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SYMMETRIC TENSOR RANK, CACTUS RANK AND RELATED

COMPLEXITY MEASURES FOR HOMOGENEOUS

POLYNOMIALS
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Dedicated to memory of Proffessor Franki Dillen

Abstract. Let νd : Pm → Pr, r :=
(m+d

m

)
− 1, be the Veronese embedding.

For any P ∈ Pr we define its complexity rank (resp. complexity scheme-rank)
as the minimal integer d1+· · ·+ds with di the degrees of hypersurfaces scheme-

theoretically cutting a finite set (resp. a zero-dimensional scheme) Z ⊂ Pm

with P in the linear span of νd(Z). We study these definitions (and related
ones) when either P has border rank ≤ 3 or P is in the linear span of νd(L)
for some line L ⊂ Pm.

For any scheme Z of any projective space Pk, let ⟨Z⟩ ⊆ Pk denote its linear span,
i.e. the intersection of all hyperplanes of Pk containing Z, with the convention
⟨Z⟩ = Pk if there is no such a hyperplane. For any positive integers m, d let

νd : Pm → Pr, r :=
(
m+d
m

)
− 1, denote the order d Veronese embedding of Pm. For

each P ∈ Pr the rank rm,d(P ) (resp. the cactus rank or scheme-rank zm,d(P )) of
P is the minimal cardinality (resp. minimal degree) of a finite set (resp. a zero-
dimensional scheme) Z ⊂ Pm such that P ∈ ⟨νd(Z)⟩ ([12], [11] (where the cactus
rank is called the scheme-rank), [5], [4]). The integers rm,d(P ) and zm,d(P ) are
a measure of the complexity of P with respect to homogeneous polynomials. In
this note we study other measures of complexity of finite sets and zero-dimensional
schemes Z ⊂ Pm. Taking these integers instead of the integer deg(Z) we get various
notions of complexity rank.

For any finite string d = d1 ≥ · · · ≥ ds of positive integers and any positive real
number α set ∥d∥ = (

∑s
i=1 d

α
i )

1/α. Set ∥d∥ := ∥d∥1. For each zero-dimensional
scheme Z ⊂ Pm let cc(Z) be the minimal integer ∥d∥, where d1 ≥ · · · ≥ ds are
the degrees of some hypersurfaces Y1, . . . , Ys cutting out Z scheme-theoretically,
i.e. such that Z = Y1∩ · · ·∩Ys (scheme-theoretic intersection). Let ĉrm,d(P ) (resp.
ĉzm,d(P )) be the minimal integer cc(Z) for some finite set (resp. zero-dimensional
scheme) Z such that P ∈ ⟨νd(Z)⟩. We say that ĉrm,d(P ) (resp. ĉzm,d(P )) is the
complexity rank (resp. complexity scheme-rank) of P .
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We also introduce the following two measures of the complexity of the string of
integers d. Set ∥d∥− :=

∏s
i=1 di and ∥d∥+ :=

∏s
i=1(di + 1). The integer ∥d∥− is

quite natural (when s = m it would give the degree of a zero-dimensional complete
intersection Z ⊂ Pm cut out by hypersurfaces of degree d1, . . . , dm). The integer
∥d∥+ weights more the low degree hypersurfaces. For each zero-dimensional scheme
Z ⊂ Pm let čc(Z), resp. čč(Z)) be the minimal integer ∥d∥− (resp. ∥d∥+) where
d1 ≥ · · · ≥ ds are the degrees of some hypersurfaces Y1, . . . , Ys cutting out Z
scheme-theoretically. Let čzm,d(P ) (resp. črm,d(P )) be the minimal integer čc(Z)
for a zero-dimensional scheme (resp. a finite set) Z ⊂ Pm such that P ∈ ⟨νd(Z)⟩.
Define čžm,d(P ) and čřm,d(P ) in the same way using ∥ ∥+ instead of ∥ ∥−.

We work over an algebraically closed field K with characteristic zero. For the
positive characteristic case, see Remark 2.3.

