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ON THE GAUSSIAN CURVATURE FOR A HOLOMORPHIC

HERMETIAN SUBMANIFOLD OF REALı̂REAL VECTOR

SPACES

BRANKO SARIĆ

(Communicated by H. Hilmi HACISALİHOǦLU)

Abstract. At the beginning of this paper we introduce a new class of vector

spaces called real̂ıreal vector spaces. Based on the holomorphic coordinate

transformations we focus in the main part of the paper on the Hermitian
submanifolds of this class of ambient spaces and study their principal char-

acteristics as are the first and second fundamental forms and the Gaussian

curvature. It is shown that such submanifolds must be flat.

1. Introduction

For an ordered pair of points (X,Y ) = (xν , yν) of the n-dimensional real vector
space Rn with an orthonormal basis eν (ν = 1, 2, ..., n) let (rX ,rY ) be an ordered
pair of position vectors rX = xνeν and rY = yνeν of X and Y , respectively. Here,
we have used the Einstein summation convention: If an index appears repeated,
once up and once down, then summation over that index is implied.

Since ∂xνrX = ∂yνrY = eν it follows that

ds2 = ds2
X = ds2

Y ,

where ds2
X = drX · drX = dxνdxν and ds2

Y = drY · drY = dyνdyν .
Denote by ı̂Rn, where ı̂ is the imaginary unit, the n-dimensional ı̂real vector space

[4] with an orthonormal basis êν = ı̂eν . Note that this vector space is also defined
over the field of real numbers R. The union of eν and êν is a set of 2n linearly
independent vectors over R but not over the field of complex numbers C (over C
this union is a linearly independent set of n vectors). Accordingly, if r̂Y = yν êν is
the position vector of a point Y in ı̂Rn, then (rX ,̂rY ) is an ordered pair of position
vectors of points X and Y , respectively, in the 2n-dimensional vector space over R
formed by the direct sum of the vector spaces Rn and ı̂Rn. In symbols, Rn ⊕ ı̂Rn.
It is obvious that this vector space is isomorphic to the n-dimensional complex
vector space Cn [3]. By analogy with the algebraic form of complex numbers we
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can decompose Cn into a real and ı̂real part, so that the position vector rZ = zνeν
of any point Z = (zν) in Cn, where zν = xν + ı̂yν , is determined by (rX ,̂rY )
in a such a way that rZ = rX+ r̂Y = xνeν + yν êν . The complex vector space
C̄n = Rn⊕ (−ı̂)Rn represented by (rX ,−r̂Y ), more precisely by the position vector
rZ̄ = z̄νeν , where z̄ν = xν − ı̂yν is the complex conjugate of zν , is the complex
conjugate vector space of Cn. The quadratic differential form dσ2 = ds2

X + ds2
Y is

the fundamental metric form of Cn and C̄n. In addition, rX = (rZ+ rZ̄)/2 and
r̂Y = (rZ− rZ̄)/2, so that

(1.1) ∂xνrX =
∂xν (rZ + rZ̄)

2
and ∂yν r̂Y =

∂yν (rZ − rZ̄)

2
.

Therefore,

(1.2) ∂xνrX − ı̂∂yν r̂Y =
(∂xν − ı̂∂yν )rZ + (∂xν + ı̂∂yν )rZ̄

2
= ∂zνrZ + ∂z̄νrZ̄ ,

where ∂zν := (∂xν − ı̂∂yν )/2 and ∂z̄ν := (∂xν + ı̂∂yν )/2. Note that both Cn and C̄n
have the same orthonormal basis. By contrast, consider the case in which the union
of two orthonormal bases eν and ēν (ν = 1, 2, ..., n) for Cn and C̄n, respectively, is a
set of 2n mutually orthogonal linearly independent vectors over C. Then, Cn ⊕ C̄n
is a direct sum of the two n-dimensional complex vector spaces, whose position
vectors are rZ = zνeν and rZ̄ = z̄ν ēν , respectively. It suggests us the following
very important problem. Namely, this 2n-dimensional vector space is not closed
under scalar multiplication by elements of C and so it is not complex. Hence, a
question that arises is what type of vector spaces this space can be. As we shall
see, in what follows, the answer to this question is closely related to the so-called
class of real̂ıreal vector spaces [4].

