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THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD

CONNECTION
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Dedicated to memory of Proffessor Franki Dillen

Abstract. Let Fm = (M,F ) be a Finsler submanifold of a Finsler manifold

F̃m+p = (M̃, F̃ ). By using the normal curvature vector field of Fm and the

Berwald connections on both Fm and F̃m+p, we obtain the structure equations

for the immersion of Fm into F̃m+p. This enables us to relate, for the first time

in literature, the flag curvatures of Fm and F̃m+p. Finally, we investigate the
existence of totally geodesic Finsler submanifolds of a Randers (c,K)-sphere.

Introduction

The theory of Finsler submanifolds is as old as Finsler geometry is itself. Indeed,
the Finsler geometry has emerged in 1918 when Finsler wrote his thesis on curves
and surfaces in what he called generalized metric spaces. However, so far there
is no well established theory of Finsler submanifolds as we have the theory of
Riemannian submanifolds. Many reasons have concurred to this state of affairs
in Finsler geometry. First, we mention that the geometry of Finsler manifolds is
based on four classical Finsler connections: Berwald connection, Cartan connection,
Chern–Rund connection and Hashiguchi connection. So, the question is: which
one of these connections is more suitable for the theory of Finsler submanifolds?
Secondly, most of the theories of Finsler submanifolds have been developed by
using an induced nonlinear connection, which in general does not coincide with the
canonical nonlinear connection of the submanifold. Finally, the structure equations
obtained so far have cumbersome forms which are almost impossible to be used in
a study of the geometry of a concrete Finsler submanifold. Several people have
made some fundamental contributions to the subject: Akbar Zadeh [1], Barthel [3],
Bejancu [4], [5], Bejancu–Farran [6], [7], Comic [8], Haimovici [9], Matsumoto [10],
[11], Miron [13], Rund [14], Shen [15], Varga [17], Wegener [18].

The purpose of this paper is to develop a theory of Finsler submanifolds which
does not make use of the induced nonlinear connection and the induced Finsler
connection on a Finsler submanifold Fm = (M,F ) of F̃m+p = (M̃, F̃ ). To this end,
we introduce the normal curvature vector field n of Fm, and show that all structure
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equations of Fm are simply expressed in terms of some covariant derivatives of n
(cf. (3.7), (3.16) and (3.17)). This leads us to a simple relation between the flag

curvature of Fm and F̃m+p (cf. (3.19)). The main tool in our study is the Berwald

connection on both Fm and F̃m+p.
Now, we outline the content of the paper. In the first section we arrange some

basic formulae from Finsler geometry and recall the main properties of vectorial
Finsler connections (cf. Bejancu [5]). Next, in Section 2 we relate the Berwald

connections on both Fm and F̃m+p (cf. (2.23)). Then we introduce the normal
curvature vector field n and show that all induced geometric objects on Fm are
expressed in terms of the relative vertical covariant derivatives of n (cf. Theorem
2.1). In the last section we obtain the structure equations for a Finsler immersion,

relating the curvature tensor fields of Berwald connections on Fm and F̃m+p (cf.

Theorem 3.2). Also, we relate the flag curvatures of Fm and F̃m+p (cf. (3.19),
(3.25)), and prove that a totally geodesic Finsler submanifold has the same flag
curvature as its ambient Finsler manifold. Finally, we investigate the existence of
totally geodesic submanifolds of Randers spheres.

The simple forms of the structure equations for a Finsler immersion, which are
very rarely in Finsler geometry, lead us to the conclusion that the Berwald connec-
tion is the best for a study of the geometry of Finsler submanifolds.

1. Preliminaries

Let M be an m-dimensional manifold and TM be its tangent bundle. Then
we take (uα, vα) as local coordinates on TM , where (uα) are the local coordinates
on M and (vα) are the fiber coordinates. Suppose that there exists a function
F : TM → [0,∞), that is smooth on TM◦ = TM \{0} and satisfies the conditions:

(i) F is positively homogeneous of degree one with respect to (vα), that is,

F (u, kv) = kF (u, v), for any u ∈M, v ∈ TuM, and k > 0.

(ii) The m×m matrix [gαβ(u, v)], where we put

gαβ(u, v) =
1

2

∂2F 2

∂vα∂vβ
,

is a positive definite quadratic form for all (u, v) ∈ TM◦. Then Fm = (M,F ) is
called an m-dimensional Finsler manifold. Denote by gαβ the entries of the inverse
matrix of [gαβ ]. The function F and the Finsler tensor field g = (gαβ) are called
the fundamental function and the Finsler metric of Fm, respectively. In particular,
if Fm is a Riemannian manifold, then g becomes the Riemannian metric on M .

As all the geometric objects we work with are supposed to be smooth (differen-
tiable of class C∞), we must consider them defined on TM◦. However, to simplify
the notations, from now on we will omit the superscript ”◦” from TM◦. Denote by
F(TM) the algebra of smooth functions on TM and by Γ(E) the F(TM)-module
of the smooth sections of a vector bundle E over TM . Also, we use the Einstein
convention, that is, repeated indices with one upper index and one lower index
denotes summation over their range. If not stated otherwise, we shall use the fol-
lowing ranges for indices: a, β, γ, ... ∈ {1, ...,m}, a, b, c, ... ∈ {m + 1, ...,m + p},
i, j, k, ... ∈ {1, ...,m+ p}.

Now, we consider the kernel V TM of the differential of the projection mapping
Π : TM → M, which is known as the vertical bundle over TM . Locally, Γ(V TM)
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is spanned by {∂/∂v1, ..., ∂/∂vm}. Then we consider the local vector fields

(1.1)
δ

δuα
=

∂

∂uα
−Gβα

∂

∂vβ
,

where we put

(1.2) (a) Gβα =
∂Gβ

∂vα
, (b) Gβ =

1

4
gβγ

{
∂2F 2

∂vγ∂uε
vε − ∂F 2

∂uγ

}
·

It is proved that there exists on TM a complementary distribution HTM to V TM
in TTM , which is locally spanned by {δ/δu1, ..., δ/δum}. We call HTM the canon-
ical horizontal distribution on TM . In literature, HTM is also known as the canon-
ical nonlinear connection on TM . Now, we consider the decomposition

TTM = HTM ⊕ V TM,

and for any X ∈ Γ(TTM) we put

(1.3) X = hX + vX,

where h and v are the projection morphisms of TTM on HTM and V TM , respec-
tively. Also, this decomposition of TTM enables us to define the following almost
product structure on TM :

(1.4) Q

(
δ

δuα

)
=

∂

∂vα
, and Q

(
∂

∂vα

)
=

δ

δuα
·

We call Q the Finsler almost product structure on TM .
Next, we consider a Finsler connection FC = (HTM,∇), where HTM is the

canonical horizontal distribution and ∇ is a linear connection on the vertical bundle
V TM . Then, we put

∇ δ

δuβ

∂

∂vα
= Fα

γ
β
∂

∂vγ
, and ∇ ∂

∂vβ

∂

∂vα
= Cα

γ
β
∂

∂vγ
,

and deduce that, locally, a Finsler connection is determined by the triple (Gγα, Fα
γ
β , Cα

γ
β).

