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Abstract. For a given manifold M , modelled on a Banach space B, sec-

ond order differential equation provides an alternative way to study geometric
structures on M . Firstly for every connection ∇ on M we associate a second

order differential equation S in a way that the ∇-geodesics are geodesics with

respect to S. In a further step despite of natural difficulties with non-Banach
modelled manifolds, and even spaces, we generalize these results to a wide

class of Fréchet manifolds. More precisely we show that for a Fréchet mani-

fold M , which can be considered as projective limit of Banach manifolds, for
a given initial value there exists a unique geodesic. As an interesting result

we propose two criterions to generalize the concept of completeness for a wide
class of Fréchet manifolds. The last part of the paper suggests applications of

our technique to some well known Fréchet manifolds i.e. manifold of infinite

jets and manifold of smooth mappings.

1. Introduction

The theory of connections forms an interesting chapter of differential geometry
which has been widely explored by many authors (see e.g. [4], [7], [14] and [18]).
Beside the mathematical nature of connection theory it becomes an essential tool
due to its important role in mathematical physics [13], quantum field theory [14],
control theory [6] etc.

In our work, first we try to present a unified definition of connection and associate
to every connection a second order differential equation (for abbreviation 2ODE)
on a Banach or Fréchet projective limit manifold. Then using 2ODE’s we derive
several important geometric properties of the Banach and non-Banach discussing
manifolds.

Section 2 is devoted to introduce the basic notations about connections and
bundles and makes an integrated theory for different types of connection in the
general case. Most of the results of this section are known but we could not find
such a unified theory in any reference. First the notion of connection on a Banach
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fibre bundles π : F −→ M as an smooth complementary to the vertical sub-
bundle V π is introduced. Then we procure the local forms which fully determine
a connection locally and is necessary for the next step i.e. connections on vector
bundles and studies on ordinary differential equations.
Recall that this definition of connection on Banach vector bundles yields a covariant
derivative but, as it is known, the converse is true just for the finite dimensional
case (propositions 2.1 and 2.2). Another, known, type of connection is a metric one
which is introduced in the last part of section 1 and local components are derived.

In section 3 homogeneous second order differential equations (for abbreviation
2ODE’s) are introduced. These special class os second order vector fields carry
significant geometric properties. For example one can associate a 2ODE S to a
(possibly nonlinear) connection ∇ in a way that the S-geodesics are geodesic curves
of ∇ (theorem 3.2). For the case that the 2ODE is homogeneous of degree two the
converse of the theorem 3.2 also is true [12].
Lemmas 3.1 and 3.2 provide two known criterions (and also motivation for further
steps) to determine some of infinite dimensional geodesically complete manifolds
which are susceptible to be extended for the Fréchet modelled manifolds.

In a further step (section 4) we consider a wide class of Fréchet manifolds i.e.
those which can be considered as projective limits on Banach manifolds. In dif-
ferent literatures of mathematical physics like loop quantization of Gauge theories,
Quantum Gravity and the 2D Yang-Mills Theory and string theory one often en-
counters with projective limits manifolds (see references of [1]). Another example
in physics is the space of connections via graphs [5] which one has a projective
family of compact Hausdorff spaces labelled by a special partially ordered directed
set called graphs. Some of the well known projective families of manifolds which
arise in differential geometry are space of infinite jets of a given fibre bundle [17],
manifold of maps [8] and group of diffeomorphisms[16].

Despite of the natural difficulties with these manifolds [10] we prove an exis-
tence and uniqueness theorem for ordinary differential equations on these manifolds
(theorem 4.1) which is followed by two completeness criterion for this category of
manifolds. They are good motivations for further studies on these manifolds for
example the challenging problem of a generalized length structure arising from the
components [15].

Finally (section 4) we give some applications of our technique to two well known
Fréchet manifolds i.e. manifold of infinite jets and manifold of maps. It would
be nice if one engage a family of natural metric to his framework and looks for
minimizers of the induced metric on the limit manifold and in this case our theorems
will play a key role. It seems to us that this is the missing part of the geometry
of these manifolds and there are ongoing research to enrich this field of differential
geometry (mathematical physics) as much as possible.

Through this paper all the maps and manifolds, for the sake of simplicity, are
assumed to be smooth but less degrees of differentiability may be assumed.