2. Realı̂real vector spaces

Let the union of two orthonormal bases ē?ν (ν = 1, 2, ..., n) and ê?ν̃ = ı̂e?ν̃
(ν̃ = 1, 2, ...,m) for the n-dimensional real vector space Rn and m-dimensional
ı̂real vector space ı̂Rm, respectively, be a set of n+m mutually orthogonal linearly
independent vectors over R. Then, (rX ,̂rY ) is an ordered pair of the position vec-
tors of points X and Y , respectively, in the n+m-dimensional real̂ıreal vector space
R̂n+mdefined over the field of real numbers R and formed from the direct sum of
Rn and ı̂Rm. In symbols, R̂n+m = Rn ⊕ ı̂Rm. In case m = n we may create coor-
dinate transformations xν (zν , z̄ν) = (zν + z̄ν) /2 and yν (zν , z̄ν) = −ı̂ (zν − z̄ν) /2,
whose Jacobian is ı̂/2. Clearly, there is no doubt that there exists an isomorphism
between the 2n-dimensional vector spaces represented by ordered pairs of position
vectors (xν ē?ν , y

ν ê?ν) and (zνeν , z̄
ν ēν), where

(2.1) eν = ∂zν (xν ē?ν + yν ê?ν) =
1

2
(ē?ν − ı̂ê?ν) and

ēν = ∂z̄ν (xν ē?ν + yν ê?ν) =
1

2
(ē?ν + ı̂ê?ν).

So, in this case, an ordered pair of points (X,Y ) = (xν , yν), each of which belongs
to only one of the two n-dimensional real vector spaces, represented by the position
vectors rX = xν ē?ν and r̂Y = yν ê?ν , respectively, and which form, in a form of the

direct sum Rn⊕ ı̂Rn, the real̂ıreal vector space R̂2n, represented by the ordered pair
of the position vectors (rX ,̂rY ), maps to an ordered pair of points

(
Z, Z̄

)
= (zν , z̄ν),

each of which belongs to only one of the two n-dimensional complex vector spaces Cn
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and C̄n, represented by the position vectors rZ = zνeν and rZ̄ = z̄ν ēν , respectively,
and wich also form, in a form of the direct sum Cn ⊕ C̄n, the same real̂ıreal vector
space R̂2n, but represented now by the ordered pair of the position vectors (rZ ,rZ̄).
In addition, ∂xνrX = ∂zνrZ + ∂z̄νrZ̄ and ∂yν r̂Y = ı̂(∂zνrZ − ∂z̄νrZ̄). Finally, since
r∗Z = z̄νeν and r∗

Z̄
= zν ēν , it follows that dσ2 = dzνdz̄ν = dxνdxν + dyνdyν , where

dσ2 = d(rZ+rZ̄) · d(r∗Z+r∗
Z̄

) = |d(rZ + rZ̄)|2.

Clearly, it is very important to distinguish between C2n and R̂2n. Accordingly,
the so-called ”complex plane” is not a flat two-dimensional complex vector space,
but a flat two-dimensional real̂ıreal vector space, so that it must bear the name
real̂ıreal plane.

2.1. A holomorphic Hermitian submanifold of R̂2n. Let R̂2n = Rn ⊕ ı̂Rn
be a 2n-dimensional real̂ıreal vector space. To consider a map from the ambient

space R̂2n to a 2m-dimensional Hermitian manifold M R̂2n

, embedded in R̂2n, we
shall create the coordinate transformations zν

(
zi, z̄i

)
= xν

(
xi, yi

)
+ ı̂yν

(
xi, yi

)
and z̄ν

(
zi, z̄i

)
= xν

(
xi, yi

)
− ı̂yν

(
xi, yi

)
, where zi = xi + ı̂yi and z̄i = xi − ı̂yi, for

each i = 1, 2, ...,m < n. Note, that either of the following two pairs of vectors:

