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GEODESICS ON THE TANGENT SPHERE BUNDLE OF
3-SPHERE

ISMET AYHAN

(Communicated by Cihan OZGUR)

ABSTRACT. The Sasaki Riemann metric g% on the tangent sphere bundle T} S3
of the unit 3-sphere S3 is obtained by using the geodesic polar coordinate of
S3. The connection coefficients of the Levi Civita connection of the Sasaki
Riemann manifold (7152, g) are found. Furthermore, a system of differential
equations which gives all geodesics of Sasaki Riemann manifold is obtained.

1. INTRODUCTION

The unit 3-sphere and its tangent sphere bundle are important issues of the
differential geometry which have attracted the interest of physicists as well as
mathematicians.

The unit 3 sphere has been considered as non-relativistic closed universe model
by physicists [7]. According to this model, the universe has expanded since Big
Bang and this expansion will continue until Big Crunch.

In [5], U. Pincall considered Hopf tori in S® which is the inverse image of the
closed curves on S? by helping the Hopf projection p : §3 — S2.

In [6], Sasaki classified geodesics on the tangent sphere bundles of the unit n-
sphere S™ and the hyperbolic n-space H™ by using Sasaki metric on 775™ and
T1H™. Moreover, he obtained geodesics of horizontal, vertical and oblique types on
the tangent sphere bundles of the unit 3-sphere and the unit hyperbolic 2-space.

In [1], Klingenberg and Sasaki obtained the Sasaki Riemann metric on 7752
by using the geodesic polar coordinate of S2?, and they indicated that the unit
vector fields which make a constant angle with the geodesic circles of unit sphere
S? constitute geodesics of T7.52.

In [2] and [3], P. T. Nagy expanded the studies in this field from space forms to
Riemann manifolds. He defined a new metric on the tangent sphere bundle of a
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Riemann manifold and examined the geometry of the tangent sphere bundle of the
Riemann manifold with respect to this new metric.

In this paper, the Sasaki Riemann metric ¢° on the tangent sphere bundle 7753
of the unit 3 sphere S? is obtained by using the geodesic polar coordinates of S3.
The connection coefficients of the Levi Civita connection of the Sasaki Riemann
manifold (71.5%,g%) are calculated. Furthermore, a system of differential equations
which gives all geodesics on (715%, g) is obtained.

2. THE RIEMANN MANIFOLD (S%, g)

This section has been developed by using [2], [4], and [6]. This section consists of
some subjects as the representation with respect to the geodesic polar coordinates
of the unit 3 sphere, the induced Riemann metric on S2, the basis vectors of the
tangent vector space at any point of S3, the Christoffel symbols of S, and the
differential equations system which gives all geodesics of S3.

Let < , > be positive definite, symmetric, bilinear form in 4 dimensional
Euclidean space E* defined by

(2.1) < U,V >= u1v1 + UgV2 + U3V3 + U4y,
for any vectors u,v € E*. S3 is a surface in E* given by
(2.2) 53:{U=($1,$2,1‘3,$4) < u,u >= 1,u€E4}.

53 is called as the unit 3 sphere in E*. The unit 3 sphere is given by the following
equation

(2.3) w42l faitad=1,

with respect to Cartesian coordinate system. The unit 3 sphere is also represented
by

r1 = sinwsinacosf,
(2.4) 9 = sinwsinasing,

r3 = sinwcosa,

Ty = COSW,

with respect to the geodesic polar coordinate of S? if a curve on S2 is described by
giving the following coordinates as a function of a single parameter t.

a = a(t),
(2.5) 0=46(t),
w = w(t).

In order to find the arc length between infinitely close two points on the unit 3-
sphere, the covariant derivations of x1,xs, z3, x4 is used, given by

dry = coswsinacosfdw + sinw cos a cos fda — sin w sin a sin 0d0,
(2.6) dxs = coswsinasinfdw + sinw cosasinfda + sinw sin a cos Hd6,
drs = cosw cosadw — sinwsin ada,

dry, = —sinwdw.
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The arc length between infinitely close two points on the surface S3
(i.e. (z1, 2, x3,24) and (21 + dx1, T2 + dX9, T3 + dX3, T4 + d24) is calculated by

ds? =< (dwy,dxs, dvs, dvy), (doy, d2e, drs, dvy) >

(2.7) = (dx1)® + (do)® + (dzs)® + (dza)®.

