Second Order Parallel Tensor and Ricci Solitons on Generalized (k, μ)-Space forms

D. L. Kiran Kumar ${ }^{* 1}$, H. G. Nagaraja ${ }^{\dagger 2}$
${ }^{1}$ Department of Mathematics, Bangalore University, Jnana Bharathi Campus, Bengaluru - 560 056, INDIA
${ }^{2}$ Department of Mathematics, Bangalore University, Jnana Bharathi Campus, Bengaluru - 560 056, INDIA

Keywords

Generalized (k, μ)-Space form, second order parallel tensor, Ricci solitons, shrinking, expanding, steady.

Abstract

The object of the present paper is to study the symmetric and skewsymmetric properties of a second order parallel tensor and it is shown that a symmetric parallel second order covariant tensor in a generalized (k, μ)-Space forms is a constant multiple of the metric tensor g. Further we shown that there is no nonzero second order skew-symmetric parallel tensor provided that $\left(f_{1}-f_{3}\right)^{2}+(k-1)\left(f_{4}-f_{6}\right)^{2} \neq 0$. Also we studied Ricci solitons on generalized (k, μ)-Space forms and obtained some interesting results.

1. Introduction

A generalized Sasakian space form was first introduced by Carriazo et al. in [1] as that almost contact metric manifold (M, ϕ, ξ, η, g) whose curvature tensor R is given by

$$
\begin{equation*}
R=f_{1} R_{1}+f_{2} R_{2}+f_{3} R_{3} \tag{1}
\end{equation*}
$$

where f_{1}, f_{2}, f_{3} are some differentiable functions on M and

$$
\begin{aligned}
& R_{1}(X, Y) Z=g(Y, Z) X-g(X, Z) Y \\
& R_{2}(X, Y) Z=g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z \\
& R_{3}(X, Y) Z=\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi,
\end{aligned}
$$

for any vector fields X, Y, Z on M.
By motivating the works on generalized Sasakian-space forms and (k, μ)-space forms, the authors [4] introduced the thought of generalized (k, μ)-space forms. A generalized (k, μ)-space form as an almost contact metric manifold (M, ϕ, ξ, η, g) whose curvature tensor are often written as

$$
\begin{equation*}
R=f_{1} R_{1}+f_{2} R_{2}+f_{3} R_{3}+f_{4} R_{4}+f_{5} R_{5}+f_{6} R_{6} \tag{2}
\end{equation*}
$$

where $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}$ are some differentiable functions on M, R_{1}, R_{2}, R_{3} are the tensors defined above and

$$
\begin{aligned}
& R_{4}(X, Y) Z=g(Y, Z) h X-g(X, Z) h Y+g(h Y, Z) X-g(h X, Z) Y, \\
& R_{5}(X, Y) Z=g(h Y, Z) h X-g(h X, Z) h Y+g(\phi h X, Z) \phi h Y-g(\phi h Y, Z) \phi h X \\
& R_{6}(X, Y) Z=\eta(X) \eta(Z) h Y-\eta(Y) \eta(Z) h X+g(h X, Z) \eta(Y) \xi-g(h Y, Z) \eta(X) \xi
\end{aligned}
$$

where $2 h=L_{\xi} \phi$ and L is the usual Lie derivative and we will denote such a manifold by $M\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right)$. Natural examples of generalized (k, μ)-space forms are (k, μ)-space forms and generalized Sasakian space forms. The authors in [1] established that contact metric generalized (k, μ)-space forms are generalized (k, μ) spaces and if dimension is greater than or equal to 5 , then they are (k, μ) spaces with constant ϕ-sectional curvature $2 f_{6}-1$. They gave a technique of constructing examples of generalized (k, μ)-space forms and established that generalized (k, μ)-space forms with trans-Sasakian structure reduces to generalized Sasakian space forms. More in [3], it is