(2.2) hi = ∂zi(rZ + rZ̄) = ∂zi(z
νeν + z̄ν ēν) and

h̄i = ∂z̄i(rZ + rZ̄) = ∂z̄i(z
νeν + z̄ν ēν),

or

(2.3) gi = ∂xi(rX + r̂Y ) = ∂xi(x
ν ē?ν + yν ê?ν) and

ĝi = ∂yi(rX + r̂Y ) = ∂yi(x
ν ē?ν + yν ê?ν) ,

can be taken to be the covariant basis for M R̂2n

. Dual bases hj , h̄j , ḡj , and ĝj

associated to these covariant bases are defined as follows

(2.4) hj · hi = h̄
j · h̄i = gj · gi = ĝj · ĝi = δji ,

where δji is Kronecker’s delta symbol. Now, if each coordinate function zν
(
zi, z̄i

)
on R̂2n is a holomorphic function on M R̂2n

, meaning that it satisfies the Cauchy-
Riemann equations: ∂xix

ν = ∂yiy
ν and ∂xiy

ν = −∂yixν , which can be expressed
in a slightly nicer form ∂z̄iz

ν ≡ 0 or ∂zi z̄
ν ≡ 0, then

(2.5) hi = ∂zirZ = ∂ziz
νeν and h̄i = ∂z̄irZ̄ = ∂z̄i z̄

ν ēν .

On the other hand, it follows from the aforementioned Cauchy-Riemann equations
that

(2.6) ∂zix
ν = ı̂∂ziy

ν and ∂z̄ix
ν = −ı̂∂z̄iyν .

Hence,

(2.7) hi = ∂zi(x
ν + ı̂yν)eν = 2∂zix

νeν = 2ı̂∂ziy
νeν and

h̄i = ∂z̄i(x
ν − ı̂yν)ēν = 2∂z̄ix

ν ēν = −2ı̂∂z̄iy
ν ēν .

This leads to

(2.8) hi = (∂xi − ı̂∂yi)xνeν = ∂xirZ = −ı̂∂yirZ and

h̄i = (∂xi + ı̂∂yi)x
ν ēν = ∂xirZ̄ = ı̂∂yirZ̄ .

Since

(2.9) ∂zirX = ∂zix
ν ē?ν =

1

2
(∂xi − ı̂∂yi)xν ē?ν =

1

2
∂xiz

ν ē?ν = − ı̂
2
∂yiz

ν ē?ν and
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∂zi r̂Y = ∂ziy
ν ê?ν =

1

2
(∂xi − ı̂∂yi)yν ê?ν = − ı̂

2
∂xiz

ν ê?ν = −1

2
∂yiz

ν ê?ν ,

as well as,

(2.10) ∂z̄jrX = ∂z̄ix
ν ē?ν =

1

2
(∂xi + ı̂∂yi)x

ν ē?ν =
1

2
∂xi z̄

ν ē?ν =
ı̂

2
∂yi z̄

ν ē?ν and

∂z̄j r̂Y = ∂z̄iy
ν ê?ν =

1

2
(∂xi + ı̂∂yi)y

ν ê?ν = −1

2
∂yi z̄

ν ê?ν =
ı̂

2
∂xi z̄

ν ê?ν ,

we finally have that

(2.11) hi = ∂zi(rX + r̂Y ) =
gi − ı̂ĝi

2
and h̄i = ∂z̄i(rX + r̂Y ) =

gi + ı̂ĝi
2

,

that is,

(2.12) gi = hi + h̄i and ĝi = ı̂(hi − h̄i).

Similarly,

(2.13) h∗j = ∂z̄jr
∗
Z = ∂z̄j z̄

νeν = ∂z̄j (rX − r̂Y ) =
g∗j + ı̂ĝ∗j

2
and

h̄
∗
j = ∂zjr

∗
Z̄ = ∂zjz

ν ēν = ∂zj (rX − r̂Y ) =
g∗j − ı̂ĝ

∗
j

2
,

where g∗j = ∂xj (rX− r̂Y ) and ĝ∗j = ∂yj (rX− r̂Y ), that is,

(2.14) g∗j = h∗j + h̄
∗
j and ĝ∗j = −ı̂(h∗j − h̄

∗
j ).

