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ÖZ 

Besin, sağlıklı hücreler, tümör hücreleri ve onkolitik virüs arasındaki etkileşim için verilen dört boyutlu 

matematiksel model [29], bu çalışmada beş boyutlu adi diferansiyel denklem sistemi şeklinde genişletilmiştir.  

Tümör hücreleri onkolitik virüs ile etkileşime geçtiğinden, enfekte olmuş tümör hücreleri de modele dâhil 

edilmiştir. Onkolitik virüsün tümörü yok etmedeki rolünü incelemek için, tümörün sistemde olmadığı durumlar 

için kararlılık analizi yapılmıştır. Tümör ve sağlıklı hücrelerden yoksun bir sistemin kararlılığının, sisteme verilen 

virüs dozunun minimum değerine bağlı olduğu tespit edilmiştir. Tümörün olmadığı ve sağlıklı hücrelerin var 

olduğu durumda ise, sistemin kararlılığı için elde edilen minimum virüs dozunun, bir önceki dozdan daha küçük 

olduğu gözlemlenmiştir. Böylece, sistemde sağlıklı hücrelerin bulunmasının, tümörün yok edilme şansını artırdığı 

ve gerekli ilaç dozunun azaltılmasını sağladığı sonucuna varılmıştır. Son olarak, elde edilen kararlılık analizi için 

nümerik sonuçlar elde edilmiş ve sistemin kararlılığı için örnekler sunulmuştur. 
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A Mathematical Tumor Model with Oncolytic Virus 

 
ABSTRACT 

In this study, a four-dimensional model [29] that is given for interactions between nutrient, healthy cells, tumor 

cells, and oncolytic virus, is extended with a five-dimensional ordinary differential equations system. Infected 

tumor cells are included in the model since oncolytic virus infects tumor cells. In order to investigate the role of 

oncolytic virus in eradication of tumor burden, stability analysis has been performed in case of no tumor cells in 

the system. It is determined that the stability of the system in case of no tumor cells and healthy cells is related 

with the minimum virus dosage injected into the host. In case of no tumor cells, but healthy cells, the minimum 

dosage is smaller than the previous case for stability of the equilibrium point. Therefore, this study demonstrates 

that existence of healthy cells in the host increases the chance of eradication of tumor cells, and it leads to a 

decrease in virus dosage. Finally, some numerical results have been obtained for the stability analysis and 

numerical findings have been presented. 

Keywords- Tumor Model, Stability Analysis, Oncolytic Virus, Virotherapy. 
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I. INTRODUCTION 

Cancer is a disease where some of the cells within the body divide continuously due to mutation in genes 

and they form tumor [1]. Some cancer cells can be eradicated by immune system [2]; but some of them may escape 

from immune system, and then the disease becomes harder to control [3, 4]. On the other hand, the disease has 

still been a threat and 18.1 million new cancer cases were estimated in 2018 [5]. However, there is an increase in 

cancer survivors due to clinical/medical improvements [6]. As classical treatment strategies, chemotherapy [7], 

immunotherapy [8], radiotherapy [9] and surgery [10] can be mentioned and the choice of the appropriate treatment 

depends on type and stage of the disease. Need for more successful treatment strategies to eliminate tumor forces 

scientists to invent new therapies such as targeted chemotherapy [11] and oncolytic virotherapy [12]. 

Laboratory experiments to test the success of a particular treatment can be expensive and time consuming. 

Instead, mathematical models are easy to use, and they can be solved quickly for different values of parameters 

which represent different circumstances or hosts. Therefore, dynamical models have gained interest for a while 

and different models have been presented in the literature. For example, CTL response is modeled with a five-

dimensional system [13]. On the other hand, some simple models are constructed in the work, [14] and they are 

validated with the real data. De Pillis et al. propose a mathematical model for tumor-immune interaction with 

natural killer cells and CD8+ T cells [15], whereas tumor and lymphocyte interactions are modeled by Webb et al. 

[16]. Effect of IL-6 to cancer survival is investigated in the work [17], while a new model including search time 

for immune system to attack tumor cells is included in another study by Wei [18]. A more general model is 

constructed by incorporating different immune cells in the study [19]. As examples to treatment strategies, we can 

mention the study of De Pillis et al. [20] where immunotherapy and chemotherapy are combined. On the other 

hand, drug resistance is investigated in case of metronomic chemotherapy [21] as another challenge for cancer 

treatment. 

