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Abstract. In [1], it has shown that if a Riemannian manifold admits a non-

trivial Riemannian submersion with totally geodesic fibers, then it cannot be

isometrically immersed in any Riemannian manifold of non-positive sectional
curvature as a minimal submanifold. In this paper, we consider a nontrivial

Riemannian submersion and investigate some properties on Lagrangian iso-

metric immersions using the submersion invariant.

1. Introduction

Let M and B be Riemannian manifolds of dimension m and b, respectively. A
surjective map π : M → B is called a Riemannian submersion if it has maximal
rank at any point of M and the differential π∗ preserves the length of the horizontal
vectors. A vector field on M is called vertical if it is always tangent to fibers and
horizontal if it is orthogonal to fibers. A vector field X on M is called basic if X
is horizontal and π-related to a vector field X∗ on B. i.e. π∗X = X∗. Let H and
V be horizontal and vertical distributions. The trivial Riemannian submersion is
the projection of a Riemannian product manifold onto one of its factors which has
totally geodesic horizontal and vertical distributions. In this paper, a Riemannian
manifold M admits a nontrivial Riemannian submersions if there exists a Riemann-
ian submersion π : M → B from M into a Riemannian manifold B such that H
and V are not both totally geodesic distribution.

Let us assume that Mn admits a Lagrangian isometric immersion φ : M → M̃n

into a Kaehler manifold M̃n and we choose a local orthonormal frame e1, ..., eb, eb+1,...,
en, Je1, ..., Jen such that e1, ..., eb are horizontal vector fields, eb+1, ..., en are verti-

cal vector fields of M and Je1, ..., Jen are normal vector fields of M in M̃n.
The submersion invariant Ǎπ is defined by

Ǎπ =

b∑
i=1

n∑
s=b+1

||Aeies||2,
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where A is a (1, 2) tensor defined as AEF = v∇hEhF +h∇hEvF . Also, there is an
another (1, 2) tensor T which is defined as TEF = v∇vEhF + h∇vEvF . These are
called the fundamental tensor fields or the invariants of a Riemannian submersion
π. In [1], B. Y. Chen obtained

Theorem 1.1. If a Riemannian manifold Mn admits a nontrivial Riemannian
submersion π : (Mn, g) → (Bb, g′) with totally geodesic fibers, then it can not
be isometrically immersed in any Riemannian manifold of non-positive sectional
curvature as a minimal submanifold.

In his proof, he found that

(1.1) Ǎπ ≤
n2

4
H2 + b(n− b)maxK̃

where maxK̃ denotes the maximum value of the sectional curvature of the ambient
space M̃n restricted to plane sections in TpM for an isometric immersion φ : M →
M̃n.

In this paper, we mainly derive two inequalities on Riemannian submersion like
(1.1) using the different techniques.

2. Main results

We need the following proposition from the book [4]. Throughout this section,
we assume that π : (M, g) → (B, g′) is a Riemannian submersion with totally
geodesic fibers.

Proposition 2.1. Let π : (M, g) → (B, g′) be a Riemannian submersion with
totally geodesic fibers. If M has non-positive sectional curvature, then the horizontal
distribution is integrable and B has non-positive sectional curvatures. If M has
positive sectional curvatures, then we have the following.
(a) dimM < 2 dimB;
(b) B has positive sectional curvature.

In this paper, we define a Riemannian submersion π : (Mn, g)→ (Bb, g′) is non-
trivial if the horizontal and vertical distribution are not both integrable. Moreover,
if a Riemannian submersion has totally geodesic fibers, then the vertical distribu-
tion is integrable and it is totally geodesic. So, the horizontal distribution of a
non-trivial Riemannian submersion with totally geodesic fibers is not integrable.

Simply from the above results, we have the following.

Theorem 2.1. Let π : (Mn, g)→ (Bb, g′) be a non-trivial Riemannian submersion
with totally geodesic fibers. Then
(a) M has positive sectional curvature, and so has B;
(b) dimM < 2 dimB.