If we now introduce four vector operators as follows:

(2.15) di,ν =
1

2
(∂xi ē

?
ν − ∂yi ê

?
ν) = ∂zieν + ∂z̄i ēν ,

d2
ji,ν =

1

4
[(∂2

xjxi − ∂
2
yjyi)ē

?
ν − (∂2

xjyi + ∂2
yjxi)ê

?
ν ] = ∂2

zjzieν + ∂2
z̄j z̄i ēν ,

d̄j,ν =
1

2
(∂xj ē

?
ν + ∂yj ê

?
ν) = ∂z̄jeν + ∂zj ēν and

d̄
2
ji,ν =

1

4
[(∂2

xjxi − ∂
2
yjyi)ē

?
ν + (∂2

xjyi + ∂2
yjxi)ê

?
ν ] = ∂2

z̄j z̄ieν + ∂2
zjzi ēν ,

then

(2.16) hi = di,νz
ν , h̄i = di,ν z̄

ν , h∗j = d̄j,ν z̄
ν , h̄

∗
j = d̄j,νz

ν ,

gi = 2di,νx
ν , ĝi = −2di,νy

ν , g∗j = 2d̄j,νx
ν , and ĝ∗j = −2d̄j,νy

ν .

The vector relation di,ν∂yjx
ν = −di,ν∂xjy

ν obtained from the Cauchy-Riemann
equations leads to the Schwartz integrability conditions ∂yjgi − ∂xj ĝi ≡ 0 under

which the differential d(rX+r̂Y ) = gidx
i+ ĝidy

i becomes an exact one (also called
a total differential). These conditions are often occur in their scalar component
form

(2.17) ∂2
yjxix

ν = ∂2
xjyix

ν and ∂2
yjxiy

ν = ∂2
xjyiy

ν ,

that is,

(2.18) ∂2
yjyiy

ν = −∂2
xjxiy

ν and ∂2
yjyix

ν = −∂2
xjxix

ν .

Thus,

(2.19) dj,ν · gi = dj,ν · ∂xi(rX + r̂Y ) =
1

2
(∂2
xjxirX · ē

?
ν − ∂2

yjxi r̂Y · ê
?
ν) =

= ∂2
xjxirX · ē

?
ν = −∂2

yjxi r̂Y · ê
?
ν and
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d2
ji,ν · (rX + r̂Y ) =

1

4
(∂2
xjxirX · ē

?
ν − ∂2

yjyirX · ē
?
ν − ∂2

xjyi r̂Y · ê
?
ν − ∂2

yjxi r̂Y · ê
?
ν) =

= ∂2
xjxirX · ē

?
ν = −∂2

yjyirX · ē
?
ν = −∂2

yjxi r̂Y · ê
?
ν = −∂2

xjyi r̂Y · ê
?
ν =

= ∂xj [di,ν · (rX + r̂Y )] = dj,ν · gi.
since di,ν · (rX+ r̂Y ) = (1/2)(∂xirX · ē?ν − ∂yi r̂Y · ê?ν) = ∂xirX · ē?ν = −∂yi r̂Y · ê?ν .
In addition,

(2.20) d2
ji,νx

ν =
1

4
[(∂2

xjxix
ν − ∂2

yjyix
ν)ē?ν − (∂2

xjyix
ν + ∂2

yjxix
ν)ê?ν ] =

=
1

2
(∂2
xjxix

ν ē?ν + ∂2
xjxiy

ν ê?ν) =
1

2
∂xjgi = −1

2
∂yj ĝi and

d2
ji,νy

ν =
1

4
[(∂2

xjxiy
ν − ∂2

yjyiy
ν)ē?ν − (∂2

xjyiy
ν + ∂2

yjxiy
ν)ê?ν ] =

=
1

2
(−∂2

yjxix
ν ē?ν − ∂2

yjxiy
ν ê?ν) = −1

2
∂xj ĝi = −1

2
∂yjgi.