1. Linear spans of rational normal curves

In this section we first give two preliminary lemmas (Lemma 1.1 and 1.2). Then
we shows that schemes evincing either ĉzm,d(P ) or čzm,d(P ) or čžm,d(P ) for some

P ∈ Pr, r =
(
m+d
m

)
− 1, are complete intersection (see Proposition 1.1). Then we

consider the case in which, in suitable coordinates, the homogeneous polynomial
associated to P is a bivariate polynomial, i.e. the case in which there is a line
L ⊂ Pm such that P ∈ ⟨νd(L)⟩. The curve νd(L) is a degree d rational normal
curve in its linear span ⟨νd(L)⟩ ⊂ Pr and dim(⟨νd(L)⟩) = d.

See [12] or [3] for the notion of border rank bm,d(P ) of any P ∈ Pr, r :=
(
m+d
m

)
−1,

with respect to the Veronese variety νd(Pm).

Lemma 1.1. Let X be an integral projective variety. Fix L ∈ Pic(X) and linear
subspaces V ⊂ W ( H0(X,L). Call B1, . . . , Bx the irreducible components of the
set-theoretic base locus of V . Assume that none of them is an irreducible component
of the set-theoretic base locus of W . Fix a general f ∈ W . Then the hypersurface
{f = 0} contains no Bi and hence the base locus of W is either empty or with
dimension ≤ max{dim(Bi)} − 1.

Proof. Use that W is an irreducible variety (and hence that a finite intersection of
non-empty open subsets of W is non-empty) and that x is a finite integer. �

Lemma 1.2. Let Z ⊂ Pm, Z ̸= ∅, be a zero-dimensional scheme. Let a1 ≥ · · · ≥
as > 0 be the degrees of a set of polynomials g1, . . . , gs defining scheme-theoretically
Z. Set bi := ai for 1 ≤ i ≤ m − 1 and bm := as. Fix a general fi ∈ H0(IZ(bi)).
Then the scheme {f1 = · · · = fm = 0} has dimension zero.

Proof. Since Z ̸= ∅, we have s ≥ m and hence the integers b1, . . . , bm are well-
defined. For each integer i ∈ {2, . . . ,m} set Uj := {gs = · · · = gi = 0}. Let A(k),
1 ≤ i ≤ m, the statement that {fm = · · · = fm−k+1 = 0} has dimension m − k.
The lemma is true if A(m) is true. A(1) is true, because gs ̸= 0 and hence fm ̸= 0.
Fix an integer k ∈ {2, . . . ,m} and assume A(k− 1). Let B1, . . . , Bx the irreducible
components of the scheme {fm = · · · = fm−k+2 = 0}. Since A(k − 1) is assumed
to be true, we have dim(Bj) = m− k + 1 for all i. By Lemma 1.1 to prove A(k) it
is sufficient to see that the base locus B of the linear subspace of H0(IZ(bm−k+1))
spanned by fm, . . . , fm−k+1 has dimension at most m− k. Assume that this is not
true and take an irreducible component T of B with dimension > m− k. We have
T = Bj for some j. Since Z = {g1 = · · · = gs}, we have dim(Uk) ≤ m − k. Since
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Uk is contained in the base locus ∆ of |IZ(bk)|, ∆ has dimension at most k. Hence
f |T ̸= 0 for a general f ∈ H0(IZ(bk), a contradiction. �

Proposition 1.1. Fix positive integers m, d, any P ∈ Pr, r :=
(
m+d
m

)
− 1, and

any zero-dimensional scheme Z ⊂ Pm evincing either ĉzm,d(P ) or čzm,d(P ) or
čžm,d(P ). Then Z is a complete intersection.

Proof. Let a1 ≥ · · · ≥ as be the degrees of a minimal set of generators of the
homogeneous ideal of Z. We have s ≥ m and s = m if and only if Z is a complete
intersection. We have cc(Z) = d1 + · · · + ds. By Lemma 1.2 there is a zero-

dimensional scheme W containing Z and with cc(W ) = ds +
∑m−1

i=1 di. Since
W ⊇ Z we have P ∈ ⟨νd(W )⟩. Hence cc(Z) = ĉzm,d(P ) ≤ cc(W ), i.e. m = s.