2. Connections

Let π : F −→ M be a fibre bundle with fibres B where B and F are Banach
manifolds modelled on the Banach spaces B and F respectively. At any point p ∈ F
let V πp ⊆ TpF be the vertical subspace, i.e. V πp = kerTpπ, and define the vertical
subbundle as V π =

⋃
p∈F V πp. A connection on (F, π,M), for abbreviation on
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π, is a smooth choice of Hπp ⊆ TpF (at any point p ∈ E) complementary to V πp
such that TF = Hπ⊕V π. If πh and πv are the horizontal and vertical projections,
then by a smooth choice of Hπ we mean that πh(X) is smooth for every vector
field X ∈ C∞(F ). Let (U, φ) be a chart for M such that (π−1(U),Φ) is a local
trivialization of π. In fact we consider a family of these trivializations for π which
the domains cover M . Then

Φ : π−1(U) −→ φ(U)× F
and TΦ : πF

−1(π−1(U)) −→ φ(U) × F × B × F is the induced local trivialization
for TF |U . Let (V,Ψ) be another trivialization chart with U ∩ V 6= ∅, then

TΨ ◦ TΦ−1(x, ξ, y, η) =
(
σψφ(x), Gψφ(x, ξ), Tσψφ(x)y,(2.1)

T1Gψφ(x, ξ)y + T2Gψφ(x, ξ)η
)

where Ψ ◦ Φ−1(x, ξ) := (σψφ(x), Gψφ(x, ξ)) and for i = 1, 2, Ti is the partial deriv-
ative with respect to the i-th variable. Clearly

πv(x, ξ; y, η) := (x, ξ; 0, η + Γφ(x, ξ)y)

where Γφ : φ(U)×F −→ L(B,F) are smooth functions. In fact the differentiability
of Γφ yields from the differentiability of the connection. It perhaps worth remarking
that elements of V π locally have the form (x, ξ, 0, η) and πv at every point is a linear
projection. This last means that

πh(x, ξ; y, η) = (x, ξ; y, η)− πv(x, ξ; y, η) = (x, ξ; y,−Γφ(x, ξ)y).

With a customary abuse of notation let {(π−1(U),Φ)} stands the family of local
trivialization for V π too. The compatibility condition for the local components
yields from the fact that TΨ ◦TΦ−1 ◦πv|U = πv|V ◦TΨ ◦Φ−1 and this holds if and
only for every (x, ξ, y, η) ∈ φ(U ∩ V )× F × B× F

TΨ ◦ TΦ−1(x, ξ, 0, η + ΓU (x, ξ)y) = πv|V
(
(σψφ)(x), Gψφ(x, ξ),

Tσψφ(x)y, T1Gψφ(x, ξ)y + T2Gψφ(x, ξ)η
)

⇐⇒
(
σψφ(x), Gψφ(x, ξ), 0, 0 + T2Gψφ(x, ξ)[η + ΓU (x, ξ)y]

)
=
(
σψφ(x),

Gψφ(x, ξ), 0, T1Gψφ(x, ξ)y + T2Gψφ(x, ξ)η + ΓV
(
σψφ(x), Gψφ(x, ξ)

)
[Tσψφ(x)y]

)
if and only the last components of both sides are equal i.e.

(2.2) T1Gψφ(x, ξ)y + ΓV
(
σψφ(x), Gψφ(x, ξ)

)
[Tσψφ(x)y] = T2Gψφ(x, ξ)[ΓU (x, ξ)y]

2.1. connections on vector bundles. Let π : E −→M be a vector bundle with
fibres isomorphic to the Banach space E. Following the formalism of the previous
part, for local trivializations (U,Φ) and (V,Ψ) with U ∩ V 6= ∅, Ψ ◦ Φ−1(x, ξ) =
(σψφ(x), Gψφ(x)ξ) where Gψφ : U ∩ V −→ GL(E) are smooth. Here GL(E) is the
space of linear and continuous isomorphisms from E to E. In this situation equation
(2.1) takes the form

T (Ψ ◦ Φ−1)(x, ξ, y, η) =
(
σψφ(x), GΨΦ(x)ξ, Tσψφ(x)y(2.3)

, GΨΦ(x)η + TGΨΦ(x)(y, ξ)
)
.

and consequently the compatibility condition for the connection, say ∇, is

(2.4) GΨΦ(ΓU (x)[y, ξ]) = TGΨΦ(x)(y, ξ) + ΓV (σψφ(x))[Tσψφ(x)y,GΨΦ(x)ξ].
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The connection ∇ is linear if the local components are linear with respect to the
second variable i.e. for every chart (U, φ),

ΓU : φ(U) −→ L(E,L(B;E)).

If M is finite dimensional and E = TM we have the familiar notation

[Γ(x)(ξ, η)]i =
∑

Γijk(x)ξiyi.

Moreover we can define the connection map ∇ : TE −→ E which is locally given
by

∇φ(x, ξ, y, η) := Φ ◦ ∇ ◦ TΦ−1(x, ξ, y, η) = (x, η + Γφ(x, ξ)y).