[^0]proved that under D_{a}-homothetic deformation, generalized (k, μ)-space form structure is preserved for dimension 3, but not in general. (k, μ)-space form have been studied widely by several authors like $[6,10,15,16]$ and various others.
Ricci soliton, introduced by Hamilton [7] are natural generalizations of the Einstein metrics and is defined on a Riemannian manifold (M, g). A Ricci soliton (g, V, λ) defined on (M, g) as
\[

$$
\begin{equation*}
\left(L_{\mathrm{V}} g\right)(X, Y)+2 S(X, Y)+2 \lambda g(X, Y)=0, \tag{3}
\end{equation*}
$$

\]

where L_{V} denotes the Lie-derivative of Riemannian metric g along a vector field V, λ be a consant and X, Y are arbitrary vector fields on M. A Ricci soliton is said to shrinking or steady or expanding to the extent that λ is negative, zero or positive respectively. Ricci solitons have been considered broadly with regards to contact geometry; we may refer to $[5,8,14,17,18]$ and references therein.
The paper is organized as follows: The section 2 contains some basic results on almost contact geometry and generalized (k, μ)-space forms. In section 3 , it is shown that if a generalized (k, μ)-Space form admits a second order symmetric parallel tensor is a constant multiple of the associated metric tensor. We also obtain that on a generalized (k, μ)-Space form with $k \neq 0$, there is no nonzero second order skew-symmetric parallel tensor provided that $\left(f_{1}-f_{3}\right)^{2}+(k-1)\left(f_{4}-f_{6}\right)^{2} \neq 0$. Finally we studied Ricci solitons in generalized (k, μ)-Space form and obtained some interesting results.

2. Preliminaries

In this section, we recall some general definitions and fundamental equations are presented which will be utilized later. A $(2 n+1)$-dimensional smooth manifold M is said to be contact if it has a global 1-form η such that $\eta \wedge(d \eta)^{n} \neq 0$ on M. Given a contact 1-form η there always exists a unique vector field ξ such that $(d \eta)(\xi, X)=0$. Polarization of $d \eta$ on the contact subbundle D (defined by $D=0$), yields a Riemannian metric g and a (1,1)-tensor field ϕ such that

$$
\begin{gather*}
\phi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad g(X, \xi)=\eta(X), \quad \eta(\xi)=1, \quad \eta \circ \phi=0, \tag{4}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{5}\\
g(X, \phi Y)=d \eta(X, Y), \quad g(X, \phi Y)=-g(Y, \phi X) \tag{6}
\end{gather*}
$$

for all vector fields X, Y on M. In a contact metric manifold, we characterize a $(1,1)$ tensor field h by $h=\frac{1}{2} L_{\xi} \phi$, where L signifies the Lie differentiation. At this point h is symmetric and satisifies $h \phi=-\phi h$. Likewise we have $\operatorname{Tr} \cdot h=\operatorname{Tr} \cdot \phi h=0$ and $h \xi=0$.
Moreover, if ∇ signifies the Riemannian connection of g, then the following relation holds:

$$
\begin{equation*}
\nabla_{X} \xi=-\phi X-\phi h X \tag{7}
\end{equation*}
$$

In a (k, μ)-contact metric manifold the following relations hold $[2,9]$:

$$
\begin{align*}
h^{2} & =(k-1) \phi^{2}, \quad k \leq 1 \tag{8}\\
\left(\nabla_{X} \phi\right) Y & =g(X+h X, Y) \xi-\eta(Y)(X+h X) \tag{9}\\
\left(\nabla_{X} h\right) Y & =[(1-k) g(X, \phi Y)-g(X, \phi h Y)] \xi \\
& -\eta(Y)[(1-k) \phi X+\phi h X]-\mu \eta(X) \phi h Y . \tag{10}
\end{align*}
$$