In literature there are four classical Finsler connections: Berwald connection, Car-
tan connection, Chern–Rund connection, and Hashiguchi connection. In the present
paper we use only the Berwald connection BFC = (HTM,∇) = (Gγα, Gα

γ
β , 0),

that is, we have

(1.5) (a) ∇ δ

δuβ

∂

∂vα
= Gα

γ
β
∂

∂vγ
, (b) ∇ ∂

∂vβ

∂

∂vα
= 0,

where we put

(1.6) Gα
γ
β =

∂Gγβ
∂vα

·

Denote by R the curvature tensor field of ∇ and put

(1.7)

(a) R

(
δ

δuγ
, δ

δuβ

)
∂

∂vα
= Hα

µ
βγ

∂

∂vµ
,

(b) R

(
∂

∂vγ
, δ

δuβ

)
∂

∂vα
= Gα

µ
βγ

∂

∂vµ
,

(c) R

(
∂

∂vγ
, ∂

∂vβ

)
∂

∂vα
= Sα

µ
βγ

∂

∂vµ
·
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Then we recall that (cf. Bejancu–Farran [7], p. 40, Matsumoto [12], pp. 118, 119)

(1.8)
(a) Hα

µ
βγ =

δGα
µ
β

δuγ
− δGα

µ
γ

δuβ
+Gα

ε
βGε

µ
γ −GαεγGεµβ =

∂Rµβγ
∂vα

,

(b) Gα
µ
βγ =

∂Gα
µ
β

∂vγ
, (c) Sα

µ
βγ = 0,

where

(1.9) Rµβγ =
δGµβ
δuγ

−
δGµγ
δuβ
·

Also, we recall the following Lie bracket formulae:

(1.10) (a)

[
δ

δuβ
, δ

δuγ

]
= Rµβγ

∂

∂vµ
, (b)

[
δ

δuβ
, ∂

∂vγ

]
= Gβ

µ
γ

∂

∂vµ
·

Due to (1.10a) we call Rµβγ the integrability tensor field of the canonical horizontal
distribution HTM .

The Cartan and Chern–Rund connections have Fα
γ
β given by

Fα
γ
β =

1

2
gγε
{
δgεα
δuβ

+
δgεβ
δuα

− δgαβ
δuε

}
·

Also, the Cartan tensor field gαβγ given by

(1.11) gαβγ =
1

2

∂gαβ
∂vγ

,

has a great role in Finsler geometry. It is important to note that the Berwald
connection is neither h-metrical, nor v-metrical connection. More precisely, we
have

(1.12) (a) gαβ|γ = 2gαε(Fβ
ε
γ −Gβεγ), (b) gαβ‖γ = 2gαβγ ,

where ”|” and ”‖” represent the horizontal and vertical covariant derivatives with
respect to Berwald connection. The homogeneity of the fundamental function im-
plies some useful identities:

(1.13)
(a) Fβ

ε
γv
γ = Gεβ , (b) Gβ

ε
γv
γ = Gεβ , (c) Gεβv

β = 2Gε,

(d) gαβγv
γ = 0, (e) Hα

µ
βγv

α = Rµβγ , (f) Gα
µ
βγv

α = 0.

Then, by using (1.12a), (1.13a) and (1.13b), we deduce that

(1.14) gαβ|γv
γ = 0.

Now, we want to introduce the flag curvature of Fm. Let (u, v) be a point of
TM , where u = (uα) is a point of M and v = (vα) is a non-zero tangent vector to
M at u. Suppose that X = (Xα) is another tangent vector to M at u such that
v and X are linearly independent in TuM . Then, according to Bao–Chern–Shen
[2], p. 68, we call the plane Π(X) = span{v,X} the flag at u with flagpole v and
transverse edge X. Then the flag curvature of Fm at the point u with respect to
the flag Π(X) is given by

(1.15) K(X) =
Hαεβγv

αvβXεXγ

F 2hεγXεXγ
,

where Hαεβγ = gµεHα
µ
βγ , and hεγ are the local components of the angular metric

given by

hεγ = gεγ − `ε`γ , `ε = gεµ
vµ

F
·
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Next, we put

(1.16) (a) Rαβγ = gαµR
µ
βγ , (b) Rαβγv

β = Rαγ ,

and note that Rαγ is a symmetric Finsler tensor field. Then, by using (1.13e),
(1.16) and (1.15) we deduce that

(1.17) K(X) =
RεγX

εXγ

F 2hεγXεXγ
·

Denoting the denominator in (1.17) by ∆(X), it is easy to see that we have

(1.18) ∆(X) = g(X,X)g(v, v)− g(v,X)2.

2. Induced Geometric Objects on a Finsler Submanifold

Let F̃m+p = (M̃, F̃ ) be an (m + p)-dimensional Finsler manifold and M be an

m-dimensional submanifold of M̃ . Take (xi, yi) and (uα, vα) as local coordinates

on TM̃ and TM respectively, and suppose that the immersion of M in M̃ is locally
given by the equations

xi = xi(u1, ..., um), i ∈ {1, ...,m+ p}.
To simplify the equations involved in the study, we make the notations:

Biα =
∂xi

∂uα
, Biαβ =

∂2xi

∂uα∂uβ
, Biαβγ =

∂3xi

∂uα∂uβ∂uγ
·

The fundamental function F̃ of F̃m+p induces a function on TM as follows:

(2.1) F (uα, vα) = F̃ (xi(u), yi(u, v)),

where we set

(2.2) yi(u, v) = Biαv
α.

It is easy to check that F defines a Finsler structure on M . Then we say that

Fm = (M,F ) is a Finsler submanifold of F̃m+p. The Finsler metrics g = (gαβ(u, v))
and g̃ = (g̃ij(x, y)) are related by

(2.3) gαβ(u, v) = g̃ij(x(u), y(u, v))BiαB
j
β .

Remark 2.1. The geometric objects defined for Fm in the previous section will be

considered for F̃m+p, but with a tilde, as for example: Gγα, Gα
γ
β , Rγαβ become

G̃ki , G̃i
k
j , R̃

k
ij , respectively.

