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Abstract. In this paper, when (α, α∗) timelike Bertrand curve couple is
given, the geodesic curves and the arc-lenghts of the curvatures (T ∗), (N∗),(B∗)

and the fixed pole curve (C∗) which are generated over the S2
1 Lorentz sphere

or the H2
0 hyperbolic sphere by the Frenet vectors {T ∗, N∗, B∗} and the unit

Darboux vector C∗ have been obtained. The condition being the naturel lifts

of the spherical indicatrix of the α∗ is an integral curve of the geodesic spray
has expressed.

1. Preliminaries

Let Minkowski 3-space R3
1 be the vector space R3 equipped with the Lorentzian

inner product g given by

g(X,X) = x2
1 + x2

2 − x2
3,

where X = (x1, x2, x3) ∈ R3. A vector X = (x1, x2, x3) ∈ R3 is said to be timelike
if g(X,X) < 0 , spacelike if g(X,X) > 0 and lightlike (or null) if g(X,X) = 0.
Similarly, an arbitrary curve α = α(s) in R3

1 where s is an arc-length parameter,
can locally be timelike, spacelike or null (lightlike), if all of its velocity vectors, α′(s)
are respectively timelike, spacelike or null (lightlike) for every s ∈ R. The norm of
a vector X ∈ R3

1 is defined by [5]

‖X‖ =
√
|g(X,X)|.

We denote by {T (s), N(s), B(s)} the moving Frenet frame along the curve α. Let
α be a timelike curve with curvature κ and torsion τ . Let Frenet vector fields of α
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be {T,N,B}. In this trihedron, T is a timelike vector field, N and B are spacelike
vector fields. Then Frenet formulas are given by [8]

(1.1) T ′ = κN , N ′ = κT − τB , B′ = τN.

Let α be a timelike vector, the Frenet vectors T be timelike, N and B be spacelike
vectors, respectively, such that

T ×N = −B, N×B = T, B × T = −N,
and the Frenet instantaneous rotation vector is given by [6]

W = τT − κB, ‖W‖ =
√
|κ2 − τ2|.

Let ϕ be the angle between W and −B vectors and if W is a spacelike vector, then
we can write

(1.2)

{
κ = ‖W‖ coshϕ, τ = ‖W‖ sinhϕ,

C = sinhϕT − coshϕB

and if W is a timelike vector, then we can write

(1.3)

{
κ = ‖W‖ sinhϕ, τ = ‖W‖ coshϕ,

C = coshϕT − sinhϕB

Let X = (x1, x2, x3) and Y = (y1, y2, y3) be the vectors in R3
1. The cross product

of X and Y is defined by [1]

X ∧ Y = (x3y2 − x2y3, x1y3 − x3y1, x1y2 − x2y1).

The Lorentzian sphere and hyperbolic sphere of radius r and center 0 in R3
1 are

given by
S2

1 = {X = (x1, x2, x3) ∈ R3
1| g(X,X) = r2, r ∈ R}

and
H2

0 = {X = (x1, x2, x3) ∈ R3
1 |g(X,X) = −r2, r ∈ R}

respectively.
Let M be a hypersurface in R3

1. A curve α : I → M is an integral curve of
X ∈ χ(M) provided α′ = Xα; that is

d

ds
(α(s)) = X(α(s)) for all s ∈ I [5].

For any parametrized curve α : I → M , the parametrized curve, α : I → TM
given by
α(s) = (α(s), α′(s)) = α′(s)|α(s). is called the natural lift of α on TM [7]. Thus

we can write
dα

ds
=

d

ds
(α′(s))|α(s). = Dα′(s)α

′(s),

where D is the standart connection on R3
1. For v ∈ TM the smooth vector field

X ∈ χ(M) defined by

X(v) = εg(v, S(v))|α(s), ε = g(ξ, ξ) [3]

is called the geodesic spray on the manifold TM , where ξ is the unit normal vector
field of M and S is the shape operator of M .