Also in a $(2 n+1)$-dimensional generalized (k, μ)-space form, the following relations hold :

$$
\begin{align*}
R(X, Y) \xi & =\left(f_{1}-f_{3}\right)\{\eta(Y) X-\eta(X) Y\} \\
& +\left(f_{4}-f_{6}\right)\{\eta(Y) h X-\eta(X) h Y\} \tag{11}\\
R(\xi, X) Z & =\left(f_{1}-f_{3}\right)\{g(X, Z) \xi-\eta(Z) X\} \\
& +\left(f_{4}-f_{6}\right)\{g(h X, Z) \xi-\eta(Z) h X\}, \tag{12}\\
Q X & =\left\{2 n f_{1}+3 f_{2}-f_{3}\right\} X+\left\{(2 n-1) f_{4}-f_{6}\right\} h X \\
& -\left\{3 f_{2}+(2 n-1) f_{3}\right\} \eta(X) \xi, \tag{13}\\
S(X, Y) & =\left\{2 n f_{1}+3 f_{2}-f_{3}\right\} g(X, Y)+\left\{(2 n-1) f_{4}-f_{6}\right\} g(h X, Y) \\
& -\left\{3 f_{2}+(2 n-1) f_{3}\right\} \eta(X) \eta(Y), \tag{14}\\
S(X, \xi) & =2 n\left(f_{1}-f_{3}\right) \eta(X), \tag{15}\\
r & =2 n\left\{(2 n+1) f_{1}+3 f_{2}-2 f_{3}\right\}, \tag{16}
\end{align*}
$$

where Q is the Ricci operator, S is the Ricci tensor and r is the scalar curvature of $M\left(f_{1} \ldots ., f_{6}\right)$.

3. Second Order Parallel Tensor and Ricci Solitons

In this section, we consider a second order symmetric parallel tensor on generalized (k, μ)-contact metric manifolds. Mondal et al. [13], De et al. [5] obtained some classification results on second order parallel tensors in (k, μ)-contact metric manifolds.

Definition 3.1. (see $[11,19]$) Let M be a Riemannian manifold with metric g, ξ an unitary vector field, η be the 1 -form dual to ξ. Further, let ρ be a symmetric tensor field of (0,2)-type on M which we suppose to be parallel with respect to ∇ that is $\nabla \rho=0$, where ∇ denotes the operator of covariant differentiation with respect to the metric tensor g.

Suppose ρ be a second order symmetric tensor field, that is, $\rho(X, Y)=\rho(Y, X)$ on a generalized (k, μ)-space form $M\left(f_{1} \ldots ., f_{6}\right)$, such that $\nabla \rho=0$. Then it follows that

$$
\begin{equation*}
\nabla^{2} \rho(X, Y ; Z, W)-\nabla^{2} \rho(X, Y ; W, Z)=0 \tag{17}
\end{equation*}
$$

From (17), we obtain the relation:

$$
\begin{equation*}
\rho(R(X, Y) Z, W)+\rho(R(X, Y) W, Z)=0, \tag{18}
\end{equation*}
$$

for arbitrary vector fields X, Y, Z on M.
Substitution of $X=Z=W=\xi$ in (18) gives us

$$
\begin{equation*}
\rho(\xi, R(\xi, Y) \xi)=0 . \tag{19}
\end{equation*}
$$

Using (11) in (19), we get

$$
\begin{equation*}
\left(f_{1}-f_{3}\right)\{\eta(Y) \rho(\xi, \xi)-\rho(\xi, Y)\}=0 . \tag{20}
\end{equation*}
$$

Supposing $\left(f_{1}-f_{3}\right) \neq 0$, (20) reduces to

$$
\begin{equation*}
\eta(Y) \rho(\xi, \xi)-\rho(\xi, Y)=0 \tag{21}
\end{equation*}
$$

Taking the covariant differentiation of (21) with respect to X, we get

$$
\begin{align*}
& g\left(\nabla_{X} Y, \xi\right) \rho(\xi, \xi)+g\left(Y, \nabla_{X} \xi\right) \rho(\xi, \xi)+2 g(Y, \xi) \rho\left(\nabla_{X} \xi, \xi\right) \tag{22}\\
& -\rho\left(\nabla_{X} \xi, Y\right)-\rho\left(\xi, \nabla_{X} Y\right)=0
\end{align*}
$$