The studies mentioned above take tumor and immune cells into account. However, oncolytic virotherapy, 

where some engineered viruses are injected into the host to boost the immune system, has gained interest for a 

while [22]. From the mathematical point of view, we can mention two of the pioneer works [23, 24] where 

dynamics of uninfected and infected tumor cells and virus are modeled. An extended model with anti-tumor and 

anti-virus immune response is presented by Wodarz [25]. Furthermore, another model [26] where a five-

dimensional model is constructed with susceptible/infected healthy/tumor cells together with the virus, whereas 

the effect of M1 and M2 macrophages are investigated by Eftimie [27]. Indeed, a seven-dimensional model is 

proposed including healthy cells, tumor cells, immune response and viruses in the recent work of Mahasa et al. 

[28]. As a different point of view, nutrient is included in the work [29] and contribution of M1 virus is investigated 

to eradicate tumor burden. 

In this current work, we extend the model given in the study [Eq. (1.1), 29]. In the work of Wang et al. 

[29], a dynamical model is constructed based on the experimental findings in the study [30] to test the role of 

oncolytic virus M1.  The model in the study [29] assumes that healthy (normal) cells 𝑁(𝑡) and tumor cells 𝑇(𝑡) 
increase due to interaction with nutrients 𝑆(𝑡) where concentration of nutrition and the virus V(𝑡) increase by a 

constant source term. Moreover, interaction of tumor cells with the virus contributes to virus population. All 

unknown functions decay due to washout rate and the cells are subject to natural death. For reader to follow the 

idea easily, we mention the model in the study of Wang et al. [29]. We extend this model by including infected 

tumor cells 𝐼(𝑡) and logistic growth term is used for normal cells as done in the work of De Pillis and Radunskaya 

[31]. Afterwards, we investigate the effect of oncolytic virus and minimum virus dosage in case of logistics growth 

rate of normal cells and infected tumor cells in the model by presenting stability analysis of tumor free equilibrium 

point(s). The rest of the study is organized as follows: In Sec. II, we discuss the construction of the new model. In 

Sec.III, we perform the stability analysis of tumor free equilibrium point. Then, numerical results are presented in 

Sec.IV. The study ends with summary and conclusion. 

II. MATHEMATICAL MODEL 

In this section, we construct a new mathematical model motivated by the study [29] to investigate the 

impact of oncolytic virus to eradicate tumor cells in the host. The model consists of five components, namely 

concentration of nutrient S(𝑡), concentration of healthy (normal) cells 𝑁(𝑡), concentration of uninfected and 
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infected tumor cells 𝑇(𝑡), 𝐼(𝑡) , respectively. The last component is concentration of virus 𝑉(𝑡) . Nutrient is 

supplied to the system at a rate of 𝑓 and tumor cells use it to replicate themselves, whereas nutrient diminishes at 

a rate of 𝑑.  For normal cells, we use logistics growth [31] and they decay due to natural death and washout. Tumor 

cells are split into two parts as uninfected and infected tumor cells, where they use nutrient to replicate. After 

interaction of tumor cells with virus, some of them are transferred to the class of infected tumor cells. On the other 

hand, tumor cells and normal cells compete with each other. Infected tumor cells are produced as mentioned before. 

Concentration of virus is increased by injected medication and infected tumor cells, while it decays due to 

interaction with tumor cells. Indeed, concentrations of tumor cells and virus decrease due to natural death and 

washout. When we express these relations as a dynamical system, then we reach the mathematical model in Eq.(1)-

(6) where all parameters are non-negative. 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑓 − 𝑎2𝑆(𝑡)𝑇(𝑡) − 𝑎4𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡), (1) 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑟1𝑁(𝑡) (1 −

𝑁(𝑡)

𝐾
) − (𝜇 + 𝑒1)𝑁(𝑡), (2) 

𝑑𝑇(𝑡)