Adding the second equation multiplied by either ı̂ or −ı̂ to the first, we finally
get that

(2.21) d2
ji,νz

ν = ∂zjgi = −ı̂∂zj ĝi = ∂xjhi = −ı̂∂yjhi = ∂zjhi and

d2
ji,ν z̄

ν = ∂z̄jgi = ı̂∂z̄j ĝi = ∂xj h̄i = ı̂∂yj h̄i = ∂z̄j h̄i.

Similarly,

(2.22) d̄
2
ji,νx

ν =
1

2
∂xjg

∗
i = −1

2
∂yj ĝ

∗
i and d̄

2
ji,νy

ν = −1

2
∂xj ĝ

∗
i = −1

2
∂yjg

∗
i ,

that is,

(2.23) d̄
2
ji,ν z̄

ν = ∂z̄jg
∗
i = ı̂∂z̄j ĝ

∗
i = ∂xjh

∗
i = ı̂∂yjh

∗
i = ∂z̄jh

∗
i and

d̄
2
ji,νz

ν = ∂zjg
∗
i = −ı̂∂zj ĝ∗i = ∂xj h̄

∗
i = −ı̂∂yj h̄

∗
i = ∂zj h̄

∗
i .

By (2.16), it is easy to see that

(2.24) hij = hi · h∗j = di,νz
ν · d̄j,ν z̄ν = h̄i · h̄

∗
j = di,ν z̄

ν · d̄j,νzν =

=
1

2
(∂xix

ν∂xjx
ν + ∂yix

ν∂yjx
ν) =

1

2
gij ,

where

(2.25) gij = gi · g∗j = ĝi · ĝ
∗
j = 4(di,νx

ν · d̄j,νxν) = 4(di,νy
ν · d̄j,νyν).

Hence,

(2.26) (dσ)2 = d(rZ + rZ̄) · d(r∗Z + dr∗Z̄) = 2hijdz
idz̄j =

= gij(dx
idxj + dyidyj) = d(rX + r̂Y ) · d(r∗X + r̂∗Y ).

Based on (2.18) we can see that xν and yν are harmonic functions on R̂2n since

the Riemannian Laplacian of xν and yν vanishes identically on R̂2n. In other words,

M R̂2n

is a minimal hypersurface immersed in R̂2n [2]. In what follows we will show

that M R̂2n

is a trivial minimal hypersurface immersed in R̂2n [5].
For Λ = 1, 2, ..., n−m let nΛ and n̄Λ be two mutually orthogonal corresponding

sets of linearly independent unit vectors that span the orthogonal complement

M⊥R̂
2n

of M R̂2n

in R̂2n and let nΛ and n̄Λ be dual bases associated to nΛ and n̄Λ,
respectively. Then,

(2.27) d2
ji,νz

ν = ∂zjhi = (∂zjhi · hk)hk + (∂zjhi · nΛ)nΛ = (∇j + ∆j)hi and
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d2
ji,ν z̄

ν = ∂z̄j h̄i = (∂z̄j h̄i · h̄
k
)h̄k + (∂z̄j h̄i · n̄Λ)n̄Λ = (∇j + ∆j)h̄i,

where ∇j and ∆j are the connections on M R̂2n

and M⊥R̂
2n

, respectively, such that

(2.28) ∇jhi = (d2
ji,νz

ν · hk)hk = Γkjihk, ∇jh̄i = (d2
ji,ν z̄

ν · h̄k)h̄k = Γ̄kjih̄k,

∆jhi = (∂zjhi · nΛ)nΛ = τji,ΛnΛ and ∆jh̄i = (∂z̄j h̄i · n̄Λ)n̄Λ = τ̄ji,Λn̄Λ.