The same proof works for čzm,d(P ) and čžm,d(P ). �

Theorem 1.1. Fix P ∈ Pr, r :=
(
m+d
m

)
− 1, for some m ≥ 1, d ≥ 3. Assume the

existence of a line L such that P ∈ ⟨νd(L)⟩. Then ĉzm,d(P ) = zm,d(P )+m− 1 and
ĉrm,d(P ) = rm,d(P ) +m− 1.

Proof. Set b := zm,d(P ). By a theorem of Sylvester the integer b is the border rank
of P with respect to the rational normal curve νd(L) ([12], citebgi). Let Z ⊂ Pm

be any scheme evincing zm,d(P ) and A ⊂ Pm any scheme evincing rm,d(P ). We
have Z ⊂ L and A ⊂ L ([12], Exercise 3.2.2.2, (for A) and [8], Proposition 2.1
and Corollary 2.2), Z is unique ([11], 1.36 and 1.38, [7], Theorem 1.18, or use [3],
Lemma 34) and either A = Z and rm,d(P ) = b or b < (d+2)/2, rm,d(P ) = d+2−b
and A ∩ Z = ∅. Since L is the complete intersection of m − 1 hyperplane and Z
(resp. A) A are the complete intersection of L and a hypersurface of degree deg(Z),
resp, deg(A)), we have cc(Z) ≤ b + m − 1 and cc(A) ≤ rm,d(P ) + m − 1. Hence
ĉzm,d(P ) ≤ b+m− 1 and ĉrm,d(P ) ≤ rm,d(P )+m− 1. Therefore it is sufficient to
prove the inequalities the opposite inequalities.

Let W ⊂ Pm be any zero-dimensional scheme evincing ĉzm,d(P ). By Proposition
1.1 W is a complete intersection, say of forms of degree d1 ≥ · · · ≥ dm. To prove
that ĉzm,d(P ) = b+m− 1 it is sufficient to prove that d1 + · · ·+ dm ≥ b+m− 1.
Assume d1 + · · ·+ dm ≤ b+m− 2.

First assume W ⊇ Z. Since W is zero-dimensional, the scheme W ∩ L is a
zero-dimensional scheme containing Z. Hence e := deg(W ∩ L) ≥ b. Since at least
one of the forms, Fi, does not vanish identically on all L, we have d1 ≥ b. Hence
d1 + · · ·+ bm ≥ b+m− 1.

Now assumeW + Z. In this case the proof of [2], Lemma 1, gives h1(IZ∪W (d)) >
0. Since W is a complete intersection, we have h1(IW (d1 + · · ·+ dm −m− 1)) = 1.
Since deg(Z) = b, we have h1(IZ∪W (d1 + · · · + dm − m − 1)) ≤ 1 + b. For any
zero-dimensional scheme B ⊂ Pm the map N → N defined by t 7→ h1(IB(t)) is
strictly decreasing, until it is zero (e.g., because its different function is the Hilbert
function of a graded Artinian ring). Hence h1(IZ∪W (d1+ · · ·+dm−m−1+b)) = 0.
Therefore d ≤ −1 + d1 + · · ·+ dm −m− 1 + b, i.e. d1 + · · ·+ dm ≥ d− b+m− 2.
Since 2b ≤ d+ 2, we get cc(W ) ≥ b+m in this case.

Now assume rm,d(P ) ̸= br,m(P ) and hence rm,d(P ) = d + 2 − b. Take any
S ⊂ Pm evincing ĉrm,d(P ) and let a1 ≥ · · · ≥ as be the sequence of degrees
of forms with S as their scheme-locus and with a1 + · · · + as minimal. Assume
a1 + · · · + as = ĉrm,d(P ) ≤ d + m − b. Let N ⊇ S be the zero-locus of general
gi ∈ |IZ(bi)| with bm = ds and bi = ai for all i ∈ {1, . . . ,m− 1}. Lemma 1.2 gives
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dim(N) = 0. Since N ⊇ S, we have P ∈ ⟨νd(N)⟩. First assume Z + N . Since
P ∈ ⟨νd(Z)⟩ ∩ ⟨νd(N)⟩, the proof of [2], Lemma 1, gives h1(IN∪Z(d)) > 0. Since
N is a complete intersection, we have h1(IN (b1 + · · · + bm − m − 1)) = 1. Since
deg(Z) = b, we get h1(IZ∪N (b1 + · · · + bm − m − 1)) ≤ 1 + b. As above we get
h1(IZ∪N (b1 + · · ·+ bm −m− 1+ b+1)) = 0. Hence d ≤ b1 + · · ·+ bm −m− 1+ b.
Since b1 + · · ·+ bm ≤ a1 + · · ·+ as ≤ d+m− b, we get a contradiction.