𝑑𝑡
= 𝑟2𝑎2𝑆(𝑡)𝑇(𝑡) − 𝑎3𝑇(𝑡)𝑉(𝑡) − 𝑎5𝑇(𝑡)𝑁(𝑡) − (𝜇 + 𝑒2)𝑇(𝑡), (3) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑟3𝑎3𝑇(𝑡)𝑉(𝑡) + 𝑟4𝑎4𝑆(𝑡)𝐼(𝑡) − (𝜇 + 𝑒3)𝐼(𝑡), (4) 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝑔 + 𝛼𝐼(𝑡) − 𝑎3𝑇(𝑡)𝑉(𝑡) − (𝜇 + 𝑒4)𝑉(𝑡), (5) 

𝑆(0) = 𝑆0,𝑁(0) = 𝑁0,𝑇(0) = 𝑇0,𝐼(0) = 𝐼0,𝑉(0) = 𝑉0. (6) 

III. STABILITY ANALYSIS 

We present stability analysis for the model (1)-(6) to test the contribution of M1 virus to eliminate tumor 

cells. Before doing this, as suggested in the study [29], we consider a reduced model for 𝑆, 𝑁, 𝑇 by eliminating 

M1 virus and infected tumor cells. 

A. Dynamics of S, N and T cells 

We consider the model consisting of nutrient 𝑆, healthy cells 𝑁 and uninfected tumor cells 𝑇 as 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑓 − 𝑎2𝑆(𝑡)𝑇(𝑡) − 𝜇𝑆(𝑡), (7) 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑟1𝑁(𝑡) (1 −

𝑁(𝑡)

𝐾
) − (𝜇 + 𝑒1)𝑁(𝑡), (8) 

𝑑𝑇(𝑡)

𝑑𝑡
= 𝑟2𝑎2𝑆(𝑡)𝑇(𝑡) − 𝑎5𝑇(𝑡)𝑁(𝑡) − (𝜇 + 𝑒2)𝑇(𝑡), (9) 

𝑆(0) = 𝑆0,𝑁(0) = 𝑁0,𝑇(0) = 𝑇0. (10) 

The idea behind finding equilibrium points is to determine all possible solutions of the equations 

𝑑𝑆(𝑡)

𝑑𝑡
= 0 =

𝑑𝑁(𝑡)

𝑑𝑡
=
𝑑𝑇(𝑡)

𝑑𝑡
. (11) 

We find the equilibrium points where tumor cells or normal (healthy) cells are extinct. Firstly, we take the 

right hand side of the Eq. (8) into 𝑁(𝑡) paranthesis and rewrite it as 𝑁(𝑡) (𝑟1 −
𝑟1𝑁(𝑡)

𝐾
− (𝜇 + 𝑒1)) = 0. and then 

the solutions are given as 𝑁(𝑡) = 0 or 𝑁(𝑡) =
𝐾(𝑟1−𝜇−𝑒1)

𝑟1
=
𝐾(µ+𝑒1)

𝑟1
(𝐵1 − 1) if 𝐵1: =

𝑟1

𝜇+𝑒1
> 1. 
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 If 𝑁(𝑡) = 0, then Eq. (9) becomes 𝑇(𝑡)(𝑟2𝑎2𝑆(𝑡) − (𝜇 + 𝑒2)) = 0. It leads to two solutions as 𝑇̅(𝑡) =

0 or 𝑆̅(𝑡) =
𝜇+𝑒2

𝑟2𝑎2
.  Then, we obtain two equilibrium points as 𝐸0 = (

𝑓

𝜇
, 0,0) and 𝐸1 =

(
𝜇+𝑒2

𝑟2𝑎2
, 0,

𝑓𝑟2𝑎2−𝜇(𝜇+𝑒2)

𝑎2(𝜇+𝑒2)
) = (

𝜇+𝑒2

𝑟2𝑎2
, 0,

𝜇

𝑎2
(𝐵2 − 1))  where 𝐵2: =

𝑓𝑟2𝑎2

𝜇(𝜇+𝑒2)
 . Here,for 𝐸1  to be feasible, 𝐵2 >

1 must hold. 

 If 𝑇̅(𝑡) = 0, then Eq. (7) gives 𝑆̅(𝑡) =
𝑓

𝜇
. Then, we obtain an equilibrium point as 

𝐸2 = (
𝑓

𝜇
,
𝐾(𝑟1−𝜇−𝑒1)

𝑟1
, 0) = (

𝑓

𝜇
,
𝐾(𝜇+𝑒1)

𝑟1
(𝐵1 − 1), 0) . Similarly, for a feasible equilibrium point, 𝐵1 > 1 

must be satisfied. 