Let α : I → R3
1 be a timelike vector. Let us consider the Frenet frame {T,N,B}

and the vector C. Accorollarydingly, arc-lengths and the geodesic curvatures of
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the spherical indicatrix curves (T ), (N) and (B) with the fixed pole curve (C) with
respect to R3

1, respectively generated by the vectors T,N and B with the unit
Darboux vector C are as follows:

(1.4)


sT =

∫ s

0

|κ|ds

sN =

∫ s

0

‖W‖ds
,


sB =

∫ s

0

|τ |ds

sC =

∫ s

0

|ϕ′|ds

if W is a spacelike vector, then we can write

(1.5)


kT =

1

coshϕ

kN =

√∣∣∣∣1 +
( ϕ′

‖W‖

)2
∣∣∣∣ ,


kB =

1

sinhϕ

kC =

√∣∣∣∣1 +
(‖W‖
ϕ′

)2
∣∣∣∣

if W is a timelike vector, then we have

(1.6)


kT =

1

sinhϕ

kN =

√∣∣∣∣1− ( ϕ′

‖W‖

)2
∣∣∣∣ ,


kB =

1

coshϕ

kC =

√∣∣∣∣− 1 +
(‖W‖
ϕ′

)2
∣∣∣∣ [2]

Definition 1.1. Let α and α∗ be two timelike curves in R3
1. {T,N,B} and

{T ∗, N∗, B∗} are Frenet frames, respectively, on these curves. α(s) and α∗(s) are
called Bertrand curves if the principal normal vectors N and N∗ a re linearly de-
pendent, and the pair (α, α∗) is said to be timelike Bertrand curve couple [4].

Theorem 1.1. Let (α, α∗) be timelike Bertrand curve couple. For corollaryre-
sponding α(s) and α∗(s) points

d(α(s), α∗(s)) = constant, ∀s ∈ I [4].

Theorem 1.2. Let (α.α∗) be timelike Bertrand curve couple. The measure of the
angle between the vector fields of Bertrand curve couple is costant [4].

2. THE NATURAL LIFT CURVES AND GEODISIC CURVATURES OF
THE SPHERICAL INDICATRICES OF THE TIMELIKE

BERTRAND CURVE COUPLE

Theorem 2.1. Let (α, α∗) be timelike Bertrand curve couple. The relations between
the Frenet vectors of the curve couple are as follows

T ∗ = − cosh θT + sinh θB

N∗ = N

B∗ = − sinh θT + cosh θB

.

Here, the angle θ is the angle between T and T ∗.

Proof. By taking the derivative of α∗(s) = α(s) +λN(s) with respect to arc-lenght
s and using the equation (1.1), we get

(2.1) T ∗
ds∗

ds
= T (1 + λκ)− λτB.
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The inner products of the above equation with respect to T and B are respectively
defined as

(2.2)


− cosh θ

ds∗

ds
= 1 + λκ,

− sinh θ
ds∗

ds
= λτ

and by substituting these present equations in (2.1), we obtain

(2.3) T ∗ = − cosh θT + sinh θB.

Here, by taking derivative and using the equation (1.1), we get

(2.4) N∗ = N.

We can write

(2.5) B∗ = − sinh θT + cosh θB

by availing the equation B∗ = −(T ∗ ×N∗).

Corollary 2.1. Let (α, α∗) be a timelike Bertrand curve couple. Between the cur-
vature κ and the torsion τ of the α, there is a relationship

(2.6) µτ + (−λ)κ = 1 and µ = λ coth θ,

where λ and µ are nonzero real numbers.

Proof. From equation (2.2), we obtain

cosh θ

1 + λκ
=

sinh θ

λτ
,

and by arranging this equation, we get

coth θ =
1 + λκ

λτ

and if we choose µ = λ coth θ for brevity, then we obtain

µτ + (−λ)κ = 1.

Theorem 2.2. There are connections between the curvatures κ and κ∗ and the
torsions τ and τ∗ of the timelike Bertrand curve couple (α, α∗), which are shown
as follows

(2.7)


κ∗ =

− sinh2 θ + λκ

λ(1 + λκ)
,

τ∗ = − sinh2 θ

λ2τ
.