For every section ζ of π and any vector field X on M , the covariant derivative of
ζ along X is defined by ∇Xζ := ∇ ◦ Tζ ◦ X. However another familiar concept
of connections is defined according to the covariant derivative properties. More
precisely a connection is considered to be a map ∇ : Γ(π) × Γ(τM ) −→ Γ(π) with
the following properties;
∇X+Y ζ = ∇Xζ + ∇Y ζ, ∇X(ζ + ζ ′) = ∇Xζ + ∇Xζ ′ and ∇fXζ = f∇Xζ where
ζ, ζ ′ ∈ Γ(π), X,Y ∈ Γ(τM ) and f ∈ C∞(M).

The next two statements reveal the relations between the concepts of covariant
derivative and connection. To see that, let (U,Φ) be a local trivialization for π. For
ζ ∈ Γ(π) and X ∈ Γ(τM ) suppose that ζ̄φ := proj2 ◦Φ◦ ζ and X̄φ := proj2 ◦Tφ◦X
be the principal parts of ζ and X respectively.

Proposition 2.1. Let ∇ be a connection on π. Then a unique covariant derivative
can be defined which locally on (U,Φ) is given by

(∇Xζ)|U (φp) := (∇ ◦ Tζ ◦X)|U (φp) = dζ̄φ(φp)X̄φ(φp) + ΓU (φp)[X̄φ(φp), ζ̄φ(φp)].

Proof. Clearly the result is again a section and this is a covariant derivative. Note
that in the case that E = TM and ∇ is a linear connection, we can impose further
assumptions for the covariant derivative i.e. ∇X(Y +Z) = ∇XY +∇XZ, ∇XfY =
f∇Xζ +X(f)Y and ∇XY −∇YX = [X,Y ]. �

Now, just for the case that the fibres of π : E −→ M are finite dimensional
vector spaces we propose a suitable converse for the above mentioned proposition
(see also [12]).

Proposition 2.2. Let π : E −→M be a vector bundle with finite dimensional total
space. Then for every covariant derivative on this bundle we can associate a linear
connection.

Proof. Suppose that a covariant derivative ∇ is given. We define the Christoffel
symbols of the connection D in the following way

Γφ(φ(p))[ξ, η] := (∇Xζ)|U (φ(p))− dζ̄φ(φ(p))X̄φ(φ(p))(2.5)

where ζ̄φ(φ(p)) = η and X̄φ(φ(p)) = ξ and (U,Φ) is a local trivialization. We claim
that this definition is independent of the choice of sections. More precisely the right
hand side is C∞(M) linear in both components. In the other words it is C∞(M)-
linear map from Γ(π)×M Γ(τM ) to Γ(π). According to the following Lemma from
[12], (5) is independent from the choice of sections.
”Lemma: Let E and F be vector bundles over M with E finite dimensional and M
admitting cut off functions. Let

H : ΓE −→ ΓF
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be a C∞(M)-linear map, that is H(fζ) = fH(ζ) for f ∈ C∞(M). Given a point
p ∈M , the value H(ζ)p depends only on the value ζ(p).”

We can see that the local components (2.5) are linear in η and consequently the
connections will be linear. Let (U,Φ) and (V,Ψ) be two local trivializations of π
with U ∩ V 6= ∅ and p a point in this intersection . By setting φ(p) := φp and
ψ(p) := ψp we observe that

Γψ
(
(ψ ◦ φ−1)(φp)

)
[d(ψ ◦ φ−1)(φp)X̄φ(φp), Gψφ(φp)ζ̄φ(φp)]

= Γψ(ψp)[X̄ψ(ψp), ζ̄ψ(ψp)] = (∇Xζ)|V (ψp)− dζ̄ψ(ψp)X̄ψ(ψp)

= Gψφ(φp)(∇Xζ)|U (φp)− d
(
ζ̄ψ((ψ ◦ φ−1)φp)

)(
d(ψ ◦ φ−1)(φp)X̄φ(φp)

)
= Gψφ(φp)(∇Xζ)|U (φp)− d

(
ζ̄ψ ◦ (ψ ◦ φ−1)

)
(φp)X̄φ(φp)

= Gψφ(φp)(∇Xζ)|U (φp)− d
(
Gψφ(φp)ζ̄φ

)
(φp)X̄x(φp)

= Gψφ(φp)(∇Xζ)|U (φp)− {dGψφ(φp)
(
X̄φ(φp), ζ̄φ(φp)

)
+Gψφ(φp)dζφ(φp)X̄φ(φp)}

= Gψφ(φp)[∇Xζ)|U (φp)− dζφ(φp)X̄φ(φp)]− dGψφ(φp)
(
X̄φ(φp), ζ̄φ(φp)

)
= Gψφ(φp)[Γφ(φ(p))[X̄φ(φp), ζ̄φ(φp)]− dGψφ(φp)

(
X̄φ(φp), ζ̄φ(φp)

)
.