Next, by using (2.2) we deduce that the natural field of frames {∂/∂uα, ∂/∂vα}
and {∂/∂xi, ∂/∂yi} on TM and TM̃ , are related by

(2.4) (a)
∂

∂uα
= Biα

∂

∂xi
+Biαβv

β ∂

∂yi
, (b)

∂

∂vα
= Biα

∂

∂yi
·

Then we consider the Finsler metrics g̃ = (g̃ij) and g = (gαβ) of F̃m+p and Fm, as

Riemannian metrics on the vertical bundles V TM̃ and V TM , respectively. Due to
(2.3) and (2.4b) we deduce that g is the induced Riemannian metric on V TM by g̃.
This enables us to consider the complementary orthogonal vector subbundle V TM⊥

to V TM in V TM̃ restricted to TM . Thus we have the orthogonal decomposition

(2.5) V TM̃|TM = V TM ⊕ V TM⊥.

We call V TM⊥ the Finsler normal bundle for the immersion of Fm into F̃m+p.
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Now, we choose a local field of orthonormal frames with respect to g̃ in Γ(V TM⊥):

Na = N i
a

∂

∂yi
, a ∈ {m+ 1, ...,m+ p}.

Thus we have

(2.6) (a) g̃ijB
i
αN

j
a = 0, (b) g̃ijN

i
aN

j
b = δab.

If

[
B̃αi

Ña
i

]
is the inverse of the matrix [Biα N

i
a], then we have:

(2.7)
(a) B̃αi B

i
β = δαβ , (b) B̃αi N

i
a = 0, (c) Ña

i B
i
α = 0,

(d) Ña
i N

i
b = δab , (e) BiαB̃

α
j +N i

aÑ
a
j = δij .

By using (2.3), (2.6) and (2.7e) we deduce that

(2.8) (a) B̃αi = g̃ijB
j
βg
βα, (b) Ña

j = g̃ijN
j
b δ
ba, (c) gαβ = g̃ijB̃αi B̃

β
j .

Also, the decomposition (2.5) is locally expressed as follows:

(2.9)
∂

∂yi
= B̃αi

∂

∂vα
+ Ña

i Na.

Next, we consider the Cartan tensor fields of both Fm and F̃m+p, and obtain

(2.10) (a) gαβγ = g̃ijkB
i
αB

j
βB

k
γ , (b) gα

γ
β = g̃i

k
jB

i
αB

j
βB̃

γ
k .

Remark 2.2. Throughout the paper we shall use gαβ , g
αβ , g̃ij , g̃

ij , δab and δab for
lowering or raising indices for mixed Finsler tensor fields with local components
Tαia...βjb... .

We also need the following mixed Finsler tensor field

(2.11) gaαβ = g̃ijkN
i
aB

j
αB

k
β .

Contracting (2.11) by Ña
h and using (2.7e), we obtain

(2.12) gaαβÑ
a
h = g̃hjkB

j
αB

k
β − gαβγB̃

γ
h .

Now, from (2.8a) we deduce that

gαβB̃
β
i = g̃ijB

j
α.

Taking partial derivatives of this equation with respect to vγ and using (1.11) for

Cartan tensor fields of both Fm and F̃m+p, and (2.12), we infer that

(2.13)
∂B̃βi
∂vγ

= 2ga
β
γÑ

a
i .

Some basic identities on a Finsler manifold are stated in the next proposition.

Proposition 2.1. Let Fm be a Finsler submanifold of F̃m+p. Then we have

(2.14) GαβB
h
α +Ha

βN
h
a = Bhβεv

ε + G̃hjB
j
β +Dα

βB
h
α,

where we put

(2.15) (a) Ha
β = Ña

k (Bkβεv
ε + G̃kjB

j
β), (b) Dα

β = ga
α
βH

a
ε v

ε.
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Proof. By using (1.2b) for both Fm and F̃m+p, and taking into account (2.1),
(2.4), (2.8), (2.7e) and (2.6a), we obtain

(2.16) 2Gα = B̃αk (2G̃k +Bkγεv
γvε).

Then, taking the derivatives of this equation with respect to vβ and using (1.2a)

for both Fm and F̃m+p, (2.13) and (2.4b), we deduced that

(2.17) Gαβ = ga
α
βÑ

a
k (2G̃k +Bkγεv

γvε) + B̃αk (G̃kjB
j
β +Bkβεv

ε).

On the other hand, taking into account that G̃k are positively homogeneous func-
tions of degree two with respect to yi (see (1.9c)), and using (2.2) we obtain

(2.18) 2G̃k =
∂G̃k

∂yj
yj = G̃kjB

j
γv
γ .

Hence, by using (2.18) and (2.15) into (2.17), we infer that

(2.19) Gαβ = Dα
β + B̃αk (G̃kjB

j
β +Bkβεv

ε).

Finally, contracting (2.19) by Bhα and (2.15a) by Nh
a , and then adding the two

equalities we obtain (2.14) via (2.7e).

Now, we are able to express {δ/δuα} given by (1.1) in terms of {δ/δxi, ∂/∂yi}.
Indeed, by using (1.1) for both Fm and F̃m+p, (2.4) and (2.14) we deduce that the
canonical horizontal distribution HTM of Fm is locally spanned by

(2.20)
δ

δuα
= Biα

δ

δxi
+ (Ha

αN
i
a −Dγ

αB
i
γ)

∂

∂yi
·

Also, by using (2.7b), (2.7d) and (2.13), we deduce that

(2.21)
B̃αh

∂

∂vγ
(Ha

βN
h
a ) = −(Ha

βN
h
a )
∂B̃αh
∂vγ

= −2Ha
βgb

α
γ(Ñ b

hN
h
a ) = −2Ha

βga
α
γ .

Next, let BFC = (HTM,∇) = (Gαβ , Gβ
α
γ , 0) and B̃FC = (HTM̃, ∇̃) =

(G̃ij , G̃j
i
k, 0) be the Berwald connections of Fm and F̃m+p. Thus according to (1.5)

we have

(2.22) (a) ∇̃ δ

δxk

∂

∂yj
= G̃j

i
k

∂

∂yi
, (b) ∇̃ ∂

∂yk

∂

∂yj
= 0.

Then we prove the following.