By using the (2.6), we get for ds? the following:

(2.8) ds® = dw? + sin? w (da® + sin? adf®)
and also the matrix representation of the equation in (2.8)
sin? w 0 0
(2.9) (gik) : 0 sinfwsin?a 0 |,
0 0 1

where (gix), for i,k € {a,0,w} is called as induced metric on S3 from E*. The
inverse matrix of (g;x) is given by

. sin? w 0 0
(2 10) (gk] ) : 0 sin? alsin2 w 0
0 0 1

Let e;(a,f,w) be any point on the surface S3 given by
(2.11) e1(a,f,w) = (sinwsinacosf, sinwsinasinf, sinwcosa, cosw),

with respect to standard orthonormal basis of £4. Since the orthogonal curves on
the surface S® is described by a = a(t), # = 0(t) and w = w(t), the unit tangent
vectors of orthogonal curves passing through the point e;(a,#,w) on the surface S®
can be defined by

0 1 0 1 0
(212) fo=amy s =

Moreover, the local expressions of the unit tangent vectors fo, f3 and f; at the
point ey (a,f,w) on the surface S* are also given by

- a 4 = . =i
sinw da’ sinw sina 90

fa(a,0,w) = (coswsinacosf,coswsinasinf,cosw cosa, —sinw),
(2.13) f3(a,0,w) = (cosacosb,cosasinb,—cosa,0),
fala,0,w) = (—sinb,cos6,0,0),

with respect to standard orthonormal basis of E*. Thus fa, f3, f2 are the basis
vectors of tangent vector space at any point e;(a,,w) on S3.

Definition 2.1. Let S? be the unit 3 sphere in 4-dimensional Euclidean space and
let T,.,S® be the tangent vector space consisting of the unit tangent vectors at a
point e;(a,f,w) on S3. g is a real valuable function on T,, S defined by

g: T..8xT, S — IR

(2.14) (X,Y) - g(X,Y)=XT(94),

where (gir), i,k € {a,0,w} is the matrix which corresponds to the metric g given
by (2.9). Since g is positive definite, symmetric and bilinear, g must be called as
induced Riemann metric on S® from E*.
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Theorem 2.1. Let S3 be the unit 3 sphere in 4-dimensional Euclidean space and
let {e1, fa, f3, f1} be another orthonormal basis in Buclidean space E*. The covari-
ant deriwations of ey, fa, f3, f4 are given by

dey = dwfs+ sinwdafs + sinw sin adf fy,

dfs = —dwey + coswdafz + coswsin adf fy,

dfs = —sinwdae; — coswdafs + cosadf fy,

dfy = —sinwsinadfe; — coswsinadf fo — cosadl f3.

Proof. We can use the covariant derivations of orthonormal vectors ey, fa, f3, f4 in
order to examine the change of the basis vectors on a point in the other infinite
closer of each point e;(a,8,w) on S2. The covariant derivatives of these vectors are
calculated by using the partial derivation operation as follows:

861 861 361

dey, = —da+ —df+ —dw = dwfs + sinwdafs + sinwsin adf f4,
da 00 Ow
dfs = %da + %dﬂ + %dw = —dwe; + coswda f3 + cosw sin adf f4,
da 00 Ow
dfs = %da + %dﬂ + %dw = —sinwdae; — coswda fo + cos adf fy,
da 00 Ow
dfy = %da + %dﬂ + %dw = —sinwsin adfe; — cosw sin adf fo — cos adl f3.
da 00 Ow

O

Theorem 2.2. Let (Ss,g) be Riemann manifold. Let D be Levi Civita connection
of (53,g) and let ¢i—“j; i,j,k € {a,0,w} be Christoffel symbols related to the Riemann
metric g. Then the non-zero the Christoffel symbols of (5’3,9) are given by

w

[ . [ — [
oe = — SInw CoS w, e = cota, aw = COtw,

$%y = —sinacosa, ¢4, = —sinwcoswsin®a, ¢, = cotw,
where qbfj = ;“l foralli,j, k € {a,0,w}.

Proof. On the Riemann manifold (S 3, g), there is a unique connection D such that
D is torsion free and compatible with the Riemann metric g. This connection is
called as Levi Civita connection and characterized by the Kozsul formula:

2g (D5a897 8w) = 8@9 (89a 6w) + 89g (60.:7 8@) - 80.:9 (a(m 89)
-9 ([am 89] 760-)) +g ([89’ aw] aaa) +g ([awa aa] ,39) ,
where 9, = 3%, Oy = % and 0, = a%. Since D is symmetric, [0,,dy|, [0y, O] and

[0, 04] must be zero. If we get Dy, g = ¢%y0u + ¢? 100 + ¢, 0.,, Christoffel symbols
are obtained by

1
ngg = §gam (8agm9 + 0oGam — amgae) =0,
1
29 = §gI9m (8agm0 + 89911771 - a’mgae) = cot a,
1
2)9 = §gwm (aagm@ + a@ga'm - 87nga9) = 07 for m € {a7 07W}~

The other Christoffel symbols can be obtained by using the similar method. (I
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Theorem 2.3. Let (53,9) be  Riemann  manifold and  let
c:t€ R = clt) = (a(t),0(t),w(t) be a curve on S®. c is geodesic if and only
if the following second order differential equations are provided:

a — sinh a cosh af? + 2 cot waw = 0,
0 +2cot aad + 2cotwbhey = 0,
(O — sinw coswa? — sinw coswsin®af? = 0.

