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Keywords Abstract: The object of the present paper is to study the symmetric and skew-
Generalized (k, i)-Space symmetric properties of a second order parallel tensor and it is shown that a symmet-
form, second order parallel ric parallel second order covariant tensor in a generalized (k, tt)-Space forms is a con-
tensor, Ricei solitons, stant multiple of the metric tensor g. Further we shown that there is no nonzero second

shrinking, expanding, steady.  rder skew-symmetric parallel tensor provided that (fi — f3)%+ (k— 1) (fa — fo)* #0.
Also we studied Ricci solitons on generalized (k, 1t)-Space forms and obtained some
interesting results.

1. Introduction

A generalized Sasakian space form was first introduced by Carriazo et al. in [1] as that almost contact metric
manifold (M, ¢,&,1m,g) whose curvature tensor R is given by

R = fiR| + faR2 + f3R3, ()

where f1, f2, f3 are some differentiable functions on M and

Ri(X,Y)Z=¢g(Y,2)X —g(X,2)Y,
Ry(X,Y)Z=g(X,0Z)¢Y —g(Y,0Z)9X +2g(X,0Y)9Z,
Ry(X,Y)Z=nX)n(2)Y —nY)n(Z2)X +g(X,Z)n(Y)E —g(¥,Z)n(X)&,

for any vector fields X,Y,Z on M.

By motivating the works on generalized Sasakian-space forms and (k, (1 )-space forms, the authors [4] introduced the
thought of generalized (k, it)-space forms. A generalized (k, 1t)-space form as an almost contact metric manifold
(M, $,E,1n,g) whose curvature tensor are often written as

R = fiR1 + faRo + f3R3 + faR4 + fsRs + feRe, (2)
where f1, f2, f3, f4, f5, f¢ are some differentiable functions on M, R, R, R3 are the tensors defined above and

Ry(X,Y)Z=g(Y,Z)hX — g(X,Z)hY + g(hY,Z)X — g(hX,Z)Y,
Rs(X,Y)Z = g(hY,Z)hX — g(hX,Z)hY + g(9hX,Z)phY — g(9hY,Z)9hX,
Re(X,Y)Z=n(X)N(Z)hY —n(Y)N(Z)hX +g(hX,Z)n(Y)& — g(hY,Z)N(X)E,

where 2 = Lg ¢ and L is the usual Lie derivative and we will denote such a manifold by M (f1,12, 3, f1, f5, fo)-

Natural examples of generalized (k, it )-space forms are (k, it)-space forms and generalized Sasakian space forms.
The authors in [1] established that contact metric generalized (k, it)-space forms are generalized (k, 1) spaces and
if dimension is greater than or equal to 5, then they are (k, 1t) spaces with constant ¢-sectional curvature 2fs — 1.
They gave a technique of constructing examples of generalized (k, i )-space forms and established that generalized
(k, 1)-space forms with trans-Sasakian structure reduces to generalized Sasakian space forms. More in [3], it is
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proved that under D,-homothetic deformation, generalized (k, it )-space form structure is preserved for dimension 3,
but not in general. (k, it)-space form have been studied widely by several authors like [6, 10, 15, 16] and various
others.

Ricci soliton, introduced by Hamilton [7] are natural generalizations of the Einstein metrics and is defined on a
Riemannian manifold (M, g). A Ricci soliton (g,V,A) defined on (M, g) as

(Lvg)(X,Y)+28(X,Y) +2Ag(X,Y) =0, 3)

where Ly denotes the Lie-derivative of Riemannian metric g along a vector field V, A be a consant and X,Y are
arbitrary vector fields on M. A Ricci soliton is said to shrinking or steady or expanding to the extent that A is
negative, zero or positive respectively. Ricci solitons have been considered broadly with regards to contact geometry;
we may refer to [5, 8, 14, 17, 18] and references therein.

The paper is organized as follows: The section 2 contains some basic results on almost contact geometry and
generalized (k, it)-space forms. In section 3, it is shown that if a generalized (k, ut)-Space form admits a second
order symmetric parallel tensor is a constant multiple of the associated metric tensor. We also obtain that on a
generalized (k, 1 )-Space form with k = 0, there is no nonzero second order skew-symmetric parallel tensor provided
that (fi — f3)> + (k—1)(fs — f5)> # 0. Finally we studied Ricci solitons in generalized (k, 1t)-Space form and
obtained some interesting results.