Proposition 2.2. The local coefficients Gβ
α
γ and G̃j

i
k of the Berwald connections

of Fm and F̃m+p are related by

(2.23) (Gβ
α
γ +Dβ

α
γ)Biα +Hβ

b
γN

i
b = Biβγ + G̃j

i
kB

j
βB

k
γ ,

where we put

(2.24) (a) Dβ
α
γ = −

∂Dα
β

∂vγ
− 2Ha

βga
α
γ , (b) Hβ

b
γ = Ñ b

h

∂

∂vγ
(Ha

βN
h
a ).
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Proof. First, we take the derivatives of (2.14) with respect to vγ and by using

(1.6) for both Fm and F̃m+p and (2.4b), we obtain(
Gβ

ε
γ −

∂Dε
β

∂vγ

)
Bhε +

∂

∂vγ
(Ha

βN
h
a ) = Bhβγ + G̃j

h
kB

j
βB

k
γ .

Contracting this in turn by B̃αh and Ñ b
h, and using (2.7a), (2.21), (2.24), and (2.7c),

we deduce that

(2.25)
(a) Gβ

α
γ +Dβ

α
γ = B̃αh (Bhβγ + G̃j

h
kB

j
βB

k
γ ),

(b) Hβ
b
γ = Ñ b

h(Bhβγ + G̃j
h
kB

j
βB

k
γ ).

Finally, contracting (2.25a) by Biα and (2.25b) by N i
b , and then adding, we obtain

(2.23) via (2.7e).

Now, we define a tensor field D on Fm by

(2.26) D

(
∂

∂vγ
, ∂

∂vβ

)
= Dβ

α
γ

∂

∂vα
,

and a mixed Finsler tensor field H on Fm with respect to the Finsler normal bundle
V TM⊥, as follows

(2.27) H

(
∂

∂vγ
, ∂

∂vβ

)
= Hβ

a
γ Na.

Then, by using (2.20), (2.4b), (2.22), (1.5), (2.26) and (2.27) we deduce that (2.23)
is equivalent to

(2.28) ∇̃hXvY = ∇hXvY +D(QhX, vY ) +H(QhX, vY ),

for any X,Y ∈ Γ(TTM), where h and v are defined by (1.3) and Q is the Finsler
almost product structure on TM given by (1.4).

According to the terminology from the theory of Riemannian submanifolds, we
call (2.28) (or, equivalently, (2.23)) the Gauss formulae for the Finsler immersion

of Fm in F̃m+p. Also, we note that the difference

∇̃hXvY −∇hXvY

is determined by a Finsler tangent vector field D(QhX, vY ) (i.e., section of V TM),
and a Finsler normal vector field H(QhX, vY ) (i.e., section of V TM⊥). For this
reason we call D given by (2.26) and (2.24a), and H given by (2.27), (2.25b) and
(2.24b), the tangent second fundamental form and the normal second fundamental
form, respectively. Moreover, we have the following.

Proposition 2.3.

(i) Dβ
α
γ and Hβ

a
γ are symmetric Finsler tensor fields satisfying the identities

(2.29)
(a) Dβ

α
γv
γ = −Dα

β , (b) Dβ
α
γv
βvγ = −Dα

βv
β = 0,

(c) Hβ
a
γv
γ = Ha

β .

(ii) The Finsler tensor fields Dβ
α
γ and Dα

β are positively homogeneous of de-

grees 0 and 1 respectively, with respect to (vε).
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Proof. (i) From (2.25) we see that both Dβ
α
γ and Hβ

a
γ are symmetric Finsler

tensor fields with respect to (βγ). Next, contracting (2.25a) by vγ and using (1.13b)
and (2.19) we obtain (2.29a). Similarly, contracting (2.19) by vβ and using (1.13c),
(2.16) and (2.29a) we deduce (2.29b). Finally, (2.29c) is a consequence of (2.25b)

and (2.15a). (ii) By using (2.13) we deduce that B̃αi are positively homogeneous of
degree 0. Then, from (2.25a), it follows that Dβ

α
γ are positively homogeneous of

degree 0. Finally, from (2.29a) we conclude that Dα
β are positively homogeneous of

degree 1.

Next, we make the notation

(2.30) Ha
0 = Ha

βv
β = Hβ

a
γv
βvγ ,

and define on each coordinate neighbourhood of TM the section n of V TM⊥ by

(2.31) (a) n = Ha
0Na = ni

∂

∂yi
, (b) ni = Ha

0N
i
a.

Then it is easy to check that n defines a global section of V TM⊥, that is, the local
formula (2.31a) is invariant with respect to both the change of local coordinates
on TM and the change of orthonormal basis in Γ(V TM⊥). As Ha

0 /F
2, a ∈ {m+

1, ...,m + p}, are called the normal curvatures of Fm (cf. Bejancu [4]), we call n
the normal curvature vector field of Fm. As we shall see in the next theorem, the
normal curvature vector field n determines all the induced geometric objects of the

Finsler immersion of Fm into F̃m+p.
The following notations will simplify the presentation:

(2.32)
(a) niα =

1

2

∂ni

∂vα
, (b) niαβ =

1

2

∂2ni

∂vα∂vβ
,

(c) niαβγ =
1

2

∂3ni

∂vα∂vβ∂vγ
·

Note that niα, n
i
αβ and niαβγ are the local components of some mixed Finsler tensor

fields on Fm with respect to the vector bundle V TM̃|TM (cf. Bejancu [5], p. 34).
Now, we can state the main result of this section.

Theorem 2.1. Let Fm be a Finsler submanifold of F̃m+p. Then the induced geo-
metric objects Ha

β , D
α
β , Hβ

a
γ , and Dβ

α
γ are expressed in terms of niβ and niβγ as

follows:

(2.33)
(a) Ha

β = Ña
i n

i
β , (b) Dα

β = B̃αi n
i
β ,

(c) Hβ
a
γ = Ña

i n
i
βγ , (d) Dβ

α
γ = B̃αi n

i
βγ .

Proof. First, taking into account (2.32a), (2.31b), (2.7d), (2.24b) and (2.29c), we
deduce that

Ña
i n

i
β =

1

2
Ña
i

∂

∂vβ
(vγHb

γN
i
b) =

1

2
Ña
i

{
Hb
βN

i
b + vγ

∂

∂vβ
(Hb

γN
i
b)

}
=

1

2
Ha
β +

1

2
Hβ

a
γv
γ = Ha

β ,

which proves (2.33a). In a similar way, by using (2.32a), (2.31b), (2.7b), (2.21) and
(2.15b) we obtain (2.33b). Next, contracting (2.33a) and (2.33b) by Nk

a and Bkα
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respectively, and subtracting these equations, we infer that

(2.34) Ha
βN

k
a −Dα

βB
k
α = nkβ ,

via (2.7e). Then, taking the derivatives of (2.34) with respect to vγ and by using
(2.7c) and (2.24b), we obtain

Ñ b
kn

k
βγ = Ñ b

k

∂

∂vγ
(Ha

βN
k
a )− (Ñ b

kB
k
α)

∂Dα
β

∂vγ
= Hβ

b
γ .