Proof. c(t) = (a(t),0(t),w(t)) is geodesic if and only if D¢ is zero. Since ¢ is equal
to ad, + 00y + wd,,, D:¢ must be equal to:

Do, (aaa + 00, + waw) + Dy, (aaa + 00 + waw) + Do, (aaa + 00 + waw) .
If we calculate D:¢ in the following way:
D = (d — sinh a cosh af? + 2 cot wdw) Oy
+ (0 + 2 cot aad + 2 cot w9w) O
+ (C& — sinw coswa? — sin w cos w sin’ a92> O,

it can be seen easily that the claim of the theorem is correct. O

3. THE SASAKI RIEMANN MANIFOLD (7353, g)

This section consists of some subjects as the expression with the local coordinate
function of any point on 7753, the orthonormal basis at any point on 7752, the
covariant derivations of this orthonormal basis elements, the Sasaki Riemann metric
g° on T183, the adapted basis and dual basis vectors on T} S® with respect to
g%, the coefficients of the Levi Civita connection of the Sasaki Riemann manifold
(T15%,97), and a system of the differential equations which gives all geodesics of

the Sasaki Riemann manifold..

Let 7153 = y U53T6153 be the disjoint union of the tangent vector spaces in-
e1€

cluding all unit tangent vectors at every point of S®. Then 715 is called as the
tangent sphere bundle of S3. Since S® has 3-dimensional manifold structure, Ty S®
should be 5 dimensional manifold structure. Let 7 : 77.5% — S be a canonical
projection map. Assuming that e, is an element of 71.5% at the point e;(a, 8, w)
of §3. At the same time, e, may be considered as a tangent vector in the tangent
vector space spanned by the orthonormal frame {fa, f3, f4} at the point e;(a, 6, w)
of S3. If we denote the angle between f; and e; by § and the angle between f, and
the projected vector of es to the tangent plane spanned by the vectors fo and f3
by ¢, then (a,0,w,¢,d) can be considered as local coordinates for ey in w=1(S%).
Therefore, es, e3 and e4 have the following local expression:

ea(a,0,w,0,8) = cospsindfy+singsindfs + cosd fy,
(3.1) es(a,0,w,p,0) = cospcosdfo+sinpcosdfs —sindfy,
€4 (a,e,w7¢76) = *Singﬁf2+COS<)0f3,
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19
sind Oy
point (eq, ez) of T1.53 or elements of T1.5%. We assume that eg, es, €3, €4 are the unit
orthogonal elements of 77.53.

where e3 = % and e4 = are considered as the unit tangent vectors at any

Theorem 3.1. Let T) 5% be the tangent sphere bundle of the unit 3 sphere in /
dimensional Euclidean space and let ey, ea, e3, eq be the unit orthogonal elements
of T1S3. The covariant derivations of these elements are given by

der = wizes +wizes + wigey,
dey = —wizer + wazez + waey,
des = —wize; — wazes + Wasey,
deq = —wise1 — wagez — W3ge€s,
where
wig = sinhwsingsindda + sinw sin a cos ddO + cos ¢ sin ddw,
w3 = sinhwsin g cosdda + sinw sin a sin ddf + cos ¢ cos ddw,
wyy = sinhw coseda — sin pdw,
wey = (—sinacoswcosy — cosasinp)df + df,
weg = coswsindda + (sinacoswsin g cosd — cosacos p cosd) df + sin ddyp,
w3y = coswcosdda — (sinacoswsinpsind — cosacos psind) df + cos ddp.

Proof. We can use the covariant derivations of the unit orthogonal elements e, es,
e3, e4 in order to examine the change between infinitely close two points on T} S3.
The covariant derivatives of these elements can be obtained by using the partial
derivation easily. |

Definition 3.1. The 1-forms providing the equation w;; =< de;,e; > for
i,7 € {1,2,3,4} are called as the connection 1-forms on the cotangent space
T(*ehez)TlS‘g.