Proof. If α and α∗ are Bertrand curve couple, we can write α(s) = α∗(s)−λN∗(s).
By taking the derivative of this equation with respect to s∗ and using equation
(1.1) we obtain

T = T ∗
ds∗

ds
(1− λκ∗) + λτ∗B∗

ds∗

ds
.

The inner products of the above equation with respect to T ∗ and B∗ are as follow-
ings
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(2.8)


cosh θ = −(1− λκ∗)ds

∗

ds

sinh θ = λτ∗
ds∗

ds

respectively. The proof can easily be completed by using and rearranging the
equations (2.2) and (2.8).

Corollary 2.2. Let (α, α∗) be a timelike Bertrand curve couple. Then

(2.9) κ∗ =
λκ− sinh2 θ

λ2τ coth θ

Proof. By using the equations (2.6) and with substition of them in (2.7), we get
the desired result.

Theorem 2.3. Let (α, α∗) be a timelike Bertrand curve couple. There are following
relations between Darboux vector W of curve α and Darboux vector W ∗ of curve
α∗

(2.10) W ∗ =
sinh θ

λτ
W.

Proof. For the Darboux vector W ∗ of timelike curve α∗, we can write

W ∗ = τ∗T ∗ − κ∗B∗.
By substituting (2.3), (2.5), (2.7) and (2.9) into the last equation, we obtain

W ∗ =
sinh θ

λτ
[
1

λ
tanh θ(1 + λκ)T − κB].

By substituting (2.6) into the above equation, we get

W ∗ =
sinh θ

λτ
W.

This completes the proof.
Now, let compute the arc-lengths of the spherical indicatrix curves, (T ∗), (N∗),

(B∗) and of the fixed pole curve, (C∗), and then calculate the geodesic curvatures
of these in IR3

1 and H2
0 or S2

1 . of with the
Firstly, for the arc-length sT∗ of tangents indicatrix (T ∗) of the curve α∗, we can

write

sT∗ =

∫ s

0

∥∥∥∥dT ∗ds
∥∥∥∥ds.

By taking the derivative of equation (2.3), we have

sT∗ ≤ | cosh θ|
∫ s

0

|κ|ds+ | sinh θ|
∫ s

0

|τ |ds.

By using equation (1.4) we obtain

sT∗ ≤ | cosh θ|sT + | sinh θ|sB .
For the arc-length sN∗ of principal normals indicatrix (N∗) of the curve α∗, we can
write

sN∗ =

∫ s

0

∥∥∥dN∗
ds

∥∥∥ds.
By substituting (2.4) into the above equation, we get

sN∗ = sN .
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Similarly, for the arc-length sB∗ of binormals indicatrix (B∗) of the curve α∗, we
can write

sB∗ =

∫ s

0

∥∥∥dB∗
ds

∥∥∥ds.
By taking the derivative of equation (2.5), we have

sB∗ ≤ | sinh θ|
∫ s

0

|κ|ds+ | cosh θ|
∫ s

0

|τ |ds.

By using equation (1.4), we obtain

sB∗ ≤ | sinh θ|sT + | cosh θ|sB .

Finally, for the arc-length sC∗ of the fixed pole curve (C∗), we can write

sC∗ =

∫ s

0

‖dC
∗

ds
‖ds.

If W ∗ is a spacelike vector, we can write C∗ = sinhϕ∗T ∗ − coshϕ∗B∗ from the
equation (1.2). By taking the derivative of this equation, we obtain

(2.11) sC∗ =

∫ s

0

|(ϕ∗)
′
|ds.

On the other hand, from equation (1.3) and by using

coshϕ∗ =
κ∗

‖W ∗‖
ve sinhϕ∗ =

τ∗

‖W ∗‖
we can set

tanhϕ∗ =
τ∗

κ∗
.

