∈ C∞(M)} is a KV-algebra under the multiplication
(fX)(gX) = f(dg(X))X. The leaves of the flow defined by X are locally
flat submanifolds.

We consider a triple (M, g,D) where (M, g) is a Riemannian manifold of dimen-
sion n ≥ 2 and D the metric connection of (M, g). Let N be a (n− k)-dimensional

submanifold of M. We denote by D̃ the metric connection on N induced by the
inclusion of N in M.
The relationship between the Levi-Civita connection D̃ of the induced metric g̃, the

second fundamental form A⃗ and the ambient Levi-Civita connection D is given by
the following Gauss Formula

DXY = D̃XY + A⃗(X,Y ).

If X1, . . . , Xk is a local orthogonal frame of vector fields over N in M, we can write:

A⃗(X,Y ) =
k∑

i=1

Ai(X,Y )Xi.

In particular, if N is a hypersurface, i.e k = 1 the last formula becomes

A⃗(X,Y ) = A(X,Y )ξ,

where ξ is a local normal unit vector field over N in M , i.e a local section of the
transversal line bundle.

Definition 2.2. The map A : X(N) × X(N) −→ C∞(M) : (X,Y ) → A(X,Y ) is
called the scalar second fundamental form of the hypersurface N in M with respect
to the local unit vector field ξ.

We have the following
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Proposition 2.2. Let N be a locally flat hypersurface of a Riemannian manifold
(M, g,D). The following statements are equivalent.

(1) R(X,Y )Z ∈ X(N), ∀X,Y ∈ X(N).

(2) R(X,Y )ξ = 0, ∀X,Y ∈ X(N).

(3) R(X, ξ)Y = R(Y, ξ)X,∀X,Y ∈ X(N).

Proof. We consider the (0, 4)-curvature tensor defined by R(X,Y, Z,W ) =
g(R(X,Y )Z,W ) which is symmetric in the first two and the last two entries.
For all vector fields X,Y ∈ X(N), we have: R(X,Y, ξ, Z) = R(Y,X,Z, ξ), i.e
g(R(X,Y )ξ, Z) = g(R(Y,X)Z, ξ). Hence, R(X,Y )Z is normal to ξ, for all X,Y, Z ∈
X(N) if and only if R(X,Y )ξ is identically zero for all X,Y ∈ X(N). This estab-
lishes the equivalence between statements (1) and (2).
By the Bianchi’s first identity of the (1, 3)-curvature tensor we have:

R(X,Y )ξ +R(Y, ξ)X +R(ξ,X)Y = 0

or

R(X,Y )ξ = −R(Y, ξ)X −R(ξ,X)Y = −R(Y, ξ)X +R(X, ξ)Y.

This establishes the equivalence between statements (2) and (3). �

Theorem 2.1. Let N be a locally flat hypersurface of a Riemannian manifold
(M, g,D) which satisfies one of the three equivalent statements of the Proposition
3.2. Then the scalar second fundamental form A of N defines a Koszul-Vinberg
class [A] ∈ H2

KV (X(N), C∞(M)).

Proof. We use the Codazzi-Mainardi’s formula DXY = D̃XY +A(X,Y )ξ.
For all vector fields X,Y, Z ∈ X(N), we compute the curvature tensor of D

R(X,Y )Z = DXDY Z −DY DXZ −D[X,Y ]Z.

using

DY Z = A(Y, Z)ξ + D̃Y Z

and

DXZ = A(X,Z)ξ + D̃XZ.

Hence, the curvature tensor of D is given by:

R(X,Y )Z = DX(A(Y, Z)ξ + D̃Y Z)−DY (A(X,Z)ξ + D̃XZ)−D[X,Y ]Z.

Therefore,

R(X,Y )Z = A(Y,Z)DXξ +XA(Y, Z)ξ +DXD̃Y Z −A(X,Z)DY ξ

−Y A(X,Z)ξ −DY D̃XZ −A([X,Y ], Z)ξ − D̃[X,Y ]Z.

Setting

E := DXD̃Y Z −DY D̃XZ − D̃[X,Y ]Z

and

A(XY,Z) := A(D̃XY,Z),
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we have:

E = A(X, D̃Y Z)ξ + D̃XD̃Y Z −A(Y, D̃XZ)ξ − D̃Y D̃XZ − D̃[X,Y ]Z

= A(X,Y Z)ξ −A(Y,XZ)ξ + D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z

= (A(X,Y Z)−A(Y,XZ))ξ + R̃(X,Y )Z

= (A(X,Y Z)−A(Y,XZ))ξ

We obtain finally:

R(X,Y )Z = A(X,Y )DXξ +XA(Y, Z)ξ −A(X,Z)DY ξ − Y A(X,Z)ξ

−A([X,Y ], Z)ξ + (A(X,Y Z)−A(Y,XZ))ξ.