Thus the proof of (2.33c) is done. Finally, we take again the derivatives of (2.34)
with respect to vγ and by using (2.7a), (2.7b), (2.13), (2.7d) and (2.24a), we deduce
that

B̃εkn
k
βγ = B̃εk

∂

∂vγ
(Ha

βN
k
a )−

∂Dε
β

∂vγ
= −(Ha

βN
k
a )
∂B̃εk
∂vγ

−
∂Dε

β

∂vγ

= −2Ha
βN

k
a gb

ε
γÑ

b
k −

∂Dε
β

∂vγ
= −2Ha

βga
ε
γ −

∂Dε
β

∂vγ
= Dβ

ε
γ .

This completes the proof of the theorem.

Corollary 2.1. Let Fm be a Finsler submanifold of F̃m+p. Then we have:

(2.35) GαβB
i
α + niβ = Biβγv

γ + G̃ijB
j
β ,

and

(2.36) Gβ
α
γB

i
α + niβγ = Biβγ + G̃j

i
kB

j
βB

k
γ .

Proof. By using (2.34) into (2.14), we obtain (2.35). Then, contracting (2.33a) by
Nk
a , and (2.33b) by Bkα, and then adding and using (2.7e), we deduce that

(2.37) Hβ
a
γN

k
a +Dβ

α
γB

k
α = nkβγ .

Finally, (2.36) is obtained from (2.23) by using (2.37).

Corollary 2.2. Let Fm be a Finsler submanifold of F̃m+p. Then we have the
assertions:

(i) The canonical horizontal distribution of Fm is locally spanned by the vector
fields:

(2.38)
δ

δuα
= Biα

δ

δxi
+ niα

∂

∂yi
·

(ii) The local components of the normal curvature vector field are positively
homogeneous of degree 2 with respect to (vβ).

Proof. By using (2.20) and (2.34) we obtain (2.38). Then, contracting (2.34) by
vβ , and using (2.32a) and (2.31b), we deduce that

(2.39)
∂nk

∂vβ
vβ = 2nk.

Thus, the assertion (ii) follows from (2.39) by using the Euler Theorem for positively
homogeneous functions.

Next, for any X ∈ Γ(TTM) we define the differential operator

(2.40)
∇X : Γ(V TM̃|TM )→ Γ(V TM̃|TM ),

∇X Ỹ = ∇̃X Ỹ , ∀Ỹ ∈ Γ(V TM̃|TM ),
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where ∇̃ is the linear connection from the Berwald connection B̃FC of F̃m+p given
by (2.22). Therefore BFC = (HTM,∇) is a vectorial Finsler connection on Fm

with respect to the vector bundle V TM̃|TM (see Bejancu [5], p. 26). By (2.40) and

(2.22) we deduce that ∇ is locally given by

(2.41)

(a) ∇ δ
δuγ

∂

∂yj
= Gj

i
γ

∂

∂yi
, (b) Gj

i
γ = G̃j

i
kB

k
γ ,

(c) ∇ ∂
∂vγ

∂

∂yj
= 0.

Also, we note that Biα, α ∈ {1, ...,m} and i ∈ {1, ...,m+p} are the local components

of a mixed Finsler tensor field on Fm with respect to the vector bundle V TM̃|TM .
Now, we can state the following important result.

Theorem 2.2. Let Fm be a Finsler submanifold of F̃m+p. Then the horizontal rel-
ative covariant derivative of Biα with respect to the pair (BFC,BFC) is completely
determined by the normal curvature vector field n of Fm as follows:

(2.42) Biα|β = niαβ .

Proof. By using the local formulae for the horizontal relative covariant derivative
(cf. Bejancu–Farran [7], p. 29) and taking into account (2.41b) and (2.36), we
obtain

Biα|β = Biαβ +BjαGj
i
β −GαεβBiε

= Biαβ + G̃j
i
kB

j
αB

k
β −GαεβBiε = niαβ .

Thus the proof is done.

Finally, by using (2.41b), (2.38) and (1.11), we deduce that

(2.43)

g̃ij|α =
δg̃ij
δuα
− g̃hjGihα − g̃ihGjhα

=

(
δg̃ij
δxk
− g̃hjG̃ihk − g̃ihG̃jhk

)
Bkα + nkα

∂g̃ij
∂yk

= g̃ij|kB
k
α + 2nkαg̃ijk.

3. Structure Equations and Curvature
of a Finsler Submanifold

The purpose of this section is to obtain the structure equations of the im-

mersion of Fm in F̃m+p. More precisely, we want to relate Rαβγ with R̃ijk and

{Hα
ε
βγ , Gα

ε
βγ} with {H̃j

i
kj , G̃j

i
kh}. This will enable us to relate the flag curva-

tures of Fm and F̃m+p.
First, we consider the associate linear connection D̃ to the Berwald connection

B̃FC = (HTM̃, ∇̃) = (G̃ij , G̃j
i
k, 0) given by (cf. Bejancu–Farran [7], p. 30)

(3.1) D̃XY = ∇̃X ṽY + Q̃∇̃XQ̃h̃Y, ∀X,Y ∈ Γ(TTM̃),

where h̃ and ṽ are the projection morphisms of TTM̃ on HTM̃ and V TM̃ respec-

tively, and Q̃ is the Finsler almost product structure on TM̃ given by

(3.2) Q̃

(
δ

δxi

)
=

∂

∂yi
, Q̃

(
∂

∂yi

)
=

δ

δxi
·
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Then, by using (3.1), (3.2) and (2.22), we obtain

(3.3)

(a) D̃ δ

δxk

δ

δxj
= G̃j

i
k

δ

δxi
, (b) D̃ δ

δxk

∂

∂yj
= G̃j

i
k

∂

∂yi
,

(c) D̃ ∂

∂yk

δ

δxj
= 0, (d) D̃ ∂

∂yk

∂

∂yj
= 0.