By substituting (2.7) and (2.9) into the last equation and after differentiation, we
obtain

(2.12) (ϕ∗)
′

=
λκ′ sinh θ cosh θ

λ2κ2 − (1 + 2λκ) sinh2 θ
.

By substituting (2.12) into (2.11), we have

sC∗ =

∫ s

0

∣∣∣ λκ′ sinh θ cosh θ

λ2κ2 − (1 + 2λκ) sinh2 θ

∣∣∣ds.
If W ∗ is a timelike vector, we have the same result. Thus the following corollary-
ollary can be drawn.

Corollary 2.3. Let (α, α∗) be a timelike Bertrand curve couple and {T ∗, N∗, B∗}
be the Frenet frame of the curve α∗. For the arc-lengths of the spherical indicatrix
curves (T ∗), (N∗) and (B∗) with the fixed pole curve (C∗) with respect to R3

1, we
have

i. sT∗ ≤ | cosh θ|sT + | sinh θ|sB ,
ii. sN∗ = sN ,

iii. sB∗ ≤ | sinh θ|sT + | cosh θ|sB ,

iv. sC∗ =

∫ s

0

∣∣∣ λκ′ sinh θ cosh θ

λ2κ2 − (1 + 2λκ) sinh2 θ

∣∣∣ds.
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Now, let us compute the geodesic curvatures of the spherical indicatrix curves
(T ∗), (N∗) and (B∗) with the fixed pole curve (C∗) with respect to R3

1.
For the geodesic curvature kT∗ of the tangents indicatrix (T ∗) of the curve α∗,

we can write

(2.13) kT∗ = ‖DTT∗TT∗‖.
By differentiating the curve αT∗(sT∗) = T ∗(s) with the respect to sT∗ and normal-
izing, we obtain

TT∗ = N.

By taking derivative of the last equation we get

(2.14) DTT∗TT∗ =
κT − τB

| − κ cosh θ + τ sinh θ|
.

By substituting (2.14) into (2.13) we have

kT∗ =
‖W‖

| − κ cosh θ + τ sinh θ|
.

Here, if W is a spacelike vector, by substituting (1.2) and (1.5) into the last equation
we have

kT∗ =
∣∣∣ kT · kB
kT · sinh θ − kB · cosh θ

∣∣∣,
if W is a timelike vector, then by substituting (1.3) and (1.6) we have the same
result.

Similarly, by differentiating the curve αN∗(sN∗) = N∗(s) with the respect to
sN∗and by normalizing we obtain

TN∗ =
κ

‖W‖
T − τ

‖W‖
B.

If W is a spacelike vector, then by using equation (1.2) we have

TN∗ = coshϕT − sinhϕB,

(2.15) DTN∗TN∗ =
ϕ′

‖W‖
(sinhϕT − cosϕB) +N, kN∗ = kN =

√( ϕ′

‖W‖

)2

+ 1.

If W is a timelike vector, then by using of the equations (1.3) and (1.5) we have

(2.16) DTN∗TN∗ =
ϕ′

‖W‖
(coshϕT − sinhϕB)−N,

kN∗ = kN =

√∣∣∣∣1− ( ϕ′

‖W‖

)2
∣∣∣∣.

By differentiating the curve αB∗(sB∗) = B∗(s) with the respect to sB∗ and by
normalizing, we obtain

TB∗ = N.

By taking the derivative of the last equation we get

(2.17) DTB∗TB∗ =
κT − τB

| − κ sinh θ + τ cosh θ|
or by taking the norm of equation (2.17), we obtain

kB∗ =
‖W‖

| − κ sinh θ + τ cosh θ|
.
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If W is a spacelike vector, then by substituting (1.2) and (1.5) we have

kB∗ =
∣∣∣ kT · kB
kT · cosh θ − kB · sinh θ

∣∣∣,
if W is a timelike vector, then by substituting (1.3) and (1.6) we have the same
result.