2. Preliminaries

In this section, we recall some general definitions and fundamental equations are presented which will be utilized
later. A (2n+ 1)-dimensional smooth manifold M is said to be contact if it has a global 1-form 71 such that
N A(dn)" # 0 on M. Given a contact 1-form 1) there always exists a unique vector field & such that (dn)(&,X) = 0.
Polarization of dn on the contact subbundle D (defined by D = 0), yields a Riemannian metric g and a (1, 1)-tensor
field ¢ such that

(PZXZ_X""TI(X)év ¢§:07 g(Xvé):n(X)ﬂ 77(5):1, no¢ =0, 4)
g(¢X7¢Y):8(X7Y)—77(X)TI(Y)» &)

for all vector fields X,Y on M. In a contact metric manifold, we characterize a (1, 1) tensor field 4 by h = %L‘: 9,
where L signifies the Lie differentiation. At this point 4 is symmetric and satisifies h¢ = —¢h. Likewise we have

Tr-h=Tr-ph=0and hé = 0.
Moreover, if V signifies the Riemannian connection of g, then the following relation holds:

Vx& =—¢X —9hX. (7
In a (k, u)-contact metric manifold the following relations hold [2, 9]:
o= (k=1)9% k<1, ®)
(Vx9)Y = g(X+hX,Y)6 —n(Y)(X +hX), ©)
(Vxh)Y = [(1-k)g(X,0Y)—g(X,0hY)|
— N)[(1—K)PX +§hX] — un(X)9hY. (10)

Also in a (2n+ 1)-dimensional generalized (k, it )-space form, the following relations hold :

RX,Y)E = (A-HBH{nT)X-nX)r}
+ (fa—fo){n(Y)hX —n(X)hY }, (11)
R(E.X)Z = (fi—-fH){eX,2)E—-n(2)X}
+  (fa—fo){g(hX,2)E —n(Z)hX}, (12)
0X = {2nfi+3fr—f3}X+{(2n—1)fs — fe}hX
- {3f+@2n-1)f3in(X)S, 13)
SX.,Y) = {2nfi+3f2—fs1eX.Y)+{(2n—1)fa— fe}g(hX.Y)
- {3f£+@n-1)fInX)n(Y), (14)
SX,8) = 2n(fi—f3)nX), (15)
ro= 2n{(2n+1)fi+3f—2f}, (16)

where Q is the Ricci operator, S is the Ricci tensor and r is the scalar curvature of M(fj....., f6).
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3. Second Order Parallel Tensor and Ricci Solitons

In this section, we consider a second order symmetric parallel tensor on generalized (k, ()-contact metric manifolds.
Mondal et al. [13], De et al. [5] obtained some classification results on second order parallel tensors in (k, 1 )-contact
metric manifolds.

Definition 3.1. (see [11, 19] ) Let M be a Riemannian manifold with metric g, & an unitary vector field, 1 be the
1-form dual to &. Further, let p be a symmetric tensor field of (0,2)-type on M which we suppose to be parallel
with respect to V that is Vp = 0, where V denotes the operator of covariant differentiation with respect to the metric
tensor g.

Suppose p be a second order symmetric tensor field, that is, p(X,Y) = p(¥,X) on a generalized (k, it)-space form
M(fi....., fo), such that Vp = 0. Then it follows that

V2p(X,Y:Z,W)—V?p(X,Y:W,Z) =0. (17)
From (17), we obtain the relation:
P(R(X,Y)Z,W)+p(R(X,Y)W,Z) =0, (18)

for arbitrary vector fields X,Y,Z on M.
Substitution of X = Z =W = & in (18) gives us

p(E,R(8,Y)E) =0. (19)
Using (11) in (19), we get
(fi=)n)p(E,8)—p(8,Y)} =0. (20)
Supposing (f1 — f3) # 0, (20) reduces to
n(Y)P(é,é)*p(é,Y):() 210

Taking the covariant differentiation of (21) with respect to X, we get

8(VxY,8)p(5,5) +8(Y,Vx&)p(§,8) +28(Y,§)p(VxE, &)

22
—p(VxE¥)—p(E.VaY) =0. 22
Replacing Y by VxY in (21), we obtain
8(VxY,8)p(8.8) —p(§,VxY) =0. (23)
In view of (23), it follows from (22) that
Using (7) in (24), we get
p(Y,0X)—p(Y,h¢X) —p(E,8)g(Y,9X) +p(&,5)s(Y,hpX) = 0. (25)
Replacing X by ¢X in (25) and then using (4), we obtain
Replacing X by hX in (26) and using (4) and (8), we get
Using (26) in (27), we obtain
kp¥,X)—p(£.8)g(X,Y)} =0. (28)
Since k # 0, it follows that
p(Y.X)=p(E,8)g(X.Y). (29)

Thus, we can state the following:
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Theorem 3.2. A symmetric parallel second order covariant tensor in a generalized (k,L)-space form M(fi....., fo),
with fi # f3 is a constant multiple of the metric tensor.