Now assume Z ⊆ N . Since S is reduced, Z is not reduced and S is scheme-
theoretically cut-out by forms of degree a1, there is F ∈ |IS(a1)| such that F |Z ̸= 0.
Hence for a general G ∈ |IS(a1)| we have G|Z ̸= 0. The proof that A(m−1) implies
A(m) in the proof of Lemma 1.2 gives N + Z, a contradiction. �

Corollary 1.1. Fix P ∈ Pr, r :=
(
m+d
m

)
−1, with border rank 2. Then ccrm,d(P ) =

rm,d(P ) +m− 1 and cczm,d(P ) = m+ 1.

Proof. E.g., by the proof of [3], Theorem 32, or by [6], §2.1, P ∈ ⟨L⟩ for some line
L ⊂ Pm. Apply Theorem . �

2. Border rank 3

Lemma 2.1. Fix a line L ⊂ Pm, a zero-dimensional scheme W ⊂ L with e :=
deg(W ) ≥ 2 and O ∈ Pm \ L. Then the homogeneous ideal IA of A := W ∪ {O}
is generated by the equation of a degree e cone F with F ∩ L = W and (m − 2)-
dimensional vertex containing O and by two degree reducible quadrics formed by the
union of two hyperplanes, one containing L and the other one containing O, but
not L and (if m > 2) the m− 2 linear equations of the plane ⟨L ∪ {O}⟩.

Proof. It is sufficient to do the case m = 2. Let G ⊂ P2 be any hypersurface
containing A, but not L. Then G ∩ L ⊇ W and hence deg(G) ≥ e with equality
if and only if G ∩ L = W . We get that the degree two part of IA is generated by
the equations of two pairs of line through O and (if e = 2) the equation of F . We
also get that no generators of IA occurs in degree < e. It is easy to check that
h1(IA(e − 1)) = 0 (even if e = 2). Hence the Castelnuovo-Mumford lemma gives
that IA is generated in degree ≤ e. Since any two degree e elements of IA not
containing L induce the same degree e divisor on L, we get that IA is minimally
generated by the two reducible conics through O containing L and by the equation
of F . �
Theorem 2.1. Fix P ∈ Pr, r :=

(
m+d
m

)
− 1, m ≥ 2, with border rank 3. Assume

d ≥ 7.
(a) If there is a line L ⊂ Pm such that P ∈ ⟨νd(L)⟩, then ĉcrm,d(P ) =

rm,d(P ) +m− 1 and ĉczm,d(P ) = m+ 1.
(b) Assume that there is no line L ⊂ Pm such that P ∈ ⟨νd(L)⟩.
(b1) We have ĉczm,d(P ) = m+ 4.
(b2) If rm,d(P ) = 3, then ĉcrm,d(P ) = m+ 4.
(b3) If rm,d(P ) = d+ 1, then ĉcrm,d(P ) = m+ 4.
(b4) In all other cases (i.e. if rm,d(P ) = 2d− 1), then ĉcrm,d(P ) = 2d+m.

Proof. By the proof of [3], Theorem 37, we have rm,d(P ) = 2d− 1 if and only if P
is neither as in (a) nor as in (b2) nor as in (b3).