Replacing Y by $\nabla_{X} Y$ in (21), we obtain

$$
\begin{equation*}
g\left(\nabla_{X} Y, \xi\right) \rho(\xi, \xi)-\rho\left(\xi, \nabla_{X} Y\right)=0 . \tag{23}
\end{equation*}
$$

In view of (23), it follows from (22) that

$$
\begin{equation*}
g\left(Y, \nabla_{X} \xi\right) \rho(\xi, \xi)+2 g(Y, \xi) \rho\left(\nabla_{X} \xi, \xi\right)-\rho\left(\nabla_{X} \xi, Y\right)=0 \tag{24}
\end{equation*}
$$

Using (7) in (24), we get

$$
\begin{equation*}
\rho(Y, \phi X)-\rho(Y, h \phi X)-\rho(\xi, \xi) g(Y, \phi X)+\rho(\xi, \xi) g(Y, h \phi X)=0 . \tag{25}
\end{equation*}
$$

Replacing X by ϕX in (25) and then using (4), we obtain

$$
\begin{equation*}
\rho(Y, X)-\rho(\xi, \xi) g(X, Y)-\rho(Y, h X)+\rho(\xi, \xi) g(Y, h X)-\eta(X) \rho(Y, \xi)=0 . \tag{26}
\end{equation*}
$$

Replacing X by $h X$ in (26) and using (4) and (8), we get

$$
\begin{equation*}
\rho(Y, h X)-\rho(\xi, \xi) g(Y, h X)+(k-1)\{\rho(Y, X)-\rho(\xi, \xi) g(X, Y)\} . \tag{27}
\end{equation*}
$$

Using (26) in (27), we obtain

$$
\begin{equation*}
k\{\rho(Y, X)-\rho(\xi, \xi) g(X, Y)\}=0 \tag{28}
\end{equation*}
$$

Since $k \neq 0$, it follows that

$$
\begin{equation*}
\rho(Y, X)=\rho(\xi, \xi) g(X, Y) \tag{29}
\end{equation*}
$$

Thus, we can state the following:

Theorem 3.2. A symmetric parallel second order covariant tensor in a generalized (k, μ)-space form $M\left(f_{1} \ldots ., f_{6}\right)$, with $f_{1} \neq f_{3}$ is a constant multiple of the metric tensor.
As an immediate corollary of theorem 3.1 we have the following result.
Corollary 3.3. A locally Ricci symmetric $(\nabla S=0)$ generalized (k, μ)-space form $M\left(f_{1} \ldots ., f_{6}\right)$, with $f_{1} \neq f_{3}$ is an Einstein manifold.

Next, we consider, let $M\left(f_{1} \ldots . ., f_{6}\right)$ be a generalized (k, μ)-space form admitting second order skew-symmetric parallel tensor ρ [12]. Putting $Y=W=\xi$ in (18) and using (12), we get

$$
\begin{align*}
& \left(f_{1}-f_{3}\right)\{\eta(X) \rho(\xi, Z)-\rho(X, Z)-\eta(Z) \rho(\xi, X)\} \tag{30}\\
& =\left(f_{4}-f_{6}\right)\{\rho(h X, Z)+\eta(Z) \rho(\xi, h X)\}
\end{align*}
$$

Replacing X by $h X$ in (30) and using (8), we get

$$
\begin{align*}
& \left(f_{1}-f_{3}\right)\{\rho(h X, Z)+\eta(Z) \rho(\xi, h X)\} \tag{31}\\
& =\left(f_{4}-f_{6}\right)(k-1)\{\rho(X, Z)-\eta(X) \rho(\xi, Z)+\eta(Z) \rho(\xi, X)\}
\end{align*}
$$

Using (30) and (31), we obtain

$$
\begin{align*}
& \left\{\left(f_{1}-f_{3}\right)^{2}+(k-1)\left(f_{4}-f_{6}\right)^{2}\right\}\{\eta(X) \rho(\xi, Z) \tag{32}\\
& -\rho(X, Z)+\eta(Z) \rho(\xi, X)\}=0
\end{align*}
$$