Proof. The statement (a) and (b) are the immediate result of proposition 2.1 above.
�

We need the following for the next result. If {U, V } is an orthonormal basis of
the vertical 2-plane α, then the sectional curvature of the plane α in TpM , p ∈ M
is K(α) = K̂(α) + ||TUV ||2 − g(TUU, TV V ), where K̂(α) denotes the sectional
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curvature in the fiber through p. If {X,Y } is an orthonormal basis of the hori-
zontal 2-plane α and K ′(α′) denotes the sectional curvature in (B, g′) of the plane
α′ spanned by π∗X,π∗Y , then K(α) = K ′(α′) − 3||AXY ||2. Finally, if X ∈ Hp
and V ∈ Vp are unit vectors spanning α, the sectional curvature of the plane α is
K(α) = g((∇XT )(V, V ), X) − ||TVX||2 + ||AXV ||2. Because of our assumption of
totally geodesic fibers, tensor T is identically zero so that we have the following.

Theorem 2.2. Under the same condition in Theorem 2.1, we have

Ǎπ < τ + 3
∑

1≤i<j≤b

||Aeiej ||2,

where τ is the scalar curvature of M defined by τ =
∑

1≤i<j≤nK(ei ∧ ej) for an
orthonormal basis e1, ..., en at p ∈M .

Proof. Since T = 0, the sectional curvature of the plane α spanned by two unit
vectors X ∈ Hp and V ∈ Vp is K(α) = ||AXV ||2 so that its submersion invariant

Ǎπ =
∑

1≤i≤b,b+1≤α≤n ||Aeieα||2 =
∑
i,αK(ei ∧ eα). Furthermore,

Ǎπ = τ −
∑

1≤i<j≤b

K ′(α′) + 3
∑

1≤i<j≤b

||Aeiej ||2 −
∑

b+1≤α<β≤n

K̂(eα ∧ eβ).

But from Theorem 2.1, K ′(α′) and K̂(eα ∧ eβ) are all positive so that we have the
result. �

Also, we have another inequality for a Riemannian submersion as below. We say
a plane α is called the mixed plane if it is spanned by a horizontal vector ej and a
vertical vector eα for i = 1, ..., b and α = b+ 1, ..., n.

Theorem 2.3. Again under the same conditions in the previous theorem and if
φ : M → M̃ is a Lagrangian isometric immersion, then we have another inequality

Ǎπ ≥ τ − τ̃ + b(n− b) min K̃ − 1

2
(b− 1)||H||2H −

1

2
(n− b− 1)||H||2V,

where τ̃ is the scalar curvature and K̃ is the sectional curvature of the mixed plane in

the ambient space and ||H||2H is defined as ||H||2H =
∑n
r=1

∑b
j=1(hrjj)

2 and ||H||2V =∑n
r=1

∑n
α=b+1(hrαα)2. The equality holds iff the second fundamental form satisfies

hrjj = µ and hrαα = λ for j = 1, ..., b, α = b + 1, ..., n and r = 1, ..., n and K̃ is
constant.

Proof. Given an orthonormal basis e1, ..., en of the tangent space TpM,p ∈M , the
scalar curvature τ of M at p is defined to be

τ(p) =
∑

1≤i<j≤n

K(ei ∧ ej).

From the definition of a Riemannain submersion, we can get

Ãπ = τ(p)−τ̃(p)+
∑
i,α

K̃(ei∧eα)−
n∑
r=1

(
∑

1≤i<j≤b

(hriih
r
jj−(hrij)

2)−
∑

b+1≤α<β≤n

(hrααh
r
ββ−(hrαβ)2))

However, a part of series becomes
n∑
r=1

(
∑

1≤i<j≤b

(hriih
r
jj − (hrij)

2) +
∑

b+1≤α<β≤n

(hrααh
r
ββ − (hrαβ)2))
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=

n∑
r=1

(
∑

2≤j≤b

(hr11h
r
jj − (hr1j)

2) +
∑

2≤i<j≤b

(hriih
r
jj − (hrij)

2))

+

n∑
r=1

(
∑

b+2≤β≤n

(hrb+1,b+1h
r
β,β − (hrb+1,β)2) +

∑
b+2≤α<β≤n

(hrααh
r
ββ − (hrαβ)2))

The first term in the series becomes inequality

n∑
r=1

∑
2≤j≤b

(hr11h
r
jj − (hr1j)

2) ≤
n∑
r=1

b∑
j=2

hr11h
r
jj −

b∑
j=2

(h11j)
2 −

b∑
j=2

(hj1j)
2

which means

−
n∑
r=1

∑
2≤j≤b

(hr11h
r
jj − (hr1j)

2) ≥ −
n∑
r=1

b∑
j=2

hr11h
r
jj +

b∑
j=2

(h11j)
2 +

b∑
j=2

(hj1j)
2

Using the same type of inequality for every term in the series we get the following.