Part (a) is true by Corollary 1.1.
In the set-up of part (b) we fix a scheme Z evincing zm,d(P ) (and hence with

degree 3 by [6], Proposition 1.2) and a set S ⊂ Pm evincing rm,d(P ). Z spans a



130 E. BALLICO

plane, because there is no line L ⊂ Pm such that P ∈ ⟨νd(L)⟩. In this case ⟨Z⟩
is a plane. We also know that Z is either a union of 3 non-collinear points, or a
connected curvilinear scheme or Z = v ⊔ {O} with v connected, deg(v) = 2 and
O /∈ ⟨v⟩. In all cases Z is contained in a smooth conic C. It is easy to check
first that Z is scheme-theoretically cut out in C by two conics and then that the
homogeneous ideal of Z is generated by 3 quadratic equations and (if m > 2) the
m−2 linear equations of ⟨Z⟩. Hence cczm,d(P ) ≤ 6+m−2 = m+4. The opposite
inequality is obvious, because Z is neither a complete intersection nor contained
in a line. We get parts (b1) and (b2). Now assume rm,d(P ) = d + 1. This is the
case if and only if Z = v ⊔ {O} with v connected, deg(v) = 2 and O /∈ ⟨v⟩ ([3],
proof of Theorem 32). Fix any S evincing rm,d(P ). By [1], Theorem 4, we have
S = S′ ⊔{O} with O /∈ ⟨v⟩. The case e = d of Lemma 2.1 gives ccrm,d(P ) = m+4.

Now assume rm,d(P ) = 2d−1, i.e. assume that Z is connected and not contained
in a line. In this case Z contained in a smooth conic. Fix any S ⊂ Pm evincing
rm,d(P ). By [1], Theorem 4, we have S∩Z = ∅ and S∪Z is contained in a reduced
conic T . The homogeneous ideal of S has exactly m − 2 linearly independent
linear forms. First assume that T is smooth. In this case S is the scheme-theoretic
intersection of two degree 2d divisors of T , because T ∼= P1. Since T is arithmetically
Cohen-Macaulay, each of these divisors is the intersection of T with a degree d
hypersurface. We get that S is scheme-theoretically cut out by m− 2 linear forms,
a quadratic form and two degree d forms. Hence ĉrm,d(P ) ≤ 2d + m. Bezout
theorem gives that every Y ∈ |IS(d− 1)| contains T . Hence we get that in any set
of forms defining scheme-theoretically S, at least two of these forms have degree
at least d. Since S is not a complete intersection, to define scheme-theoretically S
we need at least m + 1 forms. Hence ĉcrm,d(P ) ≥ 2d + m. Now assume that T
is not smooth. Since S is reduced, T is reduced and, calling L,R the components
of T with ♯(L ∩ S) ≥ ♯(R ∩ S), and O = L ∩ R the singular point of T , we have
O /∈ S, {O} = Zred, ♯(L ∩ S) = d and ♯(S ∩ L) = d − 1 ([1], part (f) of §4). Since
O /∈ S, there are two plane degree d curves T1, T2 in ⟨T ⟩ such that T ∩ T1 ∩ T2 = S
(as schemes); we may take as each Ti a union of d lines each of them spanned by a
point of S ∩ L and a point of S ∩R. �

Remark 2.1. Take P as in Theorem 2.1. Assume rm,d(P ) > 3. By the proof of [3],
Theorem 37 , there is a line L ⊂ Pm such that P ∈ ⟨νd(L)⟩ if and if rm,d(P ) = d−1.
In all cases the proof of Theorem 2.1 gives that all sets evincing rm,d(P ) have the
same complexity.

Remark 2.2. Assume char(K) = 0. Fix a finite set S ⊂ Pk, k ≥ 1, and an
integer s ≥ 1 such that the sheaf IS(x) is spanned. Then there are k hypersurfaces
Fi ∈ |IS(x) such that the scheme F1 = · · · = Fk = 0 is a reduced union of xk

points.

Lemma 2.2. Fix S ⊂ Ps with ♯(S) = s + 1 and ⟨S⟩. Fix any integer x ≥ 2. Let
A ⊂ Ps be the intersection of s general elements of |IS(x)|. Then A is a reduced
zero-dimensional scheme with cardinality xs.