Consider a non-empty open subset U of M such that $\left\{\left(f_{1}-f_{3}\right)^{2}+(k-1)\left(f_{4}-f_{6}\right)^{2}\right\} \neq 0$, then we have

$$
\begin{equation*}
\rho(X, Z)-\eta(X) \rho(\xi, Z)+\eta(Z) \rho(\xi, X)=0 . \tag{33}
\end{equation*}
$$

Now, let A be a (1,1)-type tensor field which is metrically equivalent to ρ, that is, $\rho(X, Y)=g(A X, Y)$, Then from (33), we have

$$
\begin{equation*}
g(A X, Z)=\eta(X) g(A \xi, Z)-\eta(Z) g(A \xi, X) \tag{34}
\end{equation*}
$$

and thus

$$
\begin{equation*}
A X=\eta(X) A \xi-g(A \xi, X) \xi \tag{35}
\end{equation*}
$$

From (35), we can see if $A \xi=0$, then $A X=0$, and hence $\rho=0$.
Now, we suppose that $A \xi \neq 0$, let (35) take the inner product with $A \xi$, we obtain $g(A \xi, A X)=\eta(X) g(A \xi, A \xi)$. So it holds

$$
\begin{equation*}
A^{2} \xi=-g(A \xi, A \xi) \xi \tag{36}
\end{equation*}
$$

Differentiating the above equation covariantly along X, we obtain

$$
\begin{align*}
\nabla_{X} A^{2} \xi & =A^{2} \nabla_{X} \xi=A^{2}(-\phi X-\phi h X) \tag{37}\\
\nabla_{X} A^{2} \xi & =2 g\left(A^{2} \xi, \nabla_{X} \xi\right) \xi+g\left(A^{2} \xi, \xi\right) \nabla_{X} \xi \tag{38}\\
& =g(A \xi, A \xi)(\phi X+\phi h X)
\end{align*}
$$

Combining (37) with (38), it follows that

$$
\begin{equation*}
A^{2} \phi X+A^{2} \phi h X+g(A \xi, A \xi)(\phi X+\phi h X)=0 . \tag{39}
\end{equation*}
$$

Replacing X by $h X$ and using (8), we obtain

$$
\begin{equation*}
A^{2} \phi h X-(k-1) A^{2} \phi X+g(A \xi, A \xi)(\phi h X-(k-1) \phi X)=0 . \tag{40}
\end{equation*}
$$

From (39) and (40), we have

$$
\begin{equation*}
k\left\{A^{2} \phi X+g(A \xi, A \xi) \phi X\right\}=0 \tag{41}
\end{equation*}
$$

Replacing ϕX by X in (41) to get

$$
\begin{equation*}
k\left\{A^{2} X+g(A \xi, A \xi) X\right\}=0 \tag{42}
\end{equation*}
$$

If $k \neq 0$ implies

$$
\begin{equation*}
A^{2} X=-g(A \xi, A \xi) X=-\|A \xi\|^{2} X \tag{43}
\end{equation*}
$$

Now, if $\|A \xi\| \neq 0$, then $J=\frac{1}{\|A \xi\|} A$ is an almost complex structure on U. In fact, (J, g) is a Kaehler structure on U. The fundamental second order skew-symmetric parallel tensor is $g(J X, Y)=\frac{1}{\|A \xi\|} g(A X, Y)=\frac{1}{\|A \xi\|} \rho(X, Y)$ with $\frac{1}{\|A \xi\|}=$ constant. But (34) implies ρ is degenerate, which is a contradition. So $\|A \xi\|=0$ and hence $\rho=0$. Thus we state the following:

Theorem 3.4. In a generalized (k, μ)-space form $M\left(f_{1} \ldots . ., f_{6}\right)$ with $k \neq 0$, there is no nonzero second order skew-symmetric parallel tensor provided that $\left\{\left(f_{1}-f_{3}\right)^{2}+(k-1)\left(f_{4}-f_{6}\right)^{2}\right\} \neq 0$.