Here, we note that there are other equilibrium points where tumor cells and/or normal cells coexist; but, 

we restrict ourselves to these cases to observe the contribution of oncolytic virus to eradication of tumor cells. 

Since the equilibrium point 𝐸0  corresponds to the case where there is only nutrient within the host, we don’t 

investigate this equilibrium point. Instead, we proceed with the stability analysis of 𝐸1and 𝐸2. 

Equilibrium point 𝐸1: We obtain the Jacobian of the model (7)-(9) and evaluate it at 𝐸1 to obtain the 

matrix 

𝐽(𝐸1) =

(

 

−𝜇𝐵2 0
−(𝜇+𝑒2)

𝑟2

0 (𝜇 + 𝑒1)(𝐵1 − 1) 0

𝑟2𝜇(𝐵2 − 1)
−𝑎5𝜇

𝑎2
(𝐵2 − 1) 0 )

  (12) 

We immediately see that one of the eigenvalues of the matrix (3) is 𝜆1 = (𝜇 + 𝑒1)(𝐵1 − 1)  and it is 

negative if 𝐵1 < 1. To find the other eigenvalues, we obtain the characteristics equation of the matrix in (12) as 

𝑝(𝜆) = (𝜆 − ((𝜇 + 𝑒1)(𝐵1 − 1)))(𝜆
2 + 𝜇𝐵2𝜆 + 𝜇(𝜇 + 𝑒2)(𝐵2 − 1)). 

For other eigenvalues to be negative, the term 𝜇(𝜇 + 𝑒2)(𝐵2 − 1)must be positive, since 𝜇𝐵2 > 0. Then, 

we get the condition 𝐵2 > 1 for stability. We conclude that 𝐸1  is stable if both 𝐵1 < 1  and 𝐵2 > 1  hold. We 

summarize the result as a theorem below. 

Theorem 1: The equilibrium point 𝐸1exists if 𝐵2 > 1. Indeed, it is locally asymptotically stable if 𝐵1 < 1 

and 𝐵2 > 1 hold. 

Equilibrium point 𝐸2: We consider the Jacobian of the model (7)-(9) and evaluate it at 𝐸2 to obtain the 

matrix 

𝐽(𝐸2) =

(

 

−𝜇 0
−𝑎2𝑓

𝜇

0 −(𝜇 + 𝑒1)(𝐵1 − 1) 0

0 0 (𝜇 + 𝑒2)(𝐵2 − 1) − 𝑎5𝐾
𝜇+𝑒1

𝑟1
(𝐵1 − 1))

  (13) 

Eigenvalues of the matrix in Eq. (13) are given by the entries on the diagonal as 𝜆1 = −𝜇, 𝜆2 = −(𝜇 +

𝑒1)(𝐵1 − 1) and 𝜆3 = (𝜇 + 𝑒2)(𝐵2 − 1) − 𝑎5𝐾
𝜇+𝑒1

𝑟1
(𝐵1 − 1). For 𝜆2 to be negative, we find that 𝐵1 > 1, which 

is the condition to reach a feasible equilibrium point. For 𝜆3 < 0, we find that 𝐵2 <
𝐾𝑎5(𝜇+𝑒1)

𝑟1(𝜇+𝑒2)
(𝐵1 − 1) + 1 must 

hold. Now, we summarize the result below. 

Theorem 2: The equilibrium point 𝐸2 exists if 𝐵1 > 1. Indeed, it is locally asymptotically stable if 𝐵1 >

1and 𝐵2 <
𝐾𝑎5(𝜇+𝑒1)

𝑟1(𝜇+𝑒2)
(𝐵1 − 1) + 1 hold. 
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The model (7)-(9) is not symmetric in T and N due to the competition between tumor and normal cells, 

namely the term 𝑎5𝑇𝑁. It leads to unsymmetric conditions for stability of the equilibrium points 𝐸1and 𝐸2. Indeed, 

the extra term in the upper bound of 𝐵2 in Thm.2 is on account of this unsymmetric model. 