As an immediate corollary of theorem 3.1 we have the following result.

Corollary 3.3. A locally Ricci symmetric (VS = 0) generalized (k,l)-space form M(fj....., fs), with fi # f3 is an
Einstein manifold.

Next, we consider, let M(fj....., fs) be a generalized (k, it)-space form admitting second order skew-symmetric
parallel tensor p [12]. Putting Y = W = & in (18) and using (12), we get

(=) {nX)p&,2)-p(X,2) —n(Z)p(&,X)}

— (o= fl{p(iX. 2) - n(Z)p (& X)) e
Replacing X by 2X in (30) and using (8), we get
(fi—=HB)p(hX,Z)+n(2)p(E.hX)} 31)
= (fa—fo)(k—D{p(X,Z) —n(X)p(§.Z) + n(Z)p(E.X)}.
Using (30) and (31), we obtain
{(fi— )+ k=1 (fa—fo) Hn(X)p(£,2) (32)

Consider a non-empty open subset U of M such that {(fi — f3)?+ (k—1)(fs — f5)*} # 0, then we have

P(X,Z)—n(X)p(3,Z) +1(Z)p(§,X) =0. (33)
Now, let A be a (1, 1)-type tensor field which is metrically equivalent to p, that is, p(X,Y) = g(AX,Y), Then from
(33), we have
8(AX,Z) =n(X)g(A8,Z) —n(Z)g(AL,X), (34)
and thus
AX =n(X)AS —g(A,X)E. 35)
From (35), we can see if AE = 0, then AX = 0, and hence p = 0.

Now, we suppose that AE £ 0, let (35) take the inner product with A&, we obtain g(A&,AX) = n(X)g(AE,AE). So
it holds

A%E = —g(Ag,AL)E. (36)

Differentiating the above equation covariantly along X, we obtain
VXA’ = A’VxE =A%(—0X — 9hX), (37)
VXA’ = 2g(A%E,Vx&)§ +4(A%E,6)VxE, (38)

8(AG,AS)(¢X + ¢hX).
Combining (37) with (38), it follows that

A2OX +A2QhX + g(AE,AE)(9X + phX) = 0. 39)
Replacing X by X and using (8), we obtain
A%QhX — (k— 1)A?0X + g(AE,AE) (9hX — (k—1)$X) = 0. (40)
From (39) and (40), we have
K{A?9X +g(AE,AE)9X} =0. @1
Replacing ¢X by X in (41) to get
k{A*X + g(AE,AE)X} = 0. (42)
If k # 0 implies
APX = —g(AE, A)X = —|AE|PX. 43)

Now, if [|[AE|| # 0, then J = mA is an almost complex structure on U. In fact, (J,g) is a Kaehler structure on
U. The fundamental second order skew-symmetric parallel tensor is g(JX,Y) = m g(AX,Y) = ”A—%Hp(X ,Y) with

m = constant. But (34) implies p is degenerate, which is a contradition. So ||[A&]| = 0 and hence p = 0. Thus
we state the following:
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Theorem 3.4. In a generalized (k,p)-space form M(fi....., f¢) with k # 0, there is no nonzero second order
skew-symmetric parallel tensor provided that {(fi — f3)* + (k—1)(fs — fs)*} # 0.