Taking into account (2.38), (3.3) and (2.41b) we deduce that

(3.4) D̃ δ
δuγ

δ

δuβ
= (Biβγ + G̃j

i
kB

j
βB

k
γ )

δ

δxi
+

(
δniβ
δuγ

+ njβGj
i
γ

)
∂

∂yi
·

Next, we denote by T̃ the torsion tensor field of D̃ and by using (3.4) and (1.10a)
we infer that

(3.5)

T̃

(
δ

δuγ
, δ

δuβ

)
= D̃ δ

δuγ

δ

δuβ
− D̃ δ

δuβ

δ

δuγ
−
[
δ

δuγ
, δ

δuβ

]

=

{(
δniβ
δuγ

+ njβGj
i
γ − niαGβαγ

)
−

(
δniγ
δuβ

+ njγGj
i
β − niαGγαβ

)}
∂

∂yi

−Rαγβ
∂

∂vα
= (RαβγB

i
α + niβ|γ − n

i
γ|β)

∂

∂yi
·

On the other hand, by using (1.10) for F̃m+p and (3.3) we deduce that

T̃

(
δ

δxk
, δ

δxj

)
= R̃ijk

∂

∂yi
and T̃

(
δ

δxk
, ∂

∂yj

)
= T̃

(
∂

∂yk
, ∂

∂yj

)
= 0.

Hence we have

(3.6)

T̃

(
δ

δuγ
, δ

δuβ

)
= T̃

(
Bkγ

δ

δxk
+ nkγ

∂

∂yk
,Bjβ

δ

δxj
+ njβ

∂

∂yj

)
= T̃

(
δ

δxk
, δ

δxj

)
BjβB

k
γ = R̃ijkB

j
βB

k
γ

∂

∂yi
·

Comparing (3.5) and (3.6) we can state the following.

Theorem 3.1. Let Fm be a Finsler submanifold of F̃m+p. Then we have:

(3.7) R̃ijkB
j
βB

k
γ = RαβγB

i
α + niβ|γ − n

i
γ|β ,

where “|” stands for the horizontal relative covariant derivative with respect to the
pair (BFC,BFC).

Remark 3.1. By similar calculations for T̃ (δ/δuγ , ∂/∂vβ) and T̃ (∂/∂vγ , ∂/∂vβ) we
obtain (2.36) and a trivial identity, respectively.

Next, by using (2.38), (2.4b), (2.22) and (2.36) we obtain

(3.8)

(a) ∇̃ δ
δuβ

∂

∂vα
= (Biαβ + G̃j

i
kB

j
αB

k
β)

∂

∂yi
= (Gα

ε
βB

i
ε + niαβ)

∂

∂yi
,

(b) ∇̃ ∂
∂vβ

∂

∂vα
= 0.
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Taking into account (2.38), (2.22) and the first equality in (3.8a) we deduce that

∇̃ δ
δuγ
∇̃ δ

δuβ

∂

∂vα
= ∇̃ δ

δuγ
(Biαβ + G̃j

i
kB

j
αB

k
β)

∂

∂yi

=

(
Biαβγ +

δ

δuγ
(G̃j

i
kB

j
αB

k
β) + G̃j

i
kB

j
αβB

k
γ + G̃j

t
kG̃t

i
hB

j
αB

k
βB

h
γ

)
∂

∂yi
·

On the other hand, by direct calculations using (1.8b) for F̃m+p and (2.38) we
obtain

δ

δuγ
(G̃j

i
kB

j
αB

k
β) =

δG̃j
i
k

δxh
BjαB

k
βB

h
γ + G̃j

i
khB

j
αB

k
βn

h
γ + G̃j

i
kB

i
αγB

k
β + G̃j

i
kB

j
αB

k
βγ .

Thus we have

(3.9)

∇̃ δ
δuγ
∇̃ δ

δuβ

∂

∂vα
=

{
Biαβγ +

(
δG̃j

i
k

δxh
+ G̃j

t
kG̃t

i
h

)
BjαB

k
βB

h
γ

+ G̃j
i
khB

j
αB

k
βn

h
γ + G̃j

i
kB

i
αγB

k
β + G̃j

i
kB

j
αB

k
βγ + G̃j

i
kB

j
αβB

k
γ

}
∂

∂yi
·

Also, by using (1.10a) and (3.8b) we infer that

(3.10) ∇̃[ δ
δuγ

, δ

δuβ
]
∂

∂vα
= 0.

Then, we denote by R̃ the curvature tensor field of the linear connection ∇̃ from the

Berwald connection B̃FC = (HTM̃, ∇̃) on F̃m+p, and by using the first equality

in (1.8a) for F̃m+p, (3.9) and (3.10) we obtain

(3.11)

R̃

(
δ

δuγ
, δ

δuβ

)
∂

∂vα

= ∇̃ δ
δuγ
∇̃ δ

δuβ

∂

∂vα
− ∇̃ δ

δuβ
∇̃ δ

δuγ

∂

∂vα
− ∇̃[ δ

δuγ
, δ

δuβ
]
∂

∂vα

=
{
H̃j

i
khB

j
αB

k
βB

h
γ + G̃j

i
khB

j
α(Bkβn

h
γ −Bkγnhβ

}
.

On the other hand, taking into account the second equality in (3.8a) and using
(2.41) and (2.36) we deduce that

(3.12)

∇̃ δ
δuγ
∇̃ δ

δuβ

∂

∂vα
=

δ

δuγ
(Gα

ε
βB

i
ε + niαβ)

∂

∂yi
+ (Gα

ε
βB

i
ε + niαβ)∇ δ

δuγ

∂

∂yi

=

{
δGα

ε
β

δuγ
Biε +Gα

ε
βB

i
εγ +

δniαβ
δuγ

+Gα
ε
βB

j
εG̃j

i
kB

k
γ + njαβGj

i
γ

}
∂

∂yi

=

{
δGα

ε
β

δuγ
Biε +Gα

ε
β(Biεγ + G̃j

i
kB

j
εB

k
γ ) +

δniαβ
δuγ

+ njαβGj
i
γ

}
∂

∂yi

=

{(
δGα

ε
β

δuγ
+Gα

µ
βGµ

ε
γ

)
Biε + niεγGα

ε
β +

δniαβ
δuγ

+ njαβGj
i
γ

}
∂

∂yi
·
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Finally, by a similar calculation as in (3.11), but by using (3.12), (3.10) and (1.8),
we obtain

(3.13) R̃

(
δ

δuγ
, δ

δuβ

)
∂

∂vα
=
{
Hα

ε
βγB

i
ε + niαβ|γ − n

i
αγ|β

} ∂

∂yi
·

Thus, comparing (3.11) with (3.13) we deduce that

(3.14) H̃j
i
khB

j
αB

k
βB

h
γ + G̃j

i
khB

j
α(Bkβn

h
γ −Bkγnhβ) = Hα

ε
βγB

i
ε + niαβ|γ − n

i
αγ|β .