A. Dynamics of the new model 

We proceed with the new model in Eq. (1)-(5). We restrict ourselves to the case where tumor cells are 

extinct and we find tumor-free equilibrium point. Indeed, we take 𝑇 = 𝐼 = 0 in Eq. (1) and proceed.  From Eq. 

(2), we get two solutions as 𝑁(𝑡) = 0 or 𝑁(𝑡) =
𝐾(𝑟1−𝜇−𝑒1)

𝑟1
=
𝐾(𝜇+𝑒1)

𝑟1
(𝐵1 − 1) if 𝐵1: =

𝑟1

𝜇+𝑒1
> 1. Indeed, 

 From Eq. (1), we have 𝑆̅ =
𝑓

𝜇
. 

 From Eq. (5), we find 𝑉̅ =
𝑔

𝜇+𝑒4
. 

 If 𝑁(𝑡) = 0, then  we find the equilibrium point as 𝐸3 = (
𝑓

𝜇
, 0,0,0,

𝑔

𝜇+𝑒4
). 

 If 𝑁(𝑡) =
𝐾(𝜇+𝑒1)

𝑟1
(𝐵1 − 1), then we reach 𝐸4 = (

𝑓

𝜇
,
𝐾(𝜇+𝑒1)

𝑟1
(𝐵1 − 1), 0,0,

𝑔

𝜇+𝑒4
). 

We proceed with the stability of 𝐸3 and 𝐸4. 

Equilibrium point 𝐸3: The Jacobian of the model (1)-(5) is evaluated at 𝐸3to obtain the matrix 

𝐽(𝐸3) =

(

 
 
 
 
 

−𝜇 0
−𝑎2𝑓

𝜇

−𝑎4𝑓

𝜇
0

0 (𝜇 + 𝑒1)(𝐵1 − 1) 0 0 0

0 0 (𝜇 + 𝑒2)(𝐵2 − 1) −
𝑔𝑎3

𝜇+𝑒4
0 0

0 0
𝑟3𝑎3𝑔

𝜇+𝑒4
(𝜇 + 𝑒3)(𝐵3 − 1) 0

0 0
−𝑎3𝑔

𝜇+𝑒4
𝛼 −(𝜇 + 𝑒4))

 
 
 
 
 

 (14) 

The eigenvalues of this block diagonal matrix in Eq. (14) are given by 𝜆1 = −𝜇, 𝜆2 = (𝜇 + 𝑒1)(𝐵1 − 1), 

𝜆3 = (𝜇 + 𝑒2)(𝐵2 − 1) −
𝑔𝑎3

𝜇+𝑒4
 , 𝜆4 = (𝜇 + 𝑒3)(𝐵3 − 1) , 𝜆5 = −(𝜇 + 𝑒4)  where 𝐵3: =  

𝑟4𝑎4𝑓

𝜇(𝜇+𝑒3)
 . For stability, the 

second eigenvalue leads to the condition 𝐵1 < 1 , whereas the third eigenvalue gives the condition that 𝜆3 <

0which leads to 𝐵2 <
𝑔𝑎3

(𝜇+𝑒2)(𝜇+𝑒4)
+ 1. Rewriting this condition, we find a threshold value for the virus source 

injected into the host, namely 𝑔, as 𝑔0 =
(𝜇+𝑒2)(𝜇+𝑒4)

𝑎3
(𝐵2 − 1) < 𝑔. It must be noted that the recruitment rate of 

the virus cannot be negative, so 𝑔0 ≥ 0 must hold. This leads to another condition 𝐵2 ≥ 1. If the term 𝑔 is smaller 

than 𝑔0, then 𝐸3 is unstable. This result is written as follows: 

Theorem 3: The equilibrium point 𝐸3  is locally asymptotically stable if 𝑔0 =
(𝜇+𝑒2)(𝜇+𝑒4)

𝑎3
(𝐵2 − 1) <

𝑔holds together with 𝐵1 < 1,𝐵3 < 1 and 𝐵2 ≥ 1. 