Considering the fact that the contravariant vectors hi and h∗j are a linear combi-
nation of the fundamental vectors h∗l and hl, respectively, that means that hk =
h∗l h

lk and h∗j = hlh
lj , where hlk = hl· h∗k are the contravariant components of

the fundamental tensor hlk, the Christoffel symbols Γkji and Γ̄kji are defined as

(2.29) Γkji = ∂zjgi · gk = d2
ji,νz

ν · gk = d2
ji,νz

ν · (hk + h̄
k

) = d2
ji,νz

ν · hk =

= ∂zjhi · hk = ∂zjhi · h∗l hlk = ∂zjhilh
lk = −hil∂zjhlk and

Γ̄kji = ∂z̄jgi · gk = d2
ji,ν z̄

ν · gk = d2
ji,ν z̄

ν · (hk + h̄
k

) = d2
ji,ν z̄

ν · h̄k =

= ∂z̄j h̄i · h̄
k

= ∂z̄j h̄i · h̄
∗
l h
lk = ∂z̄jhilh

lk = −hil∂z̄jhlk,

so that

(2.30) ∂xjgi · gk = Γkji + Γ̄kji = ∂xjgilg
lk and ∂yjgi · gk = ı̂(Γkji − Γ̄kji) = ∂yjgilg

lk,

since hlj = 2gij . In addition,

(2.31) d2(rZ+rZ̄) = d2
ji,νz

νdzjdzi+d2
ji,ν z̄

νdz̄jdz̄i = ∂zjgidz
jdzi+∂z̄jgidz̄

jdz̄i =

= ∂xjgi(dx
jdxi − dyjdyi) + ∂yjgi(dx

jdyi + dyjdxi),

that leads to the second fundamental forms of M R̂2n

as follows

(2.32) (d2σ)Λ = d2(rZ + rZ̄) · (nΛ + n̄Λ) = τji,Λdz
jdzi + τ̄ji,Λdz̄

jdz̄i =

= ιji,Λ(dxjdxi − dyjdyi) + tji,Λ(dxjdyi + dyjdxi) = d2(rX + r̂Y ) · (nΛ + n̄Λ),

where ιji,Λ = ∂xjgi· (nΛ+ n̄Λ) = −∂yj ĝi· (nΛ+ n̄Λ) and tji,Λ = ∂yjgi· (nΛ+
n̄Λ) = ∂xj ĝi · (nΛ+ n̄Λ). Clearly,

(2.33) τji,Λ =
1

2
(ιji,Λ − ı̂tji,Λ) and τ̄ji,Λ =

1

2
(ιji,Λ + ı̂tji,Λ).

As is well-known to us, the Gaussian curvature κG of a surface in R3 can be
calculated as the ratio of the determinants of the second and first fundamental
forms [1]. Hence, if we now introduce the Gaussian curvature tensor of M R̂2n

as
follows

(2.34) Gjilk = τji,Λτ̄
Λ
lk =

ιji,Λι
Λ
lk + tji,Λt

Λ
lk

4
,

then the Gaussian curvature κG of M R̂2n

can be calculated as

(2.35) κG =
∣∣∣κji ∣∣∣ =

∣∣∣τ lj,Λτ̄ i,Λl ∣∣∣ =

∣∣Gjilkhki∣∣
|hjl|

=

=

∣∣τji,Λτ̄Λ
lkh

ki
∣∣

|hjl|
=

∣∣(ιji,ΛιΛlk + tji,Λt
Λ
lk)gki

∣∣
|gjl|

.

However, since h∗l = hilh
i and hl = hilh

∗i, it follows from (2.29) that

(2.36) ∂zjh
k = ∂zj (h

∗
l h
lk) = −Γkijh

i and ∂z̄jh
∗k = ∂z̄j (hlh

lk) = −Γ̄kijh
∗i,
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as well as

(2.37) ∂z̄jh
∗
l = ∂z̄j (hilh

i) = Γ̄kljh
∗
k and ∂zjhl = ∂zj (hilh

∗i) = Γkljhk,

meaning that h∗j and ∂zjhl lie in the tangent vector space spanned by hi, more

precisely, M R̂2n

is a flat space. In other words, since ∆jhi ≡ 0 and ∆jh̄i ≡ 0, that
leads to

(2.38) Gjilk ≡ 0 and κG ≡ 0,

it follows that if each coordinate function zν
(
zi, z̄i

)
on R̂2n is a holomorphic func-

tion on M R̂2n

, then M R̂2n

must be a flat space.
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