By differentianting the curve αC∗(sC∗) = C∗(s) with the respect to sC∗ and
normalizing, if W ∗ is a spacelike vector, then by substituting (1.2) we obtain

TC∗ = coshϕ∗T ∗ − sinhϕ∗B∗,

(2.18) DTC∗TC∗ = (sinhϕ∗T ∗ − coshϕ∗B∗) +
‖W ∗‖
(ϕ∗)′

N∗

(2.19) kC∗ =

√
1 +

(‖W ∗‖
(ϕ∗)′

)2

.

By substituting (2.10) and (2.12) into (2.19) and rearranging we have

kC∗ =

√∣∣∣ (κ2 − τ2)[λ2κ2 − (1 + 2λκ) sinh2 θ]2

(λ2τκ′)2 cosh2 θ
+ 1
∣∣∣.

If W ∗ is a timelike vector, then by substituting (1.1) and (1.3) we get

TC∗ = sinhϕ∗T ∗ − coshϕ∗B∗,

(2.20) DTC∗TC∗ = (coshϕ∗T ∗ − sinhϕ∗B∗) +
‖W ∗‖
(ϕ∗)′

N∗,

(2.21) kC∗ =

√∣∣∣− 1 + (
‖W ∗‖
(ϕ∗)′

)2
∣∣∣.

By substituting (2.10) and (2.12) into (2.21) we have

kC∗ =

√∣∣∣ (τ2 − κ2)[λ2κ2 − (1 + 2λκ) sinh2 θ]2

(λ2τκ′)2 cosh2 θ
− 1
∣∣∣.

Then the following corollaryollary can be given.

Corollary 2.4. Let (α, α∗) be a timelike Bertrand curve cuople and {T ∗, N∗, B∗} be
Frenet frame of the curve α∗. For the geodesic curvatures of the spherical indicatrix
curves (T ∗), (N∗) and (B∗) with the fixed pole curve (C∗) with the respect to R3

1 we
have

i. kT∗ =
∣∣∣ kT · kB
kT · sinh θ − kB · cosh θ

∣∣∣,
ii.


kN∗ = kN =

√∣∣∣∣( ϕ′

‖W‖

)2

+ 1

∣∣∣∣, W spacelike

kN∗ = kN =

√∣∣∣∣1− ( ϕ′

‖W‖

)2
∣∣∣∣, W timelike,

iii. kB∗ =
∣∣∣ kT · kB
kT · cosh θ − kB · sinh θ

∣∣∣,
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iv.


kC∗ =

√∣∣∣ (κ2 − τ2)[λ2κ2 − (1 + 2λκ) sinh2 θ]2

(λ2τκ′)2 cosh2 θ
+ 1
∣∣∣, W ∗ spacelike

kC∗ =

√∣∣∣ (τ2 − κ2)[λ2κ2 − (1 + 2λκ) sinh2 θ]2

(λ2τκ′)2 cosh2 θ
− 1
∣∣∣, W ∗ timelike.

Now let us compute the geodesic curvatures (T ∗), (N∗) and (B∗) with the fixed
pole curve (C∗) with respect to H2

0 or S2
1 .

For the geodesic curvature γT∗ of the tangents indicatrix curve (T ∗) of the curve
α∗ with respect to H2

0 , we can write

(2.22) γT∗ = ‖DTT∗TT∗‖.

Here, D becomes a covariant derivative operator. By (2.3) and (2.14) we obtain

DTT∗TT∗ = DTT∗TT∗ + εg(S(TT∗), TT∗)T
∗,

(2.23)
DTT∗TT∗ =

( κ

| − κ cosh θ + τ sinh θ|
+ cosh θ

)
T

+
( −τ
| − κ cosh θ + τ sinh θ|

− sinh θ
)
B.

By substituting (2.23) into (2.22) we get

γT∗ =

√∣∣∣ τ2 − κ2

(−κ cosh θ + τ sinh θ)2
+ 1
∣∣∣.

