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Abstract: The object of the present paper is to study the symmetric and skew-
symmetric properties of a second order parallel tensor and it is shown that a symmet-
ric parallel second order covariant tensor in a generalized (k,µ)-Space forms is a con-
stant multiple of the metric tensor g. Further we shown that there is no nonzero second
order skew-symmetric parallel tensor provided that ( f1− f3)

2+(k−1)( f4− f6)
2 6= 0.

Also we studied Ricci solitons on generalized (k,µ)-Space forms and obtained some
interesting results.

1. Introduction

A generalized Sasakian space form was first introduced by Carriazo et al. in [1] as that almost contact metric
manifold (M,φ ,ξ ,η ,g) whose curvature tensor R is given by

R = f1R1 + f2R2 + f3R3, (1)

where f1, f2, f3 are some differentiable functions on M and

R1(X ,Y )Z = g(Y,Z)X−g(X ,Z)Y,

R2(X ,Y )Z = g(X ,φZ)φY −g(Y,φZ)φX +2g(X ,φY )φZ,

R3(X ,Y )Z = η(X)η(Z)Y −η(Y )η(Z)X +g(X ,Z)η(Y )ξ −g(Y,Z)η(X)ξ ,

for any vector fields X ,Y,Z on M.
By motivating the works on generalized Sasakian-space forms and (k,µ)-space forms, the authors [4] introduced the
thought of generalized (k,µ)-space forms. A generalized (k,µ)-space form as an almost contact metric manifold
(M,φ ,ξ ,η ,g) whose curvature tensor are often written as

R = f1R1 + f2R2 + f3R3 + f4R4 + f5R5 + f6R6, (2)

where f1, f2, f3, f4, f5, f6 are some differentiable functions on M, R1,R2,R3 are the tensors defined above and

R4(X ,Y )Z = g(Y,Z)hX−g(X ,Z)hY +g(hY,Z)X−g(hX ,Z)Y,

R5(X ,Y )Z = g(hY,Z)hX−g(hX ,Z)hY +g(φhX ,Z)φhY −g(φhY,Z)φhX ,

R6(X ,Y )Z = η(X)η(Z)hY −η(Y )η(Z)hX +g(hX ,Z)η(Y )ξ −g(hY,Z)η(X)ξ ,

where 2h = Lξ φ and L is the usual Lie derivative and we will denote such a manifold by M( f1, f2, f3, f4, f5, f6).
Natural examples of generalized (k,µ)-space forms are (k,µ)-space forms and generalized Sasakian space forms.
The authors in [1] established that contact metric generalized (k,µ)-space forms are generalized (k,µ) spaces and
if dimension is greater than or equal to 5, then they are (k,µ) spaces with constant φ -sectional curvature 2 f6−1.
They gave a technique of constructing examples of generalized (k,µ)-space forms and established that generalized
(k,µ)-space forms with trans-Sasakian structure reduces to generalized Sasakian space forms. More in [3], it is
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proved that under Da-homothetic deformation, generalized (k,µ)-space form structure is preserved for dimension 3,
but not in general. (k,µ)-space form have been studied widely by several authors like [6, 10, 15, 16] and various
others.
Ricci soliton, introduced by Hamilton [7] are natural generalizations of the Einstein metrics and is defined on a
Riemannian manifold (M,g). A Ricci soliton (g,V,λ ) defined on (M,g) as

(LVg)(X ,Y )+2S(X ,Y )+2λg(X ,Y ) = 0, (3)

where LV denotes the Lie-derivative of Riemannian metric g along a vector field V , λ be a consant and X ,Y are
arbitrary vector fields on M. A Ricci soliton is said to shrinking or steady or expanding to the extent that λ is
negative, zero or positive respectively. Ricci solitons have been considered broadly with regards to contact geometry;
we may refer to [5, 8, 14, 17, 18] and references therein.
The paper is organized as follows: The section 2 contains some basic results on almost contact geometry and
generalized (k,µ)-space forms. In section 3, it is shown that if a generalized (k,µ)-Space form admits a second
order symmetric parallel tensor is a constant multiple of the associated metric tensor. We also obtain that on a
generalized (k,µ)-Space form with k 6= 0, there is no nonzero second order skew-symmetric parallel tensor provided
that ( f1− f3)

2 +(k− 1)( f4− f6)
2 6= 0. Finally we studied Ricci solitons in generalized (k,µ)-Space form and

obtained some interesting results.