Theorem 3.2. The square of line element between infinitely close two points on
T1S3 is given by

do? = da® + d? + dw? + dp? + d6? + 2 coswdadp

(3.2) — 2 (cos asin ¢ + sin a cos w cos ) dfdé.

Proof. From the study in [1] with analogy, we obtained the square of the line
element between infinitely close two points on 7753 as follow:

do? = <dey,deg >+ < des,e3 >2 + < des,eq >2 + < des, eq >

w2 A Wiz + w1z A wig + wig A wig + waz A Wwag + Wag N Wag + w3g A W3y
—da® + db? + dw? + dp? + d6? + 2 cos wdadyp

—2 (cosasin ¢ + sin a cos w cos ) dfdd.
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The square of the line element between infinitely close two points on 7753 has
the matrix representation as follows:

1 0 0 cosw O

0 1 0 0 —A
(3.3) Gap 0 0 1 0 0 for o, B € {a,0,w, @, 6}
cosw 0 O 1 0
0 —-A 0 0 1
where A = cosasing + sinacosw cos . The inverse matrix of g, is given by
csc? w 0 0 —coswescw 0
0 171A2 0 0 1:4A2
(3.4) g’ 0 0 1 0 0
— cosw csc? w 0 0 csc? w 0
A 1
0 —a O 0 T—A2

Definition 3.2. ¢°, which has the components gap for a, 8 € {a,0,w,p,0}, is
called as induced metric on the manifold 77.5%. The characteristic vectors of matrix

(gap) which has type 5x5 are base vectors of the tangent vector space at point
(e1,e2) of T1.S3 defined by

1 1
8 = BT cosw %t 0,
1 1
& = BTiemy 0et0):
& = 0Oy,
1 1
S = ﬁl*COSWSiH(ZCOSQ&*COSCLSin@<89+85)’
! 1
55 N <_80+85),

V2 1+ coswsinacos @ — cosasin ¢

where 0y, = % for k € {a,0,w,p,0}. &;1 € {1,2,3,4,5} is called as adapted basis
vector of the tangent space T(el)e2)T153 with respect to the induced metric g°. If
the 1-form n%;i € {1,2,3,4,5} provides the following equation:

(3.5) 1'(&) = ¢° (€. &) = 6}
1-form 7’ is called as adapted dual basis vector of the cotangent space T(*eh%)Tl 53

with respect to the induced metric g®.The local expressions of 1-form 7 are given
by

nt = %(1—00%}) (da + do),
n? = % (14 cosw) (—da + dy)
(3.6) N’ = dw,
nt = %(1—coswsinacosga—cosasingp) (df + dof) ,
" = %(1—|—coswsinacos<p—cosasing0) (—df + dod) .
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Theorem 3.3. Let T1.S° be the tangent sphere bundle of the unit 3 sphere and
let T(ehez)TlSS be a tangent vector space at any point (ey,ez) on T1S°. ¢°, a
real valuable function on T(61762)T153, is a Riemann metric on the manifold T, S>
defined by

S: T(el,@z)Tls?’ XT(el,ez)T153 — IR

(3.7) ’ X,Y) S S Y).

~

Proof. Let X = ', Y = yi¢; and 7= 2k€, for 4,5,k € {1,2,3,4,5} be the unit
tangent vectors at any point on T71.5% where {1, &2, &3,£4,&5} is adapted basis of

T(eheQ)TlS:z. For all )N(,}A}, 5 € T(el,@)TlS?’ and o, 8 € IR, we get

PSaX+8Y,2) = ¢S({alsie] +Bye]}, )
= ax'zte; + Py’ zte;

- ag®(X,Z)+ B3 (Y, 7).

Similarly, we get gS()N(, ay + ﬂ%) = ags()N(, XN’) + Bgs()N(, %) Thus, ¢° is bilinear
transformation. Since the following equality is held

¢S (X,Y) = g%, ) = yiate; = ¢S (Y, X).

¢° must be symmetric map. Finally, ¢° is a positive definite map because ¢°
provides the following identities:

gS()N(,)}):O ifandonlyif;{':O \% gS()N(,)N()>O forevery;(;éo.