�

Remark 2.1. Note that just for the case that we want to derive a connection from
a covariant derivative, the dimension should be finite. In fact the concept of con-
nection is more general than covariant derivative.

Here we state the definition of a metric from [11] which also is stated in [12]. For
the vector bundle π : E −→M we have the associated bundle L2

s(π) : L2
s(E) −→M

where L2
s(E)p consists of the continuous symmetric bilinear maps from E × E to

R. Let L2
π(E) be the model of the fibres. It contains as an open subset Ri(E) the

positive definite forms, i.e. those forms which are ≥ ε (Hilbert metric on E), for
some ε ≥ 0 [11].

Definition 2.1. A Riemannian metric on π : E −→ M is a differentiable section
g : M −→ L2

s(E) such that for every p ∈ M , g(p) is positive definite. If we have a
Riemannian metric g on τM : TM −→ M then we call M a Riemannian manifold
and we also call g a Riemannian metric on M .

Proposition 2.3. Let M be a manifold modelled on a self dual Banach space and
∇ a covariant derivative on M such that

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

for any X,Y, Z ∈ Γ(τM ). Then a unique torsion free connection can be defined on
M , known as the Levi-Civita connection.

Proof. Let (U, φ) be a local chart on M . For any (x, ξ, y, η) ∈ U × B × B × B the
relation

gU (ΓU (x)[ξ, y], η) =
1

2

(
dgU (x).ξ(y, η)− dgU (x).η(ξ, y) + dgU (x).y(ξ, η)

)
defines the continuous and also smooth map Γφ : φ(U) −→ L2(B,B) as the Christof-
fel symbols (for more details see [11] and [12]). �
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3. Connections and second order differential equations

Let M be a smooth manifold modelled on the Banach space E with the atlas A =
{(Uα, ψα)}α∈I . A induces the canonical atlases B = {(π−1

M (Uα),Ψα)}α∈I and C =

{(π−1
TM (π−1

M (Uα)), Ψ̃α)}α∈I for TM and T (TM) respectively. (Here πM : TM −→
M and πTM : T (TM) −→ TM are the canonical projections.) Let γ : (−ε, ε) −→M
be a smooth curve. A lifting of γ to TM is a curve β such that π ◦ β = γ. Such
lifting always exists, for example the canonical lifting γ′.

A connection on a manifold M is a connection on its tangent bundle i.e. a vector
bundle morphism ∇ : T (TM) −→ TM with the local representation;

∇α : ψα(Uα)× E× E× E −→ ψα(Uα)× E
(x, ξ, y, η) 7−→ (x, η + Γα(x, ξ)y)

where ∇α = Ψα ◦ ∇ ◦ Ψ̃−1
α and Γα : ψα(Uα) × E −→ L(E,E), α ∈ I, are the local

forms of ∇. The connection ∇ is linear if {Γα}α∈I are linear with respect to the
second variable i.e.

Γα : ψα(Uα) −→ L(E,L(E,E)); α ∈ I.
(For a detailed study see [4] or [18].)

Let π∗ : TTM −→ TM be differential of the projection π : TM −→ M which
locally sends (x, ξ, y, η) to (x, y). It is known that there are two vector bundle
structures for TTM on TM i.e. (TTM, π∗, TM) and (TTM, πTM , TM).

Definition 3.1. A vector field S : TM −→ T (TM) is called a second order dif-
ferential equation, for abbreviation 2ODE, if each integral curve β of S is equal to
the canonical lifting of π ◦ β.

Consider the involution map ι : TTM −→ TTM ; locally given by (x, ξ, y, η) 7−→
(x, y, ξ, η).

Theorem 3.1. The following statements are equivalent.
1) S is a 2ODE.
2) S is a section of (TTM, πTM , TM) with π∗ ◦ S = idTM .
3) S is a section of (TTM, πTM , TM) with ι ◦ S = S.

Proof. Suppose that S is a 2ODE. For any v ∈ TM there exists a unique integral
curve βv : I = (ε, ε) −→ TM of S with βv(0) = v. Since βv is an integral curve for
S then,

π∗ ◦ S(v) = π∗ ◦ S ◦ βv(0) = π∗ ◦ β′v(0) = (π ◦ βv)′(0) = βv(0) = v

which proves 2. Conversely, let 2 holds true. Then for any t ∈ I,

(π ◦ β)′(t) = π∗ ◦ β′(t) = π∗ ◦ S ◦ β(t) = β(t).