2. Preliminaries

In this section, we recall some general definitions and fundamental equations are presented which will be utilized
later. A (2n+ 1)-dimensional smooth manifold M is said to be contact if it has a global 1-form η such that
η ∧ (dη)n 6= 0 on M. Given a contact 1-form η there always exists a unique vector field ξ such that (dη)(ξ ,X) = 0.
Polarization of dη on the contact subbundle D (defined by D = 0), yields a Riemannian metric g and a (1,1)-tensor
field φ such that

φ
2X =−X +η(X)ξ , φξ = 0, g(X ,ξ ) = η(X), η(ξ ) = 1, η ◦φ = 0, (4)

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ), (5)

g(X ,φY ) = dη(X ,Y ), g(X ,φY ) =−g(Y,φX). (6)

for all vector fields X ,Y on M. In a contact metric manifold, we characterize a (1,1) tensor field h by h = 1
2 Lξ φ ,

where L signifies the Lie differentiation. At this point h is symmetric and satisifies hφ =−φh. Likewise we have
Tr ·h = Tr ·φh = 0 and hξ = 0.
Moreover, if ∇ signifies the Riemannian connection of g, then the following relation holds:

∇X ξ =−φX−φhX . (7)

In a (k,µ)-contact metric manifold the following relations hold [2, 9]:

h2 = (k−1)φ 2, k ≤ 1, (8)
(∇X φ)Y = g(X +hX ,Y )ξ −η(Y )(X +hX), (9)
(∇X h)Y = [(1− k)g(X ,φY )−g(X ,φhY )]ξ

− η(Y )[(1− k)φX +φhX ]−µη(X)φhY. (10)

Also in a (2n+1)-dimensional generalized (k,µ)-space form, the following relations hold :

R(X ,Y )ξ = ( f1− f3){η(Y )X−η(X)Y}
+ ( f4− f6){η(Y )hX−η(X)hY}, (11)

R(ξ ,X)Z = ( f1− f3){g(X ,Z)ξ −η(Z)X}
+ ( f4− f6){g(hX ,Z)ξ −η(Z)hX}, (12)

QX = {2n f1 +3 f2− f3}X +{(2n−1) f4− f6}hX

− {3 f2 +(2n−1) f3}η(X)ξ , (13)
S(X ,Y ) = {2n f1 +3 f2− f3}g(X ,Y )+{(2n−1) f4− f6}g(hX ,Y )

− {3 f2 +(2n−1) f3}η(X)η(Y ), (14)
S(X ,ξ ) = 2n( f1− f3)η(X), (15)

r = 2n{(2n+1) f1 +3 f2−2 f3}, (16)

where Q is the Ricci operator, S is the Ricci tensor and r is the scalar curvature of M( f1....., f6).
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3. Second Order Parallel Tensor and Ricci Solitons

In this section, we consider a second order symmetric parallel tensor on generalized (k,µ)-contact metric manifolds.
Mondal et al. [13], De et al. [5] obtained some classification results on second order parallel tensors in (k,µ)-contact
metric manifolds.

Definition 3.1. (see [11, 19] ) Let M be a Riemannian manifold with metric g, ξ an unitary vector field, η be the
1-form dual to ξ . Further, let ρ be a symmetric tensor field of (0,2)-type on M which we suppose to be parallel
with respect to ∇ that is ∇ρ = 0, where ∇ denotes the operator of covariant differentiation with respect to the metric
tensor g.