Since ¢° is positive definite, symmetric and bilinear form, ¢° must a Riemann
metric on the tangent sphere bundle 7753, Thus, ¢° is called as the Sasaki Riemann
metric. Moreover, (T1.5%,¢%) is also called as Sasaki Riemann manifold. O

Theorem 3.4. Let (Tls?’, gS) be the Sasaki Riemann manifold. Let be Levi Civita
connection of (TlSB,gS) and let Flﬁ; a,B,7 € {a,0,w,p,0} be the connection coef-
ficients of the Levi Civita connection (i.e. Christoffel symbols) related to the matriz
(9ap), @, B € {a,0,w,p,d} which corresponds to the Sasaki Riemann metric g°.
Then the non-zero the Christoffel symbols of (T153,gs) are given by

M, = 3eotw,Ths = —3 csc?w Ay + coswd,) T, =~ escw,
M = Sy s T
R e R (s AR s R
e, = —%sinw,F% = f%Aw,I‘fw = f%cscw,

ry, = 3 csc w (coswA, — AV,),I‘&F = %cot w,Fgg = ﬁfla,
o = gyt T~ g e = e
I = LAMF?M = - Ay

S 2(1— A?) 2(1— A?)
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where Fzﬁ = Fga forall o, 8,y € {a,0,w,p,d} and Ay, = % fork € {a,0,w,p,0}.

Proof. On the Sasaki Riemann manifold (Tl 3, g° ) , there is a unique connection V
such that V is torsion free and compatible with Riemann metric g°. This connection
is called Levi Civita connection and characterized by the Kozsul formula:

295 (V8a6978w> = aags (aeﬁw) +89.gs (awyaa) - 8wgs (@ua@) +
—9° ([0, 9], 0) + 9° (99, 0], 0) + 9° (0w, Da) » o)
where 9, = %, Oy = %, Oy = %, 0, = % and 05 = %. Since Levi Civita

connection V is symmetric, [0y, ], [Dg, O], [Ow, Os] must be zero. By using the
following identity:

Vo,00 = %0, +T%0p +T%0, +T%,0, + 12,05,

and Kozsul formula, Christoffel symbols are obtained by

1
ap = §gak (Oagro + O9Gak — Oxgap) = 0,
1 A
F0 = 3 ok a ak — af) — *714(1
af 29 (Oagro + Oogak — kgas) 51— A7)
1
P 59“”“ (Oagro + O9Gak — Orgas) = 0,
1
re, = 59"”“ (Oagro + 099ak — Orgap) =0,
T8, = Lok (0gko + Ok — Orgus) = ———— Ay, for k € {a,0,w, 0,5}
ad 29 aJk6 09ak — OkGal) = 2(1—A2) a, IOT € 4q, , W, P, .

The other Christoffel symbols can be obtained by using the similar method. O

Theorem 3.5. Let (Tng,gS) be the Sasaki Riemann manifold and
c:t e R — ct) = (a(t),0(t),w(t),p(t),d(t)) be a curve on the tangent sphere
bundle. c is geodesic if and only if the following second order differential equations
are provided:

a+ cotwaw — csc? w (A, 4+ coswAy) 06 — cscwiry = 0,

- {AAaaG + Aad — AALBG — AAB + Agiod + Awg} —
W —sinwap — A,06 = 0,

@ — csc? waw + csc? w (coswAy — A,) 65 + cot wwp = 0,

0+ 1 {Aadé — AALab + Aybio + A0y — AALwS — AAWS} - 0

Proof. c(t) = (a(t),0(t),w(t), p(t),d(t)) is geodesic if and only if V¢ is zero. Since
¢ is equal to a0, + 00 + w0, + 90, + d05, V¢ is equal to:

Vo, (aaa + 00 + 00, + PO, + 585) + Vs, (aaa + 009 + wd,, + PO, + 585)
+Vo0, (a0 + 005 + 00, + $0, +505) + V.o, (00 + 60y + 00, + 40, )

+Vgo, (805) + Vo, (a0 + 009 + @, + 0, + 605 )
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Therefore we get

AA, Aq .
E Op + E 5‘5) + aw (cot wdy — cscwa,,)

Ve = ad, +ab (
.. . . ; AAa P
+ap (—sinwd,) + ad (—1_14285> + 60y
- AA, A, . AA A
+0w <—1 7A280 + 1 A285> + 6y <—1 72289 + 1 2285>
+66 {—Awﬁw +csc? w (coswA, — Ay) &p} + wd,,

N . A, AA,
+ (— cscwdy + cotwdy,) + wé (1 — AQGO T 1Z A285>

T 2255> + 005

. (A,
Jrgﬁap + @6 <1 — A289 —
If we arrange V¢ in the following way:
(d + cot wac — csc? w (Aq + coswA,) 86 — csc wc’uc,b) Da

+ {0 — 5 (A0l + Auid — AL — AALBY + Auisd + Ay3d) } )

+ (&J — sinwagy — Awéé) Oy
+ {gp — esc® wa + esc® w (coswA, — Ay) 06 + cot wwgb} 0,
+ {5 + (Aatfh — 44406 + Aubis + A0 — AN — AA,20) } 05,
it can be seen that the claim of the theorem is true straightforwardly. (I
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