Some Decompositions of UP-ideals and Proper UP-filters

Daniel A. Romano *1
${ }^{1}$ International Mathematical Virtual Institute; 6, Kordunaška Street, 78000 Banja Luka; Bosnia and Herzegovina

Keywords

UP-algebra, IP-ideal, proper
UP-filter, decomposition of
UP-ideals and proper
UP-filter

Abstract: In this article we show some decompositions of UP-ideals and proper UP-filters of UP-algebras.

1. Introduction

The idea of the algebraic structure of 'UP-algebra' was introduced and analyzed by A. Iampan in his article [1]. The author has introduced and analyzed the concepts of UP-subalgebra and UP-ideal and their mutual connections. In the article [7] were introduced the concept of UP-filter in UP algebras by J. Somjanta, N. Thuekaew, P. Kumpeangkeaw and A. Iampan. Also, the article [3], written by P. Mosrijai, A. Satirad and A. Iampan, refers to some properties of UP-ideals in UP-algebras as well as the versions of the isomorphism theorems for this type of algebras. In forthcoming article [2], written by Y. B. Jun and A. Iampan, a decomposition of UP-filters was described through some special sub-sets in UP-algebras.
This author introduced in [4] the concept of proper UP-filter in UP-algebras on something different way then it is common in the available literature. In addition, in [4] he established the connection between UP-ideals and proper UP-filters. This author, in his articles [5, 6], also dealt with the properties of the UP-Ideal and the proper UP-filters in UP-algebras.
In this article, the author further develops the idea of a proper UP-filter by identifying some of the fundamental features of this concept. In this article, he develops and expands Jun and Iampan's idea of a decomposition of a UP-filters in UP-algebras to decomposition of UP-ideals and proper UP-filters of UP-algebras.

2. Preliminaries

Let us recall the definition of UP-algebra.
Definition 2.1 ([1], Definition 1.3). An algebra $A=(A, \cdot, 0)$ of type $(2,0)$ is called a $U P$-algebra if it satisfies the following axioms:
(UP - 1): $(\forall x, y, z \in A)((y \cdot z) \cdot((x \cdot y) \cdot(x \cdot z))=0)$,
(UP - 2): $(\forall x \in A)(0 \cdot x=x)$,
(UP - 3): $(\forall x \in A)(x \cdot 0=0)$,
(UP - 4): $(\forall x, y \in A)((x \cdot y=0 \wedge y \cdot x=0) \Longrightarrow x=y)$.
In this algebraic structure, the order relation is determined in the following way

$$
(\forall x, y \in A)(x \leq y \Longleftrightarrow x \cdot y=0)
$$

The following definition gives the concept of UP-ideals in a UP-algebra.
Definition 2.2 ([1], Definition 2.1). Let A be a UP-algebra. A subset B of A is called a $U P$-ideal of A if it satisfies the following properties:
(1) $0 \in B$, and
(2) $(\forall x, y, z \in A)(x \cdot(y \cdot z) \in B \wedge y \in B \Longrightarrow x \cdot z \in B)$.

Some of fundamental properties of UP-ideals is given in the following Proposition
Proposition 2.3 ([1], Theorem 2.3 and Corollary 2.4). Let A be a UP-algebra and B a UP-ideal of A. Then
(3) $(\forall x, y \in A)(((x \cdot y \in B) \wedge x \in B) \Longrightarrow y \in B)$;
(4) $(\forall x, y \in A)(y \in B \Longrightarrow x \cdot y \in B)$;
(5) $(\forall x, y \in A)((x \leqslant y \wedge x \in B) \Longrightarrow y \in B)$.

The property (3) in previous Proposition of UP-ideals B in a UP-algebra A can be viewed as a kind of consistency with respect to the operation '.' in the following sense $(\forall y \in A)(B y \subseteq B \Longrightarrow y \in B)$. On the other hand, on the property (4) in the previous Proposition, it can be viewed as a classical property of the right ideal in an algebraic structure in the following sense $A B \subseteq B$. The property (5) in the previous Proposition suggests that the UP-ideals of UP-algebra can be viewed as some kind of upper subsets in UP-algebra A.
In the article [6] it has been shown that the concept of UP-ideals is completely determined by the conditions (3) and (4) in the previous Proposition.