Suppose ρ be a second order symmetric tensor field, that is, ρ(X ,Y ) = ρ(Y,X) on a generalized (k,µ)-space form
M( f1....., f6), such that ∇ρ = 0. Then it follows that

∇
2
ρ(X ,Y ;Z,W )−∇

2
ρ(X ,Y ;W,Z) = 0. (17)

From (17), we obtain the relation:

ρ(R(X ,Y )Z,W )+ρ(R(X ,Y )W,Z) = 0, (18)

for arbitrary vector fields X ,Y,Z on M.
Substitution of X = Z =W = ξ in (18) gives us

ρ(ξ ,R(ξ ,Y )ξ ) = 0. (19)

Using (11) in (19), we get
( f1− f3){η(Y )ρ(ξ ,ξ )−ρ(ξ ,Y )}= 0. (20)

Supposing ( f1− f3) 6= 0, (20) reduces to

η(Y )ρ(ξ ,ξ )−ρ(ξ ,Y ) = 0. (21)

Taking the covariant differentiation of (21) with respect to X , we get

g(∇XY,ξ )ρ(ξ ,ξ )+g(Y,∇X ξ )ρ(ξ ,ξ )+2g(Y,ξ )ρ(∇X ξ ,ξ )

−ρ(∇X ξ ,Y )−ρ(ξ ,∇XY ) = 0.
(22)

Replacing Y by ∇XY in (21), we obtain

g(∇XY,ξ )ρ(ξ ,ξ )−ρ(ξ ,∇XY ) = 0. (23)

In view of (23), it follows from (22) that

g(Y,∇X ξ )ρ(ξ ,ξ )+2g(Y,ξ )ρ(∇X ξ ,ξ )−ρ(∇X ξ ,Y ) = 0. (24)

Using (7) in (24), we get

ρ(Y,φX)−ρ(Y,hφX)−ρ(ξ ,ξ )g(Y,φX)+ρ(ξ ,ξ )g(Y,hφX) = 0. (25)

Replacing X by φX in (25) and then using (4), we obtain

ρ(Y,X)−ρ(ξ ,ξ )g(X ,Y )−ρ(Y,hX)+ρ(ξ ,ξ )g(Y,hX)−η(X)ρ(Y,ξ ) = 0. (26)

Replacing X by hX in (26) and using (4) and (8), we get

ρ(Y,hX)−ρ(ξ ,ξ )g(Y,hX)+(k−1){ρ(Y,X)−ρ(ξ ,ξ )g(X ,Y )}. (27)

Using (26) in (27), we obtain
k{ρ(Y,X)−ρ(ξ ,ξ )g(X ,Y )}= 0. (28)

Since k 6= 0, it follows that
ρ(Y,X) = ρ(ξ ,ξ )g(X ,Y ). (29)

Thus, we can state the following:
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Theorem 3.2. A symmetric parallel second order covariant tensor in a generalized (k,µ)-space form M( f1....., f6),
with f1 6= f3 is a constant multiple of the metric tensor.

As an immediate corollary of theorem 3.1 we have the following result.

Corollary 3.3. A locally Ricci symmetric (∇S = 0) generalized (k,µ)-space form M( f1....., f6), with f1 6= f3 is an
Einstein manifold.

Next, we consider, let M( f1....., f6) be a generalized (k,µ)-space form admitting second order skew-symmetric
parallel tensor ρ [12]. Putting Y =W = ξ in (18) and using (12), we get

( f1− f3){η(X)ρ(ξ ,Z)−ρ(X ,Z)−η(Z)ρ(ξ ,X)}
= ( f4− f6){ρ(hX ,Z)+η(Z)ρ(ξ ,hX)}.

(30)

Replacing X by hX in (30) and using (8), we get

( f1− f3){ρ(hX ,Z)+η(Z)ρ(ξ ,hX)}
= ( f4− f6)(k−1){ρ(X ,Z)−η(X)ρ(ξ ,Z)+η(Z)ρ(ξ ,X)}.