If W is a spacelike vector, then by using of the equations (1.2) and (1.5) we have

γT∗ =

√∣∣∣∣− ( kT kB
−kB cosh θ + kT sinh θ

)2

+ 1

∣∣∣∣,
if W is a timelike vector, then by using of the equations (1.3) and (1.6) we have

γT∗ =

√( kT kB
−kB cosh θ + kT sinh θ

)2

+ 1.

If the curve (T ∗) is an integral curve of the geodesic spray, then DTT∗TT∗ = 0.
Thus, by (2.23) we can write

κ

| − κ cosh θ + τ sinh θ|
+ cosh θ = 0

−τ
| − κ cosh θ + τ sinh θ|

− sinh θ = 0

and here, we obtain κ > 0, τ = 0 and θ = 0. So, we can give following corollaryol-
lary.

Corollary 2.5. Let (α, α∗) be a timelike Bertrand curve couple. If the curve α
is a plenary curve and frames are equivalent, the natural lift (T ∗) of the tangent
indicatrix (T ∗) is an integral curve of the geodesic spray.

For the geodesic curvature γN∗ of the principal normals indicatrix curve (N∗) of
the curve α∗ with respect to S2

1 we can write

(2.24) γN∗ = ‖DTN∗TN∗‖.
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Here, D becomes a covariant derivative operator. If W is a spacelike vector, by
using of the equation (2.15) we obtain

(2.25) DTN∗TN∗ =
ϕ′

‖W‖
(sinhϕT − coshϕB).

By substituting (2.25) into (2.24) we get

(2.26) γN∗ =
ϕ′

‖W‖
.

On the other hand, from the equation (1.2), by using

sinhϕ =
τ

‖W‖
and coshϕ =

κ

‖W‖
,

we can set

tanhϕ =
τ

κ
.

By taking the derivative of the last equation we get

ϕ′ =
τ ′κ− κ′τ
‖W‖2

.

By substituting the e above quation into (2.26) we have

γN∗ = γN =
τ ′κ− κ′τ
‖W‖3

.

If W is a timelike vector, by using of the equation (2.16) we obtain

(2.27) DTN∗TN∗ =
ϕ′

‖W‖
(coshϕT − sinhϕB),

γN∗ =
ϕ′

‖W‖
.

On the other hand, from equation (1.3) by using

sinhϕ =
κ

‖W‖
and coshϕ =

τ

‖W‖
,

we can set

tanhϕ =
κ

τ
.

By taking the derivative of the last equation we get

ϕ′ =
κ′τ − τ ′κ
‖W‖2

or

γN∗ = γN =
κ′τ − τ ′κ
‖W‖3

.

If the curve (N∗) is an integral curve of the geodesic spray, then DTN∗TN∗ = 0.
Thus, by (2.25) and (2.27) we can write ϕ′ = 0 and here, we obtain κ

τ = constant.
So, we can give following corollaryollary.

Corollary 2.6. Let (α, α∗) be a timelike Bertrand curve couple. If the curve α is
a helix curve, the natural lift (N∗) of the pirincipal normal indicatrix (N∗) is an
integral curve of the geodesic spray.
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For the geodesic curvature γB∗ of the binormal indicatrix curve (B∗) of the curve
α∗with respect to S2

1 and with substitution of (2.5) and (2.17) we obtain

DTB∗TB∗ = DTB∗TB∗ + εg(S(TB∗), TB∗)B
∗,

(2.28)
DTB∗TB∗ =

( κ

| − κ sinh θ + τ cosh θ|
− sinh θ

)
T

+
(
− τ

| − κ sinh θ + τ sinh θ|
+ cosh θ

)
B,

γB∗ =

√∣∣∣− 1 +
τ2 − κ2

(−κ sinh θ + τ cosh θ)2

∣∣∣.
If W is a spacelike vector, then by using of the equations (1.2) and (1.5) we have

γB∗ =

√∣∣∣− 1−
( kT kB
−kB sinh θ + kT cosh θ

)2∣∣∣,
if W is a timelike vector, then by using of the equations (1.3) and (1.6) we get

γB∗ =

√∣∣∣− 1 +
( kT kB
−kB sinh θ + kT cosh θ

)2∣∣∣.
If the curve (B∗) is an integral curve of the geodesic spray, then DTB∗TB∗ = 0.
Thus, by (2.28) we can write

κ

| − κ sinh θ + τ cosh θ|
− sinh θ = 0,

−τ
| − κ sinh θ + τ cosh θ|

+ cosh θ = 0

and here, we obtain κ = 0, τ 6= 0 and θ = 0. So, we can give following corollaryol-
lary.