A straightforward computation gives
(Lég)(XaY) = 72g(¢hX,Y). (44)

The metric g is called n-Einstein if there exists two real functions a and b such that the Ricci tensor S of g is given
by
S(X,Y) = ag(X,Y) +bn(X)n(Y). (45)

Let {e1,e2,€3,....... exn+1} be alocal orthonormal basis of vector fields in M. Then by taking X =Y =¢; in (45)
and summing up with respect to i, we obtain

r=2n+1)a+b. (46)

Again by taking X =Y = &, in (45) and then using (4) and (15), we get

2n(f1—f3) =a+b. @7)
From (46) and (47), we obtain
a=s-—(fi=fs) b=+ D)(fi-fi)— 5. (48)
Substituting the values of @ and b in (45), we get
SXY) = {5~ (fi ~ f3)}e(X.Y)
2n . (49)
HHEn+D(fi = f3) = 5 nX)n().
Suppose
PX.¥) = (Leg)(X,¥)+2S(X. ). (50)
Using (44) and (49) in (50), we obtain
P(XY) = {- =2(fi - fi)}g(X.Y) .
+{2@0+ 1) = f3) — INEON(Y) = 25(9hX.Y).
Taking X =Y = £ in (51), we get
p(§,8) =4n(fi—f3). (52)
If (g,&,A) is a Ricci soliton on a generalized (k, it)-space form M(fi....., fg), then from (3) and (50), we have
p(X,Y)=-22g(X.Y). (53)
Setting X =Y = & in (53), we get
p(§,8) =24 (54)
Hence from (52) and (54), we have
A= =2n(fi - f3). (55)

Thus we state the following:

Theorem 3.5. [f the tensor field Lgg +2S on a generalized (k, t)-space form M(fi....., fs) is parallel, then the
Ricci soliton (g,&,A) is shrinking if fi > f3 or expanding if f1 < f3 or steady if fi = f.

Taking V = £ in (3), then we have
(L;;g)(X,Y)+2S(X,Y)+21g(X,Y):O. (56)
Making use of (14) and (44) in (56), we obtain

{20 1)fa— fo)g(hX.Y) — {3fs + 20— D) fs}n(X)n(Y) = 0. GD
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Replacing X by hX and using (4) and (8) in (57), we obtain

(k—l)g(¢X,Y)+{2nf1+3f2—f3+l}g(hX,Y)

(58)
+(2n =) fa— fo) (k= D{—=g(X,Y) +n(X)n(¥)} =0.
By taking X =Y =¢;, where {¢; : i =1,2,3,........ ,2n+ 1} is an orthonormal basis, we get
—2n(k— 1){(2n—1)fs— fs} = 0. (59)

If 2n— 1) f4 # fo, then we must have k = 1. Thus we state the following:

Theorem 3.6. If a (2n+ 1)-dimensional generalized (k, t)-space form M(fi....., f¢) admitting a Ricci soliton with
(2n—1)fa # fo, then k = 1. i.e. M is Sasakian.

A vector field V on a Kenmotsu manifold is said to be conformal Killing vector field [20] if
(Lvg)(X,Y) =20g(X.Y), (60)

where o is a function on the manifold.
Let (g,V,A) be a Ricci soliton in a 3 dimensional generalized (k, ut)-space form M(fj....., fs). Then from (60) and
(3), we have

S(X,Y)=—-(A+0)g(X,Y), (61)
which yields
0X=—-(A+0)X, (62)
S(X,8) = —(A +0o)nX), (63)
r=-3(1+o0). (64)

Since in a three-dimensional Riemannian manifold the conformal curvature tensor C vanishes, we have

R(X,Y)Z=g(Y,Z)0X —g(X,Z)QY +S(Y,Z)X —S(X,Z)Y

Ll 2)X —g(x.2)7), “

where R is Riemannian curvature tensor of type (1,3).
Using (62), (63) and (64) in (65) and by taking Z = &£, we get

A
R g = 22 ooy —nex). (66)
By comparing (11) and (66), we obtain
A=—{2(i—-f3)+o} and fi=fs. (67)

This leads to the following:

Theorem 3.7. If the generating vector field V is a conformal Killing vector field with associated function o, then the
Ricci soliton in a three-dimensional generalized (k, l)-space form M(fi....., f¢) is shrinking if fi < f3 or expanding
if fi > f3 or steady if f4 = fe.

Replacing Y by #Y in (11) and (66), then by comparing and using (8), we get

{;L% i = AIMEORY + (k—1)(fa— fo)n(Y)9>X = 0. )

Taking Y = & in (68), we get k =1 or f4 = f5. Thus we state the following:

Theorem 3.8. In a three-dimensional generalized (k, 1)-space form M(fi....., f¢) admitting a Ricci soliton (g,V,A),
where V is a conformal Killing vector field with associated function o, then k =1 or fi = fg.
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