(31)

Using (30) and (31), we obtain

{( f1− f3)
2 +(k−1)( f4− f6)

2}{η(X)ρ(ξ ,Z)

−ρ(X ,Z)+η(Z)ρ(ξ ,X)}= 0.
(32)

Consider a non-empty open subset U of M such that {( f1− f3)
2 +(k−1)( f4− f6)

2} 6= 0, then we have

ρ(X ,Z)−η(X)ρ(ξ ,Z)+η(Z)ρ(ξ ,X) = 0. (33)

Now, let A be a (1,1)-type tensor field which is metrically equivalent to ρ , that is, ρ(X ,Y ) = g(AX ,Y ), Then from
(33), we have

g(AX ,Z) = η(X)g(Aξ ,Z)−η(Z)g(Aξ ,X), (34)

and thus
AX = η(X)Aξ −g(Aξ ,X)ξ . (35)

From (35), we can see if Aξ = 0, then AX = 0, and hence ρ = 0.
Now, we suppose that Aξ 6= 0, let (35) take the inner product with Aξ , we obtain g(Aξ ,AX) = η(X)g(Aξ ,Aξ ). So
it holds

A2
ξ =−g(Aξ ,Aξ )ξ . (36)

Differentiating the above equation covariantly along X , we obtain

∇X A2
ξ = A2

∇X ξ = A2(−φX−φhX), (37)
∇X A2

ξ = 2g(A2
ξ ,∇X ξ )ξ +g(A2

ξ ,ξ )∇X ξ , (38)
= g(Aξ ,Aξ )(φX +φhX).

Combining (37) with (38), it follows that

A2
φX +A2

φhX +g(Aξ ,Aξ )(φX +φhX) = 0. (39)

Replacing X by hX and using (8), we obtain

A2
φhX− (k−1)A2

φX +g(Aξ ,Aξ )(φhX− (k−1)φX) = 0. (40)

From (39) and (40), we have
k{A2

φX +g(Aξ ,Aξ )φX}= 0. (41)

Replacing φX by X in (41) to get
k{A2X +g(Aξ ,Aξ )X}= 0. (42)

If k 6= 0 implies
A2X =−g(Aξ ,Aξ )X =−‖Aξ‖2X . (43)

Now, if ‖Aξ‖ 6= 0, then J = 1
‖Aξ‖A is an almost complex structure on U . In fact, (J,g) is a Kaehler structure on

U . The fundamental second order skew-symmetric parallel tensor is g(JX ,Y ) = 1
‖Aξ‖g(AX ,Y ) = 1

‖Aξ‖ρ(X ,Y ) with
1
‖Aξ‖ = constant. But (34) implies ρ is degenerate, which is a contradition. So ‖Aξ‖= 0 and hence ρ = 0. Thus
we state the following:
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Theorem 3.4. In a generalized (k,µ)-space form M( f1....., f6) with k 6= 0, there is no nonzero second order
skew-symmetric parallel tensor provided that {( f1− f3)

2 +(k−1)( f4− f6)
2} 6= 0.

A straightforward computation gives
(Lξ g)(X ,Y ) =−2g(φhX ,Y ). (44)

The metric g is called η-Einstein if there exists two real functions a and b such that the Ricci tensor S of g is given
by

S(X ,Y ) = ag(X ,Y )+bη(X)η(Y ). (45)

Let {e1,e2,e3, .......e2n+1} be a local orthonormal basis of vector fields in M. Then by taking X = Y = ei in (45)
and summing up with respect to i, we obtain

r = (2n+1)a+b. (46)

Again by taking X = Y = ξ , in (45) and then using (4) and (15), we get

2n( f1− f3) = a+b. (47)

From (46) and (47), we obtain

a =
r

2n
− ( f1− f3) b = (2n+1)( f1− f3)−

r
2n

. (48)

Substituting the values of a and b in (45), we get

S(X ,Y ) = { r
2n
− ( f1− f3)}g(X ,Y )

+{(2n+1)( f1− f3)−
r

2n
}η(X)η(Y ).

(49)

Suppose
ρ(X ,Y ) = (Lξ g)(X ,Y )+2S(X ,Y ). (50)

Using (44) and (49) in (50), we obtain

ρ(X ,Y ) = { r
n
−2( f1− f3)}g(X ,Y )

+{2(2n+1)( f1− f3)−
r
n
}η(X)η(Y )−2g(φhX ,Y ).