Next, by using the first equality in (3.8a) and taking into account (1.8b) for

F̃m+p, (2.4b) and (2.41c) we infer that

∇̃ ∂
∂vγ
∇̃ δ

δuβ

∂

∂vα
= G̃j

i
khB

j
αB

k
βB

h
γ

∂

∂yi
·

On the other hand, by using the second equality in (3.8a) and taking into account
(1.8b), (2.41c) and (2.32c) we obtain

∇̃ ∂
∂vγ
∇̃ δ

δuβ

∂

∂vα
= (Gα

ε
βγB

i
ε + niαβγ)

∂

∂yi
·

Comparing these equalities we deduce that

(3.15) G̃j
i
khB

i
αB

k
βB

h
γ = Gα

ε
βγB

i
ε + niαβγ .

Now, we are able to state the following.

Theorem 3.2. Let Fm be a Finsler submanifold of F̃m+p. Then the curvature

tensor fields of Berwald connections on Fm and F̃m+p are related by the following
structure equations:

(3.16)

(a) H̃jtkhB
j
αB

t
µB

k
βB

h
γ + G̃jtkhB

j
αB

t
µ(Bkβn

h
γ −Bkγnhβ)

= Hαµβγ + g̃it(n
i
αβ|γ − n

i
αγ|β)Btµ,

(b) G̃jtkhB
j
αB

t
µB

k
βB

h
γ = Gαµβγ + g̃itn

i
αβγB

t
µ.

and

(3.17)

(a) H̃jtkhB
j
αN

t
aB

k
βB

h
γ + G̃jtkhB

j
αN

t
a(Bkβn

h
γ −Bkγnhβ)

= g̃it(n
i
αβ|γ − n

i
αγ|β)N t

a,

(b) G̃jtkhB
j
αN

t
aB

k
βB

h
γ = g̃itn

i
αβγN

t
a.

Proof. By contracting (3.14) by g̃itB
t
µ and g̃itN

t
a we obtain (3.16a) and (3.17a).

In a similar way we obtain (3.16b) and (3.17b) from (3.15).

According to the terminology from the theory of Riemannian submanifolds, we
call (3.16) and (3.17) the Gauss–Berwald equations and the Codazzi–Berwald equa-

tions for the immersion of Fm into F̃m+p.
Now, we want to relate the flag curvatures of Fm and F̃m+p. To this end we start

with a contraction of (3.7) by g̃ihv
β and by using (1.16) for both Fm and F̃m+p and

(2.2) we obtain

R̃hkB
k
γ = RµγB̃

µ
h + g̃ih(niβ|γ − n

i
γ|β)vβ .

Contracting this by Bhα and using (2.7a) we deduce that

(3.18) R̃hkB
h
αB

k
γ = Rαγ + g̃ih(niβ|γ − n

i
γ|β)Bhαv

β .
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Theorem 3.3. Let Fm = (M,F ) be a Finsler submanifold of F̃m+p = (M̃, F̃ ), and
X = (Xγ) be a tangent vector to M at the point u ∈ M . Then the flag curvatures

of Fm and F̃m+p at the point u with respect to the flag Π(X) are related by

(3.19) K(X) = K̃(X) +
g̃ih(niγ|β − n

i
β|γ)Bhαv

βXαXγ

F 2hαγXαXγ
·

Proof. Contracting (3.18) by XαXγ and setting X̃i = BiαX
α, we deduce that

(3.20) R̃hkX̃
hX̃k = RαγX

αXγ + g̃ih(niβ|γ − n
i
γ|β)vβBhαX

αXγ .

If X̃ = (X̃i), then it is easy to check that

g(X,X) = g̃(X̃, X̃), g(v,X) = g̃(y, X̃) and g(u, v) = g̃(y, y).

Therefore, ∆(X) from (1.18) is the same with ∆(X̃) for F̃m+p. Then, dividing

(3.20) by ∆(X) and taking into account (1.17) for both Fm and F̃m+p, we obtain
(3.19).

From (3.19) we see that the flag curvatures of Fm and F̃m+p are related by
means of the relative horizontal covariant derivatives of niα with respect to the pair
(BFC,BFC). However, according to the theory of Riemannian submanifolds, the
second fundamental forms of Fm (defined in Section 2) should be involved in (3.19).
To show this, we examine the last term in (3.19).

First, by using (2.8a), (2.34), (2.7a) and (2.7b), we obtain

g̃ihn
i
βB

h
α = gαεB̃

ε
i n

i
β = gαεB̃

ε
i (H

a
βN

i
a −D

µ
βB

i
µ) = −gαεDε

β = −Dαβ .

Taking the relative horizontal covariant derivatives of this equality, and using (2.43),
we obtain

g̃ihn
i
β|γB

h
α = −Dαβ|γ − g̃ih|kniβBhαBkγ − 2g̃ihkn

i
βB

h
αn

k
γ − g̃ihniβBhα|γ .

On the other hand, by using (2.34), (2.37), (2.6) and (2.3), we infer that

g̃ihn
i
βB

h
α|γ = g̃ih(Ha

βN
i
a −D

µ
βB

i
µ)(Hα

b
γN

h
b +Dα

ε
γB

h
ε ) = HaαγH

a
β −Dα

ε
γDεβ .

Thus we have

g̃ihn
i
β|γB

h
α = Dα

ε
γDεβ −Dαβ|γ −HaαγH

a
β − g̃ih|kniβBhαBkγ − 2g̃ihkn

i
βB

h
αn

k
γ .

By using this equation and taking into account that g̃ihk is a symmetric Finsler
tensor field, we deduce that

(3.21)
g̃ih(niγ|β − n

i
β|γ)Bhα = Dα

ε
βDεγ −Dα

ε
γDεβ +Dαβ|γ −Dαγ|β

+HaαγH
a
β −HaαβH

a
γ + g̃ih|k(niβB

k
γ − niγBkβ)Bhα.

Next, by using the last equality in (2.29b) and taking into account that vβ |γ = 0,
we obtain

(3.22) Dαβ|γv
β = 0.

Also, we have

(3.23) g̃ih|kB
k
βv

β = g̃ih|ky
k = 0,

since the horizontal covariant derivative of g̃ih with respect to Berwald connection
in the direction of the supporting element vanishes (cf. Matsumoto [12], p. 119).
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Now, contracting (3.21) by vβ and using (3.22), (3.23), (2.29), (2.30) and (2.39),
we deduce that

(3.24)
g̃ih(niγ|β − n

i
β|γ)Bhαv

β = Ha
0Haαγ −HaαH

a
γ −Dαγ|βv

β

−Dε
αDεγ + 2g̃ih|kn

iBhαB
k
γ .