Corollary 2.7. Let (α, α∗) be a timelike Bertrand curve couple. The natural lift
(B∗) of the binormal indicatrix (B∗) is never an integral curve of the geodesic spray.

If W ∗ is a spacelike vector, for the geodesic curvature γC∗ of the fixed pole curve
(C∗) of the curve α∗ with respect to S2

1 and by using of the equations (1.2) and
(2.18) we obtain

DTC∗TC∗ = DTC∗TC∗ + εg(S(TC∗), TC∗)C
∗,

(2.29) DTC∗TC∗ =
‖W ∗‖
(ϕ∗)′

N∗,

γC∗ =

∥∥∥∥‖W ∗‖(ϕ∗)′

∥∥∥∥.
By substituting (2.10) and (2.12) into the last equation we have

γc∗ =
‖W‖ · [λ2κ2 − (1 + 2λκ) sinh2 θ]

λ2τκ′ cosh θ
.

If W ∗ is a timelike vector, for the geodesic curvature γC∗ of the fixed pole curve
(C∗) with respect to H2

0 and by using of the equations (1.3) and (2.20) we have
the same result. If the curve (C∗) is an integral curve of the geodesic spray, then
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DTC∗TC∗ = 0. Thus by (2.29) we can write ‖W ∗‖ = 0 and here, we get κ∗ = τ∗ = 0
or κ∗ = τ∗. Thus, by using of the equation (2.7) and (2.9) we obtain

κ =
sinh2 θ − sinh θ cosh θ

λ
.

So, we can give following corollaryollary.

Corollary 2.8. Let (α, α∗) be a timelike Bertrand curve couple. If the curve α is

a curve that provides the requirement κ = sinh2 θ−sinh θ cosh θ
λ , the natural lift (C∗) of

the fixed pole curve (C∗) is an integral curve of the geodesic spray.

Corollary 2.9. Let (α, α∗) be a timelike Bertrand curve couple and {T ∗, N∗, B∗} be
Frenet frame of the curve α∗. For the geodesic curvatures of the spherical indicatrix
curves (T ∗), (N∗) and (B∗) with the fixed pole curve (C∗) with respect to H2

0 or S2
1 ,

we have

i.


γT∗ =

√∣∣∣∣− ( kT kB
−kB cosh θ + kT sinh θ

)2

+ 1

∣∣∣∣, W spacelike

γT∗ =

√∣∣∣∣( kT kB
−kB cosh θ + kT sinh θ

)2

+ 1

∣∣∣∣, W timelike,

ii.


γN∗ = γN =

τ ′κ− κ′τ
‖W‖3

, W spacelike

γN∗ = γN =
κ′τ − τ ′κ
‖W‖3

, W timelike,

iii.


γB∗ =

√∣∣∣∣− 1−
( kT kB
−kB sinh θ + kT cosh θ

)2
∣∣∣∣, W spacelike

γB∗ =

√∣∣∣∣− 1 +
( kT kB
−kB sinh θ + kT cosh θ

)2
∣∣∣∣, W timelike,

iv. γc∗ =
‖W‖ · [λ2κ2 − (1 + 2λκ) sinh2 θ]

λ2τκ′ cosh θ
.

References

[1] Akutagawa, K. and Nishikawa S., The Gauss Map and Spacelike Surfaces with Prescribed

Mean Curvature in Minkowski 3-space, Tohoku Math., J. 42(1990), 67-82.

[2] Bilici, M., Ph.d. Dissertation, Ondokuzmayıs University Institute of Science and Technology,
Samsun, 2009.
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