(51)

Taking X = Y = ξ in (51), we get
ρ(ξ ,ξ ) = 4n( f1− f3). (52)

If (g,ξ ,λ ) is a Ricci soliton on a generalized (k,µ)-space form M( f1....., f6), then from (3) and (50), we have

ρ(X ,Y ) =−2λg(X ,Y ). (53)

Setting X = Y = ξ in (53), we get
ρ(ξ ,ξ ) =−2λ . (54)

Hence from (52) and (54), we have
λ =−2n( f1− f3). (55)

Thus we state the following:

Theorem 3.5. If the tensor field Lξ g+ 2S on a generalized (k,µ)-space form M( f1....., f6) is parallel, then the
Ricci soliton (g,ξ ,λ ) is shrinking if f1 > f3 or expanding if f1 < f3 or steady if f1 = f3.

Taking V = ξ in (3), then we have

(Lξ g)(X ,Y )+2S(X ,Y )+2λg(X ,Y ) = 0. (56)

Making use of (14) and (44) in (56), we obtain

−g(φhX ,Y )+{2n f1 +3 f2− f3 +λ}g(X ,Y )

+{(2n−1) f4− f6}g(hX ,Y )−{3 f2 +(2n−1) f3}η(X)η(Y ) = 0.
(57)
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Replacing X by hX and using (4) and (8) in (57), we obtain

(k−1)g(φX ,Y )+{2n f1 +3 f2− f3 +λ}g(hX ,Y )

+((2n−1) f4− f6)(k−1){−g(X ,Y )+η(X)η(Y )}= 0.
(58)

By taking X = Y = ei, where {ei : i = 1,2,3, ........,2n+1} is an orthonormal basis, we get

−2n(k−1){(2n−1) f4− f6}= 0. (59)

If (2n−1) f4 6= f6, then we must have k = 1. Thus we state the following:

Theorem 3.6. If a (2n+1)-dimensional generalized (k,µ)-space form M( f1....., f6) admitting a Ricci soliton with
(2n−1) f4 6= f6 , then k = 1. i.e. M is Sasakian.

A vector field V on a Kenmotsu manifold is said to be conformal Killing vector field [20] if

(LVg)(X ,Y ) = 2σg(X ,Y ), (60)

where σ is a function on the manifold.
Let (g,V,λ ) be a Ricci soliton in a 3 dimensional generalized (k,µ)-space form M( f1....., f6). Then from (60) and
(3), we have

S(X ,Y ) =−(λ +σ)g(X ,Y ), (61)

which yields
QX =−(λ +σ)X , (62)

S(X ,ξ ) =−(λ +σ)η(X), (63)

r =−3(λ +σ). (64)

Since in a three-dimensional Riemannian manifold the conformal curvature tensor C vanishes, we have

R(X ,Y )Z = g(Y,Z)QX−g(X ,Z)QY +S(Y,Z)X−S(X ,Z)Y

− r
2
[g(Y,Z)X−g(X ,Z)Y ],

(65)

where R is Riemannian curvature tensor of type (1,3).
Using (62), (63) and (64) in (65) and by taking Z = ξ , we get

R(X ,Y )ξ =
(λ +σ)

2
{η(X)Y −η(Y )X}. (66)

By comparing (11) and (66), we obtain

λ =−{2( f1− f3)+σ} and f4 = f6. (67)

This leads to the following:

Theorem 3.7. If the generating vector field V is a conformal Killing vector field with associated function σ , then the
Ricci soliton in a three-dimensional generalized (k,µ)-space form M( f1....., f6) is shrinking if f1 < f3 or expanding
if f1 > f3 or steady if f4 = f6.

Replacing Y by hY in (11) and (66), then by comparing and using (8), we get

{λ +σ

2
+ f1− f3}η(X)hY +(k−1)( f4− f6)η(Y )φ 2X = 0. (68)

Taking Y = ξ in (68), we get k = 1 or f4 = f6. Thus we state the following:

Theorem 3.8. In a three-dimensional generalized (k,µ)-space form M( f1....., f6) admitting a Ricci soliton (g,V,λ ),
where V is a conformal Killing vector field with associated function σ , then k = 1 or f4 = f6.
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