The equivalence of the conditions 2 and 3 is an immediate result of their local
representation. �

The parts 1 and 2 are used by Lang [12] and 3 is used by Del Riego and Parker
[7] to define a 2ODE. Let (Uα, ψα) be a chart of M . Then the local expression of
S on this chart is

Sα := Ψ̃α ◦ S ◦Ψ−1
α : Uα × E −→ Uα × E× E× E

(x, ξ) 7−→ (x, ξ, ξ,Sα(x, ξ))

where {Sα}α∈I are smooth E-valued functions. Here we state a definition from [7].
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Definition 3.2. A 2ODE S is called homogeneous of order m ∈ R if for every
α ∈ I and every a ∈ R, Sα(x, aξ) = amSα(x, ξ).

Theorem 3.2. Let ∇ be a connection on M . Then there exists an induced 2ODE
S∇ on M given by

S∇(x, ξ) := π∗|−1
Hπ(x,ξ)

(x, ξ).

Proof. Remind that π∗ : TTM −→ TM locally sends (x, ξ, y, η) to (x, y) and ele-
ments of Hπ(x,ξ) have the form (x, ξ, y,−Γ(x, ξ)y) for some y ∈ E. Let S∇(x, ξ) :=

π∗|−1
Hπ(x,ξ)

(x, ξ) = (x̄, ξ̄, ȳ, η̄). Since (x̄, ξ̄, ȳ, η̄) belongs to π−1
∗ (x, ξ) then x̄ = x and

ȳ = ξ. On the other hand (x, ξ̄, ξ, η̄) ∈ Hπ(x,ξ) i.e. ξ̄ = ξ and η̄ = −Γ(x, ξ)ξ :=
S(x, ξ) which shows that S∇ is a 2ODE. �

Definition 3.3. For the smooth curve γ : (−ε, ε) −→M and a 2ODE S we define
γ to be a geodesic with respect to S (or S-geodesic) if γ′ is an integral curve for S
i.e.

γ′′(t) = S(γ′(t)).

Remark 3.1. For m = 2 the 2ODE S is called a spray [12]. Let {Sα}α∈I be the
family of local components for S. Since for every α ∈ I, Sα is homogeneous of
degree 2 in second variable, then

Sα(x, ξ) =
1

2
d2

2Sα(x, 0)(ξ, ξ)

where d2
2 means the second partial derivative with respect to the second variable (see

also [12] pp. 9 and 101). Define the bilinear symmetric map Bα(x) := 1
2d

2
2Sα(x, 0)

and consequently for ξ, η ∈ E we have

Bα(x)(ξ, η) =
1

2
{Bα(x)(ξ + η, ξ + η)−Bα(x)(ξ, ξ)−Bα(x)(η, η)}

Hence every spray S locally can be uniquely determined by symmetric bilinear maps

Bα : Uα −→ L2
sym(E,E)

where Bα(x)(ξ, ξ) = Sα(x, ξ).

Del Riego and Parker [7] discussed second order vector fields and their homo-
geneity properties. Several important results relate to the case of sprays and second
order vector fields. For example in the case of finite dimensional manifolds one can
associate a second order vector field S∇ to a (possibly nonlinear) connection ∇
such that the geodesic curves with respect to S∇ are the geodesic curves of ∇ [7].
Moreover every spray S determines a unique torsion-free linear connection, and con-
versely every spray S arises from a linear connection with arbitrary torsion. If there
is a Riemannian metric on the base manifold then quasi-geodesics and geodesics,
coincide.

The latter holds also in our frame work since for every linear connection ∇ on
M by theorem 3.2 there exists a unique spray (2ODE in general) S∇ such that
geodesic curves of the connection ∇ are geodesics with respect to S∇. To see that,
it is enough to set Bα = B|ψα(Uα) = −Γα.

The converse of the theorem 3.2 is also true in Banach case and the proof can
be derived from [7] theorem 4.4.

The local expression of the equation γ′ = S(γ′′) is

Ψ̃α ◦ γ′′(t) = ((ψα ◦ γ)(t), (ψα ◦ γ)′(t), (ψα ◦ γ)′(t), (ψα ◦ γ)′′(t)).
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and the following system of ordinary differential equations

(3.1) (ψα ◦ γ)′′(t) = Sα
(
(ψα ◦ γ)(t), (ψα ◦ γ)′(t)

)
; α ∈ I.

determine the S-geodesics for given initial values. On the other hand let ∇ :
T (TM)→ TM be a connection. It is known (see e.g. [2]) that the local differential
equations satisfied by a ∇-geodesic curve γ : I ⊆ R→M are:

∇αγ′
α(t)γ

′
α(t) = ∇α ◦ γ′′α(t) = (ψα ◦ γ)′′(t)

+Γα((ψα ◦ γ)(t))[(ψα ◦ γ)′(t), (ψα ◦ γ)′(t)] = 0; α ∈ I.

which coincide with the equations (3.1) if we notice that Γα(x)(y, y) = −Bα(x)(y, y)
= Sα(x) for all α ∈ I. Since for every connection we can consider its associated
2ODE hereinafter we state our results just for 2ODE’s which automatically will
be true for connections also.