Finally, by using (3.24) into (3.19), we obtain

(3.25)
K(X) = K̃(X) +

1

F 2hαγXαXγ
{Ha

0Haαγ −HaαH
a
γ −Dαγ|βv

β

−Dε
αDεγ + 2g̃ih|kn

iBhαB
k
γ}XαXγ .

We close the paper with some applications of (3.25) to some special Finsler

immersions. First, we recall that Fm is totally geodesic immersed in F̃m+p if and

only if any geodesic of Fm is a geodesic of F̃m+p. To reach our goal, we need the
following.

Theorem 3.4. (Bejancu [4]) Fm is totally geodesic immersed in F̃m+p, if and only
if, the normal curvatures of Fm vanish, that is, we have

(3.26) Ha
0 = 0, ∀a ∈ {m+ 1, ...,m+ p}.

This enables us to state the following.

Theorem 3.5. Fm is totally geodesic immersed in F̃m+p, if and only if, both the
normal and tangent second fundamental forms vanish, that is, we have

(3.27)
(a) Hα

a
β = 0, and (b) Dα

γ
β = 0,

∀α, β, γ ∈ {1, ...,m}, ∀a ∈ {m+ 1, ...,m+ p}.

Proof. Suppose that Fm is a totally geodesic Finsler submanifold. Then by (3.26)
and (2.31b) we deduce that ni = 0, for all i ∈ {1, ...,m + p}. Thus, taking into
account (2.33c), (2.33d) and (2.32b), we obtain (3.27). The converse is a simple
consequence of (2.30) via (3.27a) and (3.26).

Theorem 3.6. Let Fm be a totally geodesic Finsler submanifold of F̃m+p. Then

Fm and F̃m+p have the same flag curvature.

Proof. As Fm is totally geodesic, by (3.27a) and (2.29b) we deduce that

(3.28) Ha
α = 0, ∀α ∈ {1, ...,m}, a ∈ {m+ 1, ...,m+ p}.

Also, by using (3.27a) and (2.29a) we obtain

(3.29) Dαβ = 0, ∀α, β ∈ {1, ...,m}.
Finally, by using (3.28), (3.29), (3.26) and taking into account that ni = 0 for all
i ∈ {1, ...,m+ p}, from (3.25) we infer that

K(X) = K̃(X), ∀X ∈ Γ(TM).

Thus the proof is done.

In particular, we obtain an extension to Finsler geometry of a well known result
from Riemannian geometry.

Corollary 3.1. Any totally geodesic Finsler submanifold Fm of a Finsler manifold

F̃m+p of constant flag curvature K is of constant flag curvature K, too.
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Next, we suppose that M̃ is endowed with a Riemannian metric ã = (ãij(x))

and a non-zero 1-form b̃ = (̃bi(x)) satisfying

‖b̃‖2 = ãij(x)̃bi(x)̃bj(x) < 1.

Then the function

(3.30) F̃ (x, y) =
√
ãij(x)yiyj + b̃i(x)yi,

defines a Finsler structure on M̃ . According to the terminology in literature, we

call F̃m+p = (M̃, F̃ , ãij , b̃i) a proper Randers manifold. By using ã and b̃ we define
the 1-form

(3.31) θ̃ = b̃i(̃bi|j − b̃j|i)dxj ,
where “|” denotes the covariant derivative with respect to the Levi–Civita connec-

tion on (M̃, ã).
Now, we consider the (2n + 1)–dimensional unit sphere S2n+1 and recall that

Tanno [16] has proved that S2n+1 is a Sasakian space form of constant ϕ-sectional
curvature c > −3. Then it was proved by Bejancu and Farran [6] that for any
constant K > 0 there exists a proper Randers metric of constant flag curvature K

and with θ̃ = 0 on S2n+1. The Finsler manifold F̃2n+1 = (S2n+1, c,K) is called a
Randers (c,K)-sphere. The following classification theorem is useful in our study.

Theorem 3.7. (Bejancu–Farran [6]) Let F̃m+p = (M̃, F̃ , ãij , b̃i) be a proper Ran-

ders manifold, where (M̃, ã) is a simply connected and complete Riemannian ma-

nifold. Suppose that F̃m+p is of positive constant flag curvature K and that θ̃ = 0

on M̃ . Then m+ p must be an odd number 2n+ 1, and F̃2n+1 is Finsler isometric

to the Randers (c,K)-sphere F
2n+1

= (S2n+1, c,K) where c = 1− 4‖b‖2.

Let Fm = (M,F ) be a Finsler submanifold of a proper Randers manifold F̃m+p =

(M̃, F̃ , ãij , b̃i). Suppose that the structure vector field b̃i = ãij b̃j of F̃m+p is tangent
to M . Then Fm inherits a Randers structure given by

(3.32) (a) aαβ = ãijB
i
αB

j
β and (b) bα = b̃iB

i
α.

Moreover, we prove the following.

Theorem 3.8. Let Fm = (M,F ) be a totally geodesic Finsler submanifold of a

Randers (c,K)-sphere F̃2n+1 = (S2n+1, c,K), such that (M,aαβ) is a simply con-

nected and complete Riemannian manifold, and the structure vector field of F̃2n+1

is tangent to M . Then m is an odd number 2q + 1 and F2q+1 is Finsler isometric

to a Randers (c,K)-sphere F2q+1
= (S2q+1, c,K).

Proof. First, we note that Fm is a proper Randers manifold with the Riemannian
metric and 1-form given by (3.32). Then, by using (3.32b) we deduce that

(3.33) bα|β = BiαB
j
β b̃i|j ,

where the covariant derivatives are taken with respect to the Levi–Civita connec-
tions on the Riemannian manifolds (M,aαβ) and (S2n+1, ãij). By using (3.33) and

taking into account that θ̃ = 0 on S2n+1, we deduce that

θ = bα(bα|β − bβ|α)duβ = bαBiαB
j
β (̃bi|j − b̃j|i)duβ

= b̃i(̃bi|j − b̃j|i)dxj = 0.
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Also, by Corollary 3.1 we infer that Fm is a Finsler manifold of constant flag
curvature K. Finally, we apply Theorem 3.7 and obtain the assertion of the present
theorem.

The next corollary follows immediately from Theorem 3.8.

Corollary 3.2. There exist no totally geodesic even dimensional Finsler subma-

nifolds of a Randers (c,K)-sphere F̃2n+1 = (S2n+1, c,K) which are tangent to the

structure vector field of F̃2n+1.

Remark 3.2. We note that the Finsler structure of a Randers (c,K)-sphere is never a

Riemannian structure. This is because b̃ is nowhere zero on S2n+1. Thus the results
in Theorem 3.8 and Corollary 3.2 cannot be applied to Riemannian geometry.
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