The commitment and intention of the author in his short article [4] was to construct a substructure G in UP-algebras that will have the following property

$$
(\forall x, y \in A)((y \in G \wedge x \leq y) \Longrightarrow x \in G)
$$

and has a standard attitude toward the UP-ideal. This was done by introducing the concept of a proper UP-filter by the following way.

Definition 2.4 ([4], Definition 3.1). Let A be a UP-algebra. A subset G of A is called a proper UP-filter of A if it satisfies the following properties:
(6) $\neg(0 \in G)$, and
(7) $(\forall x, y, z \in A)((\neg(x \cdot(y \cdot z) \in G) \wedge x \cdot z \in G) \Longrightarrow y \in G)$.

In the mentioned article it was shown
Proposition 2.5 ([4], Theorem 3.4 and Corollary 3.5). Let A be a UP-algebra and G a proper UP-filter of A. Then
(8) $(\forall x, y \in A)((\neg(x \cdot y \in G) \wedge y \in G) \Longrightarrow x \in G)$.
(9) $(\forall x, y \in A)(x \cdot y \in G \Longrightarrow y \in G)$.
(10) $(\forall x, y \in A)((x \leqslant y \wedge y \in G) \Longrightarrow x \in G)$.

The property (8) in the previous Proposition claims that a proper UP filter G is not a UP-subalgebra in a UP-algebra A. The property (9) can be viewed as right consistency of a proper filter G of an UP-algebra A. Finally, the property (10) suggests that proper UP-filters in a UP-algebra can be viewed as some sort of down subsets in that UP-algebra.

In the article [5] it has been shown that a proper UP-filter G is completely determined by the conditions (8) and (9) in the previous Proposition.
The notations and notions appearing in this text are not predefined, the reader can find in the articles [1, 3, 4].

3. The main results

Let A be a UP-algebra and let a, b be elements of A. In what follows, we will use the notations

$$
\begin{gathered}
\langle a]=\{x \in A: x \leqslant a\}, \quad[a\rangle=\{x \in A: a \leqslant x\} \text { and } \\
X_{a b}=\{z \in A: b(a z)=0\}, \quad Y_{a b}=\{y \in A: a(y b)=0\} .
\end{gathered}
$$

Note that $\langle 0]=A$ and $[0\rangle=\{0\}$
The idea of decomposition of a substructure in a UP-algebra first time is presented in the article [2]. In this text, we develop and expand this idea on any substructure of a UP-algebra.
Our first result relates to a decomposition of UP-ideals.
Theorem 3.1. Let B be a UP-ideals of UP-algebra A. Then

$$
B=\bigcup_{a \in B}[a\rangle .
$$

Proof. Let B be a UP-idea of A. Then $a \in[a\rangle$ because $a \leqslant a$ is valid. Thus, $B \subseteq \bigcup_{a \in B}[a\rangle$.
Suppose that $y \in \bigcup_{a \in B}[a\rangle$. Then there exists an element $x \in B$ such that $y \in[x\rangle$. Thus $x \leqslant y$. Then $y \in B$ by (5). So, $\bigcup_{a \in B}[a\rangle \subseteq B$. Therefore, $B=\bigcup_{a \in B}[a\rangle$.

Theorem 3.2. Each UP-ideal B of an UP-algebra A can be decomposed in the following way

$$
G=\bigcup_{x, y \in B} X_{x y} .
$$

Proof. Let B be a UP-ideal of A and let $b \in B$. Since $X_{0 y}=[y\rangle$ for any $y \in A$ we have $b \in[b\rangle=X_{0 b} \subseteq \bigcup_{x, y \in B} X_{x y}$ by Theorem 3.1.
Opposite, let $z \in \bigcup_{x, y \in B} X_{x y}$. Then there exist elements $x, y \in B$ such that $z \in X_{x y}$. This means $y \cdot(x \cdot z)=0$, i.e. $y \leqslant x z$. From $y \in B$ and $y \leqslant x z$ follows $x z \in B$ by (5). From this by (3) we got $z \in B$. Then $\bigcup_{x, y \in B} X_{x y} \subseteq G$.