−
n∑
r=1

(
∑

2≤j≤b

(hr11h
r
jj − (hr1j)

2)−
∑

2≤i<j≤b

(hriih
r
jj − (hrij)

2))

−
n∑
r=1

(
∑

b+2≤β≤n

(hrb+1,b+1h
r
β,β − (hrb+1,β)2)−

∑
b+2≤α<β≤n

(hrααh
r
ββ − (hrαβ)2))

≥ −
n∑
r=1

b∑
j=2

hr11h
r
jj+

b∑
j=2

(h11j)
2+

b∑
j=2

(hj1j)
2−

n∑
r=1

b∑
j=3

hr22h
r
jj+

b∑
j=3

(h22j)
2+

b∑
j=3

(hj2j)
2+....

−
n∑
r=1

hrb−1,b−1h
r
b,b+(hb−1b−1,b)

2+(hbb−1,b)
2−

n∑
r=1

∑
b+2≤β≤n

hrb+1,b+1h
r
β,β+

n∑
β=b+2

(hb+1
b+1,β)2

+

n∑
β=b+2

(hβb+1,β)2) + ....−
n∑
r=1

hrn−1,n−1h
r
nn + (hn−1n−1,n)2 + (hnn−1,n)2

≥ −1

2

n∑
r=1

[(hr11)2+(hr22)2]+...+[(hr11)2+(hrbb)
2]+[(hr22)2+(hr33)2]+...+[(hr22)2+(hrbb)

2]+...

+[(hrb−1,b−1)2+(hrbb)
2]− 1

2

n∑
r=1

[(hrb+1,b+1)2+(hrb+2,b+2)2]+ ...+[(hrb+1,b+1)2+(hrnn)2]

+[(hrb+2,b+2)2+(hrb+3,b+3)2]+ ...+[(hrb+2,b+2)2+(hrnn)2]+ ...+[(hrn−1,n−1)2+(hrnn)2]

+

b∑
j=2

(h11j)
2 +

b∑
j=2

(hj1j)
2 +

b∑
j=3

(h22j)
2 +

b∑
j=3

(hj2j)
2 + ...+ (hb−1b−1,b)

2 + (hbb−1,b)
2

+

n∑
β=b+2

(hb+1
b+1,β)2 +

n∑
β=b+2

(hβb+1,β)2 + ...+ (hn−1n−1,n)2 + (hnn−1,n)2

by using the simple algebraic inequality for all the mixed terms in the series. There-
fore, we now have

Ãπ ≥ τ(p)− τ̃(p) + b(n− b) min K̃ − 1

2

n∑
r=1

([(hr11)2 + (hr22)2] + ...+ [(hr11)2 + (hrbb)
2]

+[(hr22)2 + (hr33)2] + ...+ [(hr22)2 + (hrbb)
2] + ...+ [(hrb−1,b−1)2 + (hrbb)

2])
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−1

2

n∑
r=1

([(hrb+1,b+1)2+(hrb+2,b+2)2]+...+[(hrb+1,b+1)2+(hrnn)2]+[(hrb+2,b+2)2+(hrb+3,b+3)2]

+...+ [(hrb+2,b+2)2 + (hrnn)2] + ...+ [(hrn−1,n−1)2 + (hrnn)2])

The equality case occurs when hkij = 0 for all i 6= j and hr11 = ... = hrbb and

hrb+1,b+1 = ... = hrn,n for r = 1, ..., n and K̃ becomes a constant. �

Corollary 2.1. Again under the same conditions in the previous theorem and if
φ : M → M̃ is a Lagrangian isometric immersion, then we have the following
inequality

Ǎπ > τ − τ̃ + b(n− b) min K̃ − 1

2
(b− 1)||H||2

where τ̃ is the scalar curvature and K̃ is the sectional curvature of the mixed plane
in the ambient space.

Proof. By theorem 2.1, we know n < 2b so that n− b− 1 < b− 1 which implies the
inequality.

�
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