A straightforward computation gives

$$
\begin{equation*}
\left(L_{\xi} g\right)(X, Y)=-2 g(\phi h X, Y) \tag{44}
\end{equation*}
$$

The metric g is called η-Einstein if there exists two real functions a and b such that the Ricci tensor S of g is given by

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{45}
\end{equation*}
$$

Let $\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots . e_{2 n+1}\right\}$ be a local orthonormal basis of vector fields in M. Then by taking $X=Y=e_{i}$ in (45) and summing up with respect to i, we obtain

$$
\begin{equation*}
r=(2 n+1) a+b \tag{46}
\end{equation*}
$$

Again by taking $X=Y=\xi$, in (45) and then using (4) and (15), we get

$$
\begin{equation*}
2 n\left(f_{1}-f_{3}\right)=a+b \tag{47}
\end{equation*}
$$

From (46) and (47), we obtain

$$
\begin{equation*}
a=\frac{r}{2 n}-\left(f_{1}-f_{3}\right) \quad b=(2 n+1)\left(f_{1}-f_{3}\right)-\frac{r}{2 n} . \tag{48}
\end{equation*}
$$

Substituting the values of a and b in (45), we get

$$
\begin{align*}
S(X, Y) & =\left\{\frac{r}{2 n}-\left(f_{1}-f_{3}\right)\right\} g(X, Y) \\
& +\left\{(2 n+1)\left(f_{1}-f_{3}\right)-\frac{r}{2 n}\right\} \eta(X) \eta(Y) \tag{49}
\end{align*}
$$

Suppose

$$
\begin{equation*}
\rho(X, Y)=\left(L_{\xi} g\right)(X, Y)+2 S(X, Y) \tag{50}
\end{equation*}
$$

Using (44) and (49) in (50), we obtain

$$
\begin{align*}
\rho(X, Y) & =\left\{\frac{r}{n}-2\left(f_{1}-f_{3}\right)\right\} g(X, Y) \\
& +\left\{2(2 n+1)\left(f_{1}-f_{3}\right)-\frac{r}{n}\right\} \eta(X) \eta(Y)-2 g(\phi h X, Y) . \tag{51}
\end{align*}
$$

Taking $X=Y=\xi$ in (51), we get

$$
\begin{equation*}
\rho(\xi, \xi)=4 n\left(f_{1}-f_{3}\right) \tag{52}
\end{equation*}
$$

If (g, ξ, λ) is a Ricci soliton on a generalized (k, μ)-space form $M\left(f_{1} \ldots . ., f_{6}\right)$, then from (3) and (50), we have

$$
\begin{equation*}
\rho(X, Y)=-2 \lambda g(X, Y) \tag{53}
\end{equation*}
$$

Setting $X=Y=\xi$ in (53), we get

$$
\begin{equation*}
\rho(\xi, \xi)=-2 \lambda \tag{54}
\end{equation*}
$$

Hence from (52) and (54), we have

$$
\begin{equation*}
\lambda=-2 n\left(f_{1}-f_{3}\right) . \tag{55}
\end{equation*}
$$

Thus we state the following:
Theorem 3.5. If the tensor field $L_{\xi} g+2 S$ on a generalized (k, μ)-space form $M\left(f_{1} \ldots ., f_{6}\right)$ is parallel, then the Ricci soliton (g, ξ, λ) is shrinking if $f_{1}>f_{3}$ or expanding if $f_{1}<f_{3}$ or steady if $f_{1}=f_{3}$.