Proof. Any two such sets are projectively normal. Hence it is sufficient to note
that h0(IS(x)) =

(
s+x
x

)
− s − 1 ≥ s and that a general complete intersection of s

hypersurfaces of degree x is smooth ([10], Theorem II.8.12). �
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Proposition 2.1. Take a finite set S ⊂ Pm, m ≥ 1, which is linearly independent.
Set s := ♯(S). Fix any P ∈ ⟨νd(S)⟩ such that P /∈ ⟨νd(S′)⟩ for any S′ ( S. If s ≤ 2,
then cc(S) = ĉrm,d(P ) = ĉzm,d(P ) = s +m− 1. If s ≥ 3, then cc(S) = m + s + 1
and ĉrm,d(P ) = ĉzm,d(P ) = s+m− 1.

Proof. We have s ≤ m+ 1. If s = 1, 2, then S is a complete intersection. We have
cc(S) = m + s − 1 (the case s = 1 is trivial, the case s = 2 by Corollary 1.1).
Now assume s ≥ 3. Since IS(2)| is spanned and dim(⟨S⟩) = m + 1 − s, S is the
scheme-theoretic intersection of m + 1 − s linearly independent linear forms and
some degree two linear forms. Since S is not a complete intersection, Lemma 2.2
gives cc(S) = (m + 1 − s) + 2s = m + s + 1. Lemma 2.2 gives the existence of a
reduced set A ⊃ S which is the complete intersection of m+1− s linear forms and
s− 1 degree two forms. Take B ⊂ Pm evincing ĉzm,d(P ) . Since P depends exactly
on s homogeneous coordinate and P ∈ ⟨νd(B)⟩, we have dim(⟨B⟩) ≥ s− 1. Hence
di > 1 for all i ≤ dim(⟨B⟩). Hence cc(B) ≥ m+ s− 1. �

In the same way we get the following result.

Proposition 2.2. Fix m ≥ 2 and take any linearly independent zero-dimensional
scheme Z ⊂ Pm. Set s := deg(Z). Fix any P ∈ ⟨νd(Z)⟩ such that P /∈ ⟨νd(Z ′)⟩
for any Z ′ ( Z. If s ≤ 2, then cc(Z) = ĉzm,d(P ) = s + m − 1. If s ≥ 3, then
cc(Z) = m+ s+ 1 and ĉzm,d(P ) = s+m− 1.

Proposition 2.3. Fix P ∈ Pr, r :=
(
m+d
m

)
−1, for some m ≥ 1, d ≥ 3. Assume the

existence of a line L such that P ∈ ⟨νd(L)⟩. Then čzm,d(P ) = zm,d(P ), črm,d(P ) =
rm,d(P ), črm,d(P ) = rm,d(P ) = 2m−1(zm,d(P )+1) and čřm,d(P ) = 2m−1(rm,d(P )+
1).

Proof. Set b := zm,d(P ) and take Z evincing zm,d(P ). Recall that Z ⊂ L ([8],
Proposition 2.1 and Corollary 2.2). Hence Z is a complete intersection of a degree
b hypersurface and m− 1 hyperplane. Hence ∥Z∥− = b and ∥Z∥+ = 2m−1(b+ 1).
Since for any zero-dimensional scheme W ⊂ Pm we have deg(W ) ≤ ∥W∥− (with
equality if and only if W is a complete intersection), then we get čzm,d(P ) = b and
that Z is the only scheme evincing čzm,d(P ). If rm,d(P ) = zm,d(P ), i.e. if Z is
reduced, then we also get črm,d(P ) = b. Now assume rm,d(P ) ̸= zm,d(P ). In this
case 2b ≤ d+1, rm,d(P ) = d+2− b and every set, A, evincing rm,d(P ) is contained
in A. The set A is the complete intersection of m − 1 hyperplanes and a degree
d+ 2− b hypersurface and hence čc(A) = d+ 2− b. Since any A evincing rm,d(P )
is contained in L ([12], Exercise 3.2.2.2, or [8], Proposition 2.1 and Corollary 2.2),
we get črm,d(P ) = rm,d(P ).. �
Remark 2.3. Assume p := char(K) > 0. It is sufficient to ass assume p > d,
because Sylvester theorem quoted and proved in characteristic zero in [9] and [3] is
true in positive characteristic if p > d ([11], page 22).
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