Proposition 3.1. For any 2ODE S there exists a unique geodesic γ satisfying the
initial conditions of the form γ(0) = x and Ttγ(∂t) = y, for any choice of x ∈ M
and y ∈ TxM .

The other interesting part of studying 2ODE’s and their geodesics is the com-
pleteness of their geodesics. On the other hand we need to resolve that under which
conditions the geodesic γ is defined on the whole of real line R.

Definition 3.4. The smooth manifold M is called geodesically complete with re-
spect to the connection ∇ (or a 2ODE S), if its geodesics are defined on the whole
of real line R.

Based on the above constructions we may state the following nice criterion to
characterize some of the geodesically complete Banach manifolds.

Lemma 3.1. Let M be a smooth manifold modelled on the Banach space E and ∇
a connection on M . If the associated 2ODE to ∇ has compact support, then M is
geodesically complete.

Proof. Let S be a 2ODE associated to ∇ and γ be a geodesic for S. Since S has
compact support and γ′ is an integral curve for S, then by [13], γ′ is complete which
yields the completeness of γ and proves the lemma. �

Lemma 3.2. Let (M, g) be a Riemannian manifold modelled on a self dual Banach
space. If (M,distg) is complete then all geodesics with respect to the Levi-Civita
connection ∇g (and also the associated 2ODE Sg) are complete. (For the proof see
[12].)

4. Fréchet case

In the sequel we introduce our notations about a wide class of Fréchet manifolds
i.e. those which can be considered as projective limits of Banach manifolds. Suppose
that {(M i, ϕji)}i,j∈N be a projective system of Banach manifolds with the limit
M = lim←−M

i such that M i is modelled on the Banach space Ei and {Ei, ρji}i∈N
also forms a projective system of Banach spaces. (Here ρji : Ej −→ Ei are linear
and continuous maps for j ≥ i.)
Remind from [1] that elements of M are (xi)i∈N ∈

∏
i∈NM

i such that for j ≥
i, ϕji(xj) = xi. Let {(M i, ϕji)}i,j∈N and {(N i, ϑji)}i,j∈N be projective family
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of manifolds. A family of maps {f i : M i −→ N i}i∈N is a projective system of
mappings if ϑji ◦ f j = f i ◦ ϕji for i, j ∈ N with j ≥ i.

Furthermore suppose that for any x = (x)i∈N ∈ M there exists a projective

system of local charts {(U i, ψi)}i∈N such that xi ∈ U i and U = lim←−U
i is open in

M . Two example of projective limit manifolds are given at the last section.
The vector bundle structure of TM for a Fréchet manifoldM links to pathological

structure of general linear group GL(F) and this causes troubles. It is shown in [9]
that by replacing the generalized topological Lie group

H0(F) = {(li)i∈N ∈
i∈I∏

GL(Ei) : lim←− l
i exists}

rather than GL(F) this obstacle also can be solved. Moreover as we will see in
the rest of the paper, the problems related to the lack of a general solvability for
differential equations on Fréchet manifolds overcome with the introduced technique
(see also [2], [3] and [4]).

Proposition 4.1. Let {∇i}i∈N be a projective system of connections on {M i}i∈N.
If {Si}i∈N is the corresponding family of 2ODE’s, then {Si}i∈N also form a pro-
jective systems.

Proof. Since {∇i}i∈N is a projective system of maps then for j ≥ i, Tϕji ◦ ∇j =
∇i ◦ TTϕji or locally on a given limit chart

ρji ◦ ΓjUj (x
j , ξj)(yj) = ΓiUi(ϕ

ji(xj), ρjiξj)(ρjiyj).

For any i ∈ N, let Si be the corresponding 2ODE to ∇i. Then according to the the-
orem 3.2 Si|Ui(xi, ξi) = (xi, ξi, ξi,SiUi(, x

i, ξ)) where SiUi(x
i, ξi) = ΓiUi(x

i, ξi)(ξi)
and as a result

ρji ◦ SjUj (x
j , ξj) = SiUi(ϕ

ji(xj), ρjiξj)

which means that {Si}i∈N is a projective system. �

Here we state the following main theorem which is a generalization of proposition
3.1 for Fréchet manifolds.

Theorem 4.1. Let S be a 2ODE obtained as projective limit of 2ODE’s {Si}i∈N.
Then for any choice of x ∈ M = lim←−M

i and y ∈ TxM there exists a unique

geodesic γ satisfying initial conditions of the form γ(0) = x = (xi)i∈N and γ′(0) =
y = (yi)i∈N.