Taking $V=\xi$ in (3), then we have

$$
\begin{equation*}
\left(L_{\xi} g\right)(X, Y)+2 S(X, Y)+2 \lambda g(X, Y)=0 \tag{56}
\end{equation*}
$$

Making use of (14) and (44) in (56), we obtain

$$
\begin{align*}
& -g(\phi h X, Y)+\left\{2 n f_{1}+3 f_{2}-f_{3}+\lambda\right\} g(X, Y) \tag{57}\\
& +\left\{(2 n-1) f_{4}-f_{6}\right\} g(h X, Y)-\left\{3 f_{2}+(2 n-1) f_{3}\right\} \eta(X) \eta(Y)=0 .
\end{align*}
$$

Replacing X by $h X$ and using (4) and (8) in (57), we obtain

$$
\begin{align*}
& (k-1) g(\phi X, Y)+\left\{2 n f_{1}+3 f_{2}-f_{3}+\lambda\right\} g(h X, Y) \\
& +\left((2 n-1) f_{4}-f_{6}\right)(k-1)\{-g(X, Y)+\eta(X) \eta(Y)\}=0 . \tag{58}
\end{align*}
$$

By taking $X=Y=e_{i}$, where $\left\{e_{i}: i=1,2,3, \ldots \ldots \ldots, 2 n+1\right\}$ is an orthonormal basis, we get

$$
\begin{equation*}
-2 n(k-1)\left\{(2 n-1) f_{4}-f_{6}\right\}=0 . \tag{59}
\end{equation*}
$$

If $(2 n-1) f_{4} \neq f_{6}$, then we must have $k=1$. Thus we state the following:
Theorem 3.6. If a $(2 n+1)$-dimensional generalized (k, μ)-space form $M\left(f_{1} \ldots . ., f_{6}\right)$ admitting a Ricci soliton with $(2 n-1) f_{4} \neq f_{6}$, then $k=1$. i.e. M is Sasakian.
A vector field V on a Kenmotsu manifold is said to be conformal Killing vector field [20] if

$$
\begin{equation*}
\left(L_{\mathrm{V}} g\right)(X, Y)=2 \sigma g(X, Y) \tag{60}
\end{equation*}
$$

where σ is a function on the manifold.
Let (g, V, λ) be a Ricci soliton in a 3 dimensional generalized (k, μ)-space form $M\left(f_{1} \ldots ., f_{6}\right)$. Then from (60) and (3), we have

$$
\begin{equation*}
S(X, Y)=-(\lambda+\sigma) g(X, Y) \tag{61}
\end{equation*}
$$

which yields

$$
\begin{gather*}
Q X=-(\lambda+\sigma) X, \tag{62}\\
S(X, \xi)=-(\lambda+\sigma) \eta(X), \tag{63}\\
r=-3(\lambda+\sigma) . \tag{64}
\end{gather*}
$$

Since in a three-dimensional Riemannian manifold the conformal curvature tensor C vanishes, we have

$$
\begin{align*}
R(X, Y) Z & =g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \\
& -\frac{r}{2}[g(Y, Z) X-g(X, Z) Y], \tag{65}
\end{align*}
$$

where R is Riemannian curvature tensor of type $(1,3)$.
Using (62), (63) and (64) in (65) and by taking $Z=\xi$, we get

$$
\begin{equation*}
R(X, Y) \xi=\frac{(\lambda+\sigma)}{2}\{\eta(X) Y-\eta(Y) X\} \tag{66}
\end{equation*}
$$

By comparing (11) and (66), we obtain

$$
\begin{equation*}
\lambda=-\left\{2\left(f_{1}-f_{3}\right)+\sigma\right\} \quad \text { and } \quad f_{4}=f_{6} . \tag{67}
\end{equation*}
$$

This leads to the following:
Theorem 3.7. If the generating vector field V is a conformal Killing vector field with associated function σ, then the Ricci soliton in a three-dimensional generalized (k, μ)-space form $M\left(f_{1} \ldots ., f_{6}\right)$ is shrinking if $f_{1}<f_{3}$ or expanding if $f_{1}>f_{3}$ or steady if $f_{4}=f_{6}$.