Equilibrium point 𝐸4: The Jacobian of the model (1)-(5) is evaluated at 𝐸4 to obtain the matrix 

𝐽(𝐸4) =

(

 
 
 
 

−𝜇 0
−𝑎2𝑓

𝜇

−𝑎4𝑓

𝜇
0

0 −(𝜇 + 𝑒1)(𝐵1 − 1) 0 0 0
0 0 Ω 0 0

0 0
𝑟3𝑎3𝑔

𝜇+𝑒4
(𝜇 + 𝑒3)(𝐵3 − 1) 0

0 0
−𝑎3𝑔

𝜇+𝑒4
𝛼 −(𝜇 + 𝑒4))

 
 
 
 

, (15) 
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where Ω = (𝜇 + 𝑒2)(𝐵2 − 1) −
𝑔𝑎3

𝜇+𝑒4
−
𝐾𝑎5(𝜇+𝑒1)

𝑟1
(𝐵1 − 1) . Similarly, the entries on the main diagonal are the 

eigenvalues of this block diagonal matrix and they are 𝜆1 = −𝜇 , 𝜆2 = −(𝜇 + 𝑒1)(𝐵1 − 1) , 𝜆3 = Ω , 𝜆4 = (𝜇 +
𝑒3)(𝐵3 − 1)and 𝜆5 = −(𝜇 + 𝑒4). For stability, we obtain that 𝐵1 > 1,Ω < 0 and 𝐵3 < 1 must hold. The second 

condition gives us the following relation: 𝐵2 <
𝑔𝑎3

(𝜇+𝑒2)(𝜇+𝑒4)
+
𝐾𝑎5(𝜇+𝑒1)

𝑟1(𝜇+𝑒2)
(𝐵1 − 1) + 1. Indeed, we find a condition 

on the minimum virus source as 0 ≤ 𝑔1 =:
(𝜇+𝑒2)(𝜇+𝑒4)

𝑎3
(𝐵2 − 1) −

𝐾𝑎5(𝜇+𝑒1)(𝜇+𝑒4)

𝑟1𝑎3
(𝐵1 − 1) < 𝑔.  Unless the 

source term 𝑔 is greater than 𝑔1,𝐸4 is unstable. Now, we present the last theorem of this study below. 

Theorem 4: The equilibrium point 𝐸4exists if 𝐵1 > 1. Moreover, it is locally asymptotically stable if 

0 ≤ 𝑔1 =:
(𝜇+𝑒2)(𝜇+𝑒4)

𝑎3
(𝐵2 − 1) −

𝐾𝑎5(𝜇+𝑒1)(𝜇+𝑒4)

𝑟1𝑎3
(𝐵1 − 1) < 𝑔and 𝐵3 < 1 hold. 

When we compare Thm.3 and Thm.4, we observe that the lower bound on the dosage 𝑔 is lower for  𝐸4 

than the bound for 𝐸3. In other words, the condition on the dosage, namely 𝑔1, to make equilibrium point 𝐸4 (where 

𝑁 ≠ 0) stable is less restrictive than the condition, namely 𝑔0, associated with the case where 𝑁 = 0. It is because 

of the competition between tumor cells and healthy cells, that is, the term 𝑎5𝑇𝑁. Since this term contributes to 

eradication of tumor cells, a smaller dose of virotherapeutic drug is enough for 𝐸4 to be stable. 

IV. NUMERICAL RESULTS 

Some numerical examples will be presented to discuss the theorems in the previous sections. Numerical 

results are obtained with the use of ode45 function of MATLAB. The system is solved from 𝑡 = 0 to 𝑡 = 1000 to 

see the overall trend of the solution. 

A. Examples for S-N-T model 

We take the values of the parameters as 𝑓 = 0.02, 𝑎2 = 0.5, 𝜇 = 0.02, 𝑒1 = 0.01, 𝑒2 = 0.008 [Sec.4, 29] 

and we choose the others as 𝐾 = 1, 𝑎5 = 0.8. The values of 𝑟1 and 𝑟2 will be specified later.  

We start with 𝐸1  and we take 𝑟1 = 0.02, 𝑟2 = 0.8 . The initial conditions are fixed as 𝑆0 = 0.15, 𝑁0 =
0.05, 𝑇0 = 0.8.  With these choice of the parameters, 𝐵1 = 0.6667 < 1 and 𝐵2 = 14.2857 > 1  as required by 

Thm.1 for stability and we observe that the solution converges to the equilibrium point 𝐸1 = (0.07, 0, 0.5314) as 

shown in Fig. 1. 