Proof. For any i ∈ N, Si is a 2ODE on the Banach manifold M i. Hence by
proposition 3.1 for initial conditions xi = ϕi(x) and yi = Txϕ

i(y), there exists a
unique Si-geodesic γi such that:

(ψiα ◦ γi)′′(t) = Siα((ψiα ◦ γi)(t), (ψiα ◦ γi)′(t))(4.1)

for which γi(0) = xi and γi
′
(0) = yi.( Here ϕi : M −→ M i; x = (xi)i∈N 7−→ xi is

the canonical projection.)
We claim that γ = lim←− γ

i exists and fulfils the conditions of the theorem. For this

aim we show that for j ≥ i, ϕji ◦ γi is also a solution for (7) since:

(ψiα ◦ ϕji ◦ γj)′′(t) = (ρji ◦ ψjα ◦ γj)′′(t) = ρji ◦ ((ψjα ◦ γj)′′(t)
= ρji ◦ Sjα((ψjα ◦ γj)(t), (ψjα ◦ γj)′(t))
= Siα(ρji ◦ (ψjα ◦ γj)(t), ρji ◦ (ψjα ◦ γj)′(t))
= Siα((ψiα ◦ γi)(t), (ψiα ◦ γi)′(t)).
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Furthermore ϕji ◦ γj(0) = ϕji(xj) = xi and Txϕ
jiγj(0) = Txϕ

ji(yj) = yi. Hence
again by 3.1 for j ≥ i we have ϕji ◦ γj = γi i.e. {γi}i∈N is a projective system of
curves and γ = lim←− γ

i exists. Moreover

(ψα ◦ γ)′′(t) = {(ψiα ◦ γi)′′(t)}i∈N
= {Siα((ψiα ◦ γi)(t), (ψiα ◦ γi)′(t))}i∈N
= Sα((ψα ◦ γ)(t), (ψα ◦ γ)′(t)).

which means that γ is the desired geodesic.
For the last part of the proof i.e. uniqueness, suppose that θ be another S-

geodesic satisfying θ(0) = x and θ′(0) = y, then for each i ∈ N, ϕi ◦ θ is another
geodesic for Si which satisfying ϕi ◦ θ = xi and (ϕi ◦ θ)′(0) = yi. Using proposition
3.1 we observe that ϕi ◦ θ = γi, for any i ∈ N, and consequently θ = γ. �

Finally we state two criteria to characterize some of the geodesically complete
Fréchet manifolds.

Lemma 4.1. Suppose that M = lim←−M
i be a projective limit manifold modelled on

the Fréchet space F = lim←−Ei with a 2ODE S = lim←−S
i. If S has compact support,

then M is geodesically complete.

The proof is a direct consequence of lemma 3.1 and theorem 4.1.

Lemma 4.2. For any i ∈ N, let (M i, gi) be a complete Riemannian manifold. If
M = lim←−M

i and ∇g = lim←−∇
i
gi (or Sg = lim←−S

i
gi) then, for every given initial value,

∇g- geodesics ( Sg-geodesic) uniquely exists and it is complete.

The proof is clear. Just note that here g could be g =
∑∞
i=1

1
2i

gi

1+gi (see also

[15]).

5. Applications and examples

5.1. Infinite jets. Let π : F −→ M be a finite dimensional fibre bundle with
dimM = m and dimF = m+n. Consider an atlas of adopted coordinates for F i.e.
if (U,Φ) is a local chart around a ∈ F then pr1 ◦Φ = x ◦ π where x is a coordinate
chart around π(a) ∈M and pr1 : Rm+n −→ Rm is projection to the first m factors..
We denote the space of the local sections of π with Γp(π) for p ∈M .

For two local sections ξ and η in Γp(π) we say that they are 1-equivalent if ξ(p) =
η(p) and for some (and consequently for every) adopted coordinate Φ = (xi, φα)
around ξ(p)

∂ξα

∂xi
=
∂ηα

∂xi

for i = 1, ...,m and α = 1, ..., n (Here ξα = φα ◦ ξ and (xi) is a local chart for
M around p). The equivalence class containing ξ is called the first order jet ξ
at p and is denoted by j1

pξ. The first order jet manifold of the fibre bundle π is

J1π := {j1
pξ; p ∈ M and ξ ∈ Γp(π)} is an m + n + mn dimensional manifold.