Our second result in this article relates to a decomposition of the proper UP-filter.
Theorem 3.3. Let G be a proper UP-filter in a UP-algebra A. Then

$$
G=\bigcup_{a \in G}\langle a] .
$$

Proof. Let G be a proper UP-filter of a UP-algebra A and $a \in G$. Then $a \in\langle a]$ because $a \leqslant a$. Thus, $G \subseteq \bigcup_{a \in G}\langle a]$. If $x \in \bigcup_{a \in G}\langle a]$, then there exists $y \in G$ such that $x \in\langle y]$. This means $x \leqslant y$. From this and from $y \in G$ by (10) follows $x \in G$. Therefore, $G=\bigcup_{a \in G}\langle a]$.

Theorem 3.4. Each proper UP-filter G of an UP-algebra A can be decomposed in the following way

$$
G=\bigcup_{x, z \in A}\left\{Y_{x z}: x z \in G\right\}
$$

Proof. Let G be a proper UP-filter of the UP-algebra A. Since $Y_{0 z}=\langle z]$ for any $z \in A$, we have $G=\bigcup_{z \in G}\langle z]=$ $\bigcup_{z \in G} Y_{0 z} \subseteq \bigcup_{x, z \in A}\left\{Y_{x z}: x z \in G\right\}$ by Theorem 3.3.
Conversely, let $y \in \bigcup_{x, z \in A}\left\{Y_{x z}: x z \in G\right\}$. Then there exist elements $x, z \in A$ such that $x z \in G$ and $y \in Y_{x z}$. Then $x(y z)=0$. Thus $\neg(x(y z) \in G)$ by (6). From this and from $x z \in G$ follows $y \in G$ by (7). Therefore, $\bigcup_{x, z \in A}\left\{Y_{x z}: x z \in\right.$ $G\} \subseteq G$. This and prior inclusion give $G=\bigcup_{x, z \in A}\left\{Y_{x z}: x z \in G\right\}$, which was to be proven.
We emphasize that family members of $\mathfrak{G}_{G}=\left\{Y_{a b}: a, b \in A\right\}$ have the following characteristics:
(a) $Y_{a b}=\{y \in A: a \leqslant y b\}$.
(b) $Y_{0 b}=\langle b]$.
(c) $Y_{a 0}=A$. From the conditions $a b \in G$, it follows that $\neg\left(A \in \mathfrak{G}_{G}\right)$.
(d) For any $a, b \in A$ such that $a b \in G$ the following $Y_{a b} \subseteq G$ holds.

We also have the elements of family $\mathfrak{B}_{B}=\left\{X_{a b}: a \in B \wedge b \in B\right\}$ having the following characteristics
(e) $X_{a b}=\{z \in A: b \leqslant a z\}$;
(f) $X_{0 b}=[b\rangle$;
(g) $X_{a 0}=\{0\}$;
(h) $(\forall a, b \in B)\left(X_{a b} \subseteq B\right)$.

References

[1] A. Iampan, A new branch the logical algebra: UP-Algebras, The Journal of Algebra and Related Topic, 2017(5): 35-54.
[2] Y. B. Jun and A. Iampan, Shift UP-filters and decomposition of UP-filters in UP-algebras, Missouri Journal of Mathematical Sciences, (To appear)
[3] P. Mosrijai, A. Satirad and A. Iampan, The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism, Fundamental Journal of Mathematics and Applications, 2018 (1): 12-17.
[4] D. A. Romano, Proper UP-filters in UP-algebra. Universal Journal of Mathematics and Applications, 2018 (1): 98-100.
[5] D. A. Romano, Some properties of proper UP-filters of UP-algebras. Fundamental Journal of Mathematics and Applications, 2018 (1):109-111.
[6] D. A. Romano, Notes on UP-ideals in UP-algebras. Communications in Advanced Mathematical Sciences, 2018 (1): 35-38.
[7] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw and A. Iampan, Fuzzy sets in UP-algebras, Annals of Fuzzy Mathematics and Informatics, 2016 (12): 739-756.