On the other hand, the normal vector field ξ being a unitary vector field, the vector
fields ξ and DXξ are orthogonal for all smooth vector field X over N. Consequently,

R(X,Y, Z, ξ) = g(R(X,Y )Z, ξ)

= XA(Y,Z)− Y A(X,Z)−A([X,Y ], Z)

+ A(X,Y Z)−A(Y,XZ).

Thus,

R(X,Y, Z, ξ) = g(R(X,Y )Z, ξ)) = dKV A(Y,X,Z).

We see through the last expression, since g is non-degenerate and ξ is non singular,
that dKV A = 0 if and only if R(X,Y )Z is orthogonal to the unitary normal vector
field ξ. �

3. The geometric interpretation of the scalar second fundamental
form

We discuss the geometric interpretation of the Koszul-Vinberg class of scalar
fundamental forms of convex locally flat hypersurfaces of non flat Riemannian man-
ifolds. We need the following definitions.

Definition 3.1. A submanifold N of a Riemannian manifold (M, g) is said to be
convex, if its scalar second fundamental form A is positive definite [10].

Definition 3.2. A Riemannian metric g on a locally flat manifold (M,D) is called
a Hessian metric if in a neighborhood U of a point, there exists a local smooth
function φ ∈ C∞(U) such that g = D2φ = Ddφ. In affine coordinates x1, . . . , xn of

(M,D), g( ∂
∂xi ,

∂
∂xj ) =

∂2φ
∂xi∂xj . [9]

Definition 3.3. A locally flat manifold M is said to be a hyperbolic manifold, if
the universal covering of M is isomorphic as a flat manifold to a convex open subset
of the real affine space which doesn’t contain any line. Geodesics of an hyperbolic
space are not complete [4], [5] et [6].

We need the following Koszul’s Theorem

Theorem 3.1. [4] Let M be a compact locally flat manifold. Then M is a hyperbolic
manifold if and only if there exists a closed 1-form α on M such that Dα is positive
definite in each point of M. The first Betti number of a hyperbolic manifold is non
zero.

We have the following proposition
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Proposition 3.1. If the KV-cohomology class A ∈ H2
KV (X(N), C∞(M)) of the

scalar second fundamental form A of a hypersurface N is trivial, then A defines a
de Rham cohomology class B ∈ H1

DR(N,R).

Proof. Suppose that [A] = 0. There exists a KV 1-cochain B ∈ C1(A, C∞(M))
such that A = dKV B. For all vector fields X,Y ∈ X(N) we have:
A(X,Y ) = −XB(Y )+B(XY ). SinceA is tensorial we have: A(fX, Y ) = fA(X,Y ),
i.e −fXB(Y ) + B(fXY ) = f(−XB(Y ) + B(XY )) or −fXB(Y ) + B(fXY ) =
−fXB(Y ) + fB(XY ). Therefore, B(fXY ) = f(BXY ) and hence, B is tensorial.
Since the 2-cochain A is symmetric, we have: −XB(Y ) + B(XY ) = A(X,Y ) =
A(Y,X) = −Y B(X) +B(Y X) and

XB(Y )− Y B(X)−B([X,Y ]) = 0.

We see through the last expression that the 1-cochain B is a de Rham closed 1-form
on the hypersurface N. The closed form B determines a de Rham cohomology class
B ∈ H1

DR(N,R). �

Suppose that the class B ∈ H1
DR(N,R) defined above is trivial and N is a compact

hypersurface of M. There exists a smooth function f ∈ C∞(N) such that B = df,
and hence A = D2f. The locally flat manifold N is equipped with a globally Hes-
sian metric induced by its second fundamental form. Since the hypersurface N is
a compact manifold, f possess critical points, consequently, the signature of the
Hessian of f is not constant. On the other hand, if the Euler characteristic of the
compact hypersurface N is non zero, since its first Betti number is non zero, then B
defines a hyperfoliation F on N. The foliation F is Riemannian since B is a closed
de Rham 1-form. We conclude this discussion with the following theorem.

Theorem 3.2. Let N be a convex locally flat manifold such that one of the equiv-
alent statements of Proposition 3.2 holds.
We suppose that the class A ∈ H2

KV (X(N), C∞(M)) is trivial. We then have the
following geometric information:

(1) The hypersurface N is compact if and only if it is hyperbolic.

(2) The following statements are mutually exclusive: B ∈ H1
DR(N,R) = 0 and

N is a compact hypersurface of M.

(3) If the Euler characteristic X(N) of N is non zero, then the scalar second
fundamental form A define (through B) a Riemannian hyperfoliation on
N .
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