The canonical local chart for j1π with respect to the adopted coordinate (U,Φ) is
(U1,Φ1) where U1 = {j1

pξ; ξ(p) ∈ U} and Φ1 = (xi, φα, φαi ) with

xi(j1
pξ) = xi(p), φα(j1

pξ) = φα(ξ(p)), φαi (j1
pξ) =

∂ξα

∂xi
|p.
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In a similar way we can define J2π := {j2
pξ; p ∈ M and ξ ∈ Γp(π)} using the

following equivalent relation on the local sections

j2
pξ = j2

pη ⇐⇒ ξ(p) = η(p),
∂ξα

∂xi
=
∂ηα

∂xi
,

∂2ξα

∂xi∂xj
=

∂2ηα

∂xi∂xj
,

for all 1 ≤ α ≤ n and 1 ≤ i, j ≤ m. In this way J2π becomes a smooth manifold
with a canonical atlas of charts (U2,Φ2) where U2 = {j2

pξ; ξ(p) ∈ U}, Φ2 =

(xi, φα, φαi , φ
α
ij) and

φαij : j2
pξ 7−→

∂2ξα

∂xi∂xj
.

Using multi index notation for every natural number k ≥ 2 we define the k-th
order jet manifold, Jkπ with the equivalence relation

j2
pξ = j2

pη ⇐⇒ ξ(p) = η(p),
∂|I|ξα

∂x|I|
=
∂|I|ηα

∂x|I|

where I stands a multi-index with 1 ≤ |I| ≤ k. Jkπ is also an smooth finite
dimensional manifold with local charts Uk = {jkp ξ; ξ(p) ∈ U}, Φk = (xi, φα, φα|I|)

[17].
For any k ∈ N, the map πk+1,k : Jk+1π −→ Jkπ; jk+1

p ξ 7−→ jkp ξ is surjective

submersion. For any k ∈ N let dimJkπ = N(k) and ρk+1,k : RN(K+1) −→ RN(k) be
the natural projection to the first N(k)-component. With these notations the family
{Jkπ, πk+1,k}k∈N forms a projective system (inverse system) of finite dimensional

manifolds modelled on {RN(k), ρk+1,k}k∈N. If J∞π := lim←− J
kπ, then J∞π is a

Fréchet manifold modelled on the Fréchet space R∞ = lim←−Rk. More precisely

J∞π is a subset of Πk∈NJ
kπ consisting strings of the form (jkp ξ)k∈N for p ∈ M

and ξ ∈ Γp(π) and (Uk,Φk)k∈N is a projective system of charts with the limit
(U∞ = lim←−U

k,Φ∞ = lim←−Φk) as a projective limit chart for J∞π. Clearly the
collection of these charts forms an atlas modelling J∞π on R∞.

In what follows ∇k stands for the Levi-Civita connection associated to the Rie-
mannian metric gk. Now suppose that we have a system of Riemannian metrics
{gk}k∈N on {Jkπ}k∈N such that one can construct a projective system of connec-
tions (2ODE’s) {∇k}k∈N with the limit ∇∞ = lim←−∇

k as a generalized connection
on j∞π. The existence and uniqueness of geodesics is a direct consequence of
theorem 4.1. Moreover one can directly consider a family of (possibly nonlinear)
connection which are not necessarily Levi-Civita connections and deduce the same
results. (For an example of such connection on J∞π see [14])

5.2. Manifold of mappings. Let N be a compact finite dimensional manifold
of class Cr (for r ≥ 1) and M a Cr+s Banach manifold with s ≥ 3 admitting a
connection ∇ of class Cr+s−2. Suppose that Ck(N,M), k ≥ 1, denote the space of
Ck functions between manifolds N and M . For a Ck map h : N −→M we use the
exponential map of ∇ to model Ck(N,M) on the Banach (or Sobolev) space of Ck

sections Ck(h∗TM) where h∗TM is the pullback bundle of TM via h.
Eliasson in [8] theorem 5.4 proved that every Cr+s−2 connection ∇ on M induces
a natural connection CK(∇) ( and therefore a 2ODE Sk∇) on Ck(N,M). The
exponential map for CK(∇) is Ck(exp∇) where Ck(exp∇)ζ := exp∇ ◦ ζ. More
precisely ζ belongs to h∗D where D is an open neighborhood of the set of zero
vectors in TM .
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By these means {Ck(N,M)}k∈N is a projective system of Banach manifolds and
the connecting morphisms are simply inclusions. Moreover we have a projective
system of connections {Ck(∇)}k∈N with the limit C∞(∇) = lim←−C

k(∇) which is a

limit connection on the Fréchet manifold C∞(N,M). Now with our method we can
construct the corresponding system of 2ODE and theorem 4.1 proposes an existence
and uniqueness theorem for geodesics of C∞(N,M).

Note that one can use the benefits of our method in the Eliasson’s framework
to study partial differential equations for maps N −→M . Moreover one can apply
our technique to study ordinary differential equations the group of diffeomorphisms
[16].
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