Replacing Y by $h Y$ in (11) and (66), then by comparing and using (8), we get

$$
\begin{equation*}
\left\{\frac{\lambda+\sigma}{2}+f_{1}-f_{3}\right\} \eta(X) h Y+(k-1)\left(f_{4}-f_{6}\right) \eta(Y) \phi^{2} X=0 . \tag{68}
\end{equation*}
$$

Taking $Y=\xi$ in (68), we get $k=1$ or $f_{4}=f_{6}$. Thus we state the following:
Theorem 3.8. In a three-dimensional generalized (k, μ)-space form $M\left(f_{1} \ldots ., f_{6}\right)$ admitting a Ricci soliton (g, V, λ), where V is a conformal Killing vector field with associated function σ, then $k=1$ or $f_{4}=f_{6}$.

Acknowledgements The authors are grateful to the referees for their valuable suggestions towards the improvement of the paper.

References

[1] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 2004(141): 157-183.
[2] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. Springer Verlag, New York, 1973(509): 1-16.
[3] A. Carriazo and V. Martin-Molina, Generalized (k, μ)-space forms and D_{a}-homothetic deformations, Balkan Journal of Geometry and its Applications, 2011(16): 37-47.
[4] A. Carriazo, V. Martin-Molina and M. M. Tripathi, Generalized (k, μ)-space forms, Mediterr. J. Math., 2013(10): 475-496.
[5] U. C. De and K. Mandal, Certain results on generalized (κ, μ)-contact metric manifolds, Journal of Geometry, 2017(108): 611-621.
[6] M. Faghfouri and N. Ghaffarzadeh, On doubly warped product submanifolds of generalized (κ, μ)-space forms, Afrika Matematika, 2015(26): 1443-1455.
[7] R. S. Hamilton, The Ricci flow on surfaces, Contemporary Mathematics, 1988(71): 237-261.
[8] S. K. Hui and D. Chakraborty, Ricci almost solitons on Concircular Ricci pseudosymmetric β-Kenmotsu manifolds, Hacettepe Journal of Mathematics and Statistics, 2018(47): 579-587.
[9] J. B. Jun, A. Yildiz and U. C. De, On ϕ-recurrent (k, μ)-contact metric manifolds, Bulletin of the Korean Mathematical Society, 2008(45): 689-700.
[10] B. Laha, D-Conformal curvature tensor in Generalized (k, μ)-space forms, Mathematical Combinatorics, 2017(2): 43-51.
[11] H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Annals of Mathematics, 1925: 91-98.
[12] A. K. Mondal and U. C. De, Second order parallel tensor on $N(k)$-contact metric manifolds, Differential Geometry-Dynamical Systems, Balkan Society of Geometers, Geometry Balkan Press, 2010(12): 158-165.
[13] A. K. Mondal, U. C. De and C. Ozgur, Second order parallel tensors on (κ, μ) - contact metric manifolds, An. St. Univ. Ovidius Const., 2010(18): 229-238.
[14] H. G. Nagaraja, D. L. Kiran Kumar and V. S. Prasad, Ricci solitons in Kenmotsu manifolds under D-homothetic deformation, Khayyam J. Math., 2018(4): 102-109.
[15] D. G. Prakasha, S. K. Hui and K. Mirji, On 3-Dimensional Contact Metric Generalized (κ, μ)-Space Forms, International Journal of Mathematics and Mathematical Sciences, 2014: 6 pages.
[16] C. R. Premalatha and H. G. Nagaraja, Recurrent generalized (κ, μ)-space forms, Acta Universitatis Apulensis, 2014(38): 95-108.
[17] A. A. Shaikh and C. K. Mondal, Some results in η-Ricci Soliton and gradient ρ-Einstein soliton in a complete Riemannian manifold, 2018: arXiv:1808.04789.
[18] R. Sharma, Certain results on K-contact and (k, μ)-contact manifolds, Journal of Geometry, 2008(89): 138-147.
[19] R. Sharma, Second order parallel tensor in real and complex space forms, International Journal of Mathematics and Mathematical Sciences, 1989(12): 787-790.
[20] K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, Inc. New York.,1970 (1).

[^0]: *kirankumar250791@gmail.com
 †hgnraj@yahoo.com