 
Figure 1.  Numerical solution associated with 𝐸1. 
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We proceed with 𝐸2 by taking 𝑟1 = 0.05, 𝑟2 = 0.2. The initial conditions are chosen as 𝑆0 = 0.15, 𝑁0 =

0.8, 𝑇0 = 0.05. We calculate 𝐵1 = 1.6667 > 1 and 𝐵2 = 3.5714 <
𝐾𝑎5(𝜇+𝑒1)

𝑟1(𝜇+𝑒2)
(𝐵1 − 1) + 1 = 12.4286, which 

agrees with Thm.2. Thus, the solution converges to the equilibrium point 𝐸2 = (1, 0.4, 0), as shown in Fig.2. 

 
Figure 2.  Numerical solution associated with 𝐸2. 

B. Examples For The New Model 

We test the contribution of M1 virus to tumor eradication. The new parameter values are set as 𝑎3 =
0.1, 𝑟3 = 0.5  [Sec.4, 29] and 𝑎2 = 0.05, 𝑎4 = 0.2, 𝑟1 = 0.01, 𝑟2 = 0.8, 𝛼 = 0.1, 𝑒4 = 0.01, 𝑎5 = 0.9, 𝑒3 =
0.1, 𝑟4 = 0.2. Two different values of 𝑔 will be used to test numerical stability. 

As the first case, we fix 𝑔 = 0.01  and the initial conditions are chosen as 𝑆0 = 0.7, 𝑁0 = 0.05, 𝑇0 =
0.03, 𝐼0 = 0.02, 𝑉0 = 0.2. With these choices of the parameters, 𝑔0 = 0.084 > 𝑔 = 0.01 , which contradicts with 

Thm.3. The solution does not converge to the equilibrium point 𝐸3, as shown in Fig.3. 

 
Figure 3. Numerical solution associated with  𝐸3. 

Now, as the second case, we set 𝑔 = 0.1 > 𝑔0 = 0.084. Then, we observe that 𝐵1 = 𝐵3 = 0.3333 < 1 

and 𝐵2 = 1.4286 > 1. By Thm.3, the equilibrium point 𝐸3 = (1,0,0,0,0.3333) is stable as can be seen in Fig.4. 
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Figure 4.  Numerical solution associated with 𝐸3. 

We proceed with 𝐸4 by fixing 𝑎2 = 0.5, 𝑟1 = 0.04, 𝑎3 = 0.1, 𝑔 = 0.01, 𝑆0 = 0.6, 𝑁0 = 0.25, 𝑇0 =
0.03, 𝐼0 = 0.02, 𝑉0 = 0.1. Then, we compute 𝑔1 = 0.0441 > 𝑔 = 0.01. Therefore, the solution does not 

converge to the equilibrium point 𝐸4 as shown in Fig.5. 

 
Figure 5. Numerical solution associated with 𝐸4. 

We change the source term as 𝑔 = 0.05 > 𝑔1 = 0.0441 and the conditions in Thm.4, namely 𝐵1 =
1.3333 > 1, 𝐵3 = 0.3333 < 1 are satisfied. Thus, with these values of the parameters, 𝐸4. =
(1, 0.25, 0,0,1.667) is stable and we plot the solution in Fig.6. 

 
Figure 6. Numerical solution associated with 𝐸4. 
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V. SUMMARY AND CONCLUSION 

We extend a mathematical model given in the study [29] to investigate the contribution of oncolytic 

virotherapy. Tumor cells are split into two classes as uninfected and infected tumor cells which is not the case in 

the study [29]. On the other hand, logistic growth is used for healthy cells. Competition between tumor cells and 

normal cells are included so that we can test the impact of the competition to drug use to eradicate tumor burden. 

Afterwards, tumor free equilibrium points are found and their stability is discussed. We determine that the stability 

of the system in case of no tumor cells and healthy cells is related with the minimum virus dosage injected into the 

host. In case of no tumor cells, but healthy cells, the minimum dosage is smaller than the previous case for stability 

of the equilibrium point. Therefore, we find out that existence of healthy cells in the host increases the chance of 

eradication of tumor cells with a smaller virus recruitment rate. Finally, we present some numerical results to 

exemplify our theoretical findings. 
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