Commun.Fac.Sci.Univ.Ank.Series A1 Volume 56, Number 1, Pages 21-32 (2007) ISSN 1303-5991

DECOMPOSITIONS OF SOME FORMS OF CONTINUITY

A. ACIKGOZ AND S. YUKSEL

ABSTRACT. In this paper, $\alpha_I N_3$ – sets [3] and $\alpha_I N_5$ – sets [3] are introduced and characterizations of $\alpha - I$ – open [6], semi – I – open [6], $\alpha_I N_3$ – and $\alpha_I N_5$ – sets are investigated. Also, new decompositions of $\alpha - I$ – continuity and semi – I – continuity are obtained using these sets.

1. Introduction

Quite recently, Acikgoz and Yuksel [3] have introduced I - R closed sets and obtained a decomposition of continuity. Acikgoz et al. [1], [2] investigated some properties of α - I - open sets and obtained decompositions of α - I - continuity and semi - I - continuity.

The purpose of this paper is to introduce $\alpha_I N_3$ – sets and $\alpha_I N_5$ – sets via idealization and investigate characterizations of $\alpha - I$ – open, semi – I – open, $\alpha_I N_3$ – and $\alpha_I N_5$ – sets and also, to obtain new decompositions of $\alpha - I$ – continuity and semi – I – continuity using these sets.

2. Preliminaries

Throughout this paper Cl(A) and Int(A) denote the closure and the interior of A, respectively. Let (X,τ) be a topological space and let I be an ideal of subsets of X. An ideal is defined as a nonempty collection I of subsets of X satisfying the following two conditions: (1) If $A \in I$ and $B \subset A$, then $B \in I$; (2) If $A \in I$ and $B \in I$, then $A \cup B \in I$. An ideal topological space is a topological space (X,τ) with an ideal I on X and is denoted by (X, τ, I) . For a subset $A \subset X$, $A^*(I) = \{x \in X : U \cap A \notin I \text{ for each neighborhood U of } x\}$ is called the local function of A with respect to I and τ [10]. We simply write A^* instead of $A^*(I)$ since there is no chance for confusion. X^{*} is often a proper subset of X. The hypothesis

 $X = X^*$ [9] is equivalent to the hypothesis $\tau \cap I = \emptyset$ [13]. The ideal topological space which satisfies this hypothesis is called a *Hayashi – Samuels space* [10]. For

©2007 Ankara University

Received by the editors Nov. 3, 2006; Accepted: March 7, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54C08, 54A20; Secondary 54A05, 54C10. Key words and phrases. $\alpha_I N_3$ – set, $\alpha_I N_3$ – set, decompositions of α – I – continuity and semi – I – continuity, topological ideal.

every ideal topological space (X, τ, I) , there exists a topology $\tau^*(I)$, finer than τ , generated by β $(I,\tau) = \{U \setminus I : U \in \tau \text{ and } I \in I\}$, but in general β (I,τ) is not always a topology [10]. Additionally, $Cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$.

First we shall recall some definitions used in the sequel.

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is said to be

- (1) $\alpha I open$ [6] if $A \subset Int(Cl^*(Int(A)))$,
- (2) pre I open [4] if $A \subset Int(Cl^*(A))$,
- (3) semi I open [6] if $A \subset Cl^*(Int(A))$,
- (4) $\delta I open$ [2] if $Int(Cl^*(A)) \subset Cl^*(Int(A))$,
- (5) strong $\beta I open$ [8] if $A \subset Cl^*(Int(Cl^*(A)))$,
- (6) t I set [6] if $Int(A) = Int(Cl^*(A))$,
- (7) τ^* dense set [9] if $X = Cl^*(A)$,
- (8) τ^{*} closed set [10] if A = Cl*(A).

The family of all α – I – open (resp. pre – I – open, semi – I – open, strong β – I – open) sets in an ideal topological space (X, τ , I) is denoted by α IO (X, τ) (resp. PIO (X, τ), SIO (X, τ), S β IO (X, τ)).

Definition 2.2. A subset A of an ideal topological space (X, τ, I) is said to be

- (1) a semi I closed [7] if $Int(Cl^*(A)) \subset A$,
- (2) a weakly I locally closed set [11] if $A = U \cap V$, where U is open and V is τ^* -closed,
- (3) $aB_I set$ [6] if $A = U \cap V$, where U is open and V is a t I set.

The family of all semi – I – closed (resp. weakly I – locally – closed, B_I –) sets in an ideal topological space (X, τ , I) is denoted by SIC (X, τ) (resp. $W_I LC$ (X, τ), B_I (X, τ)).

Definition 2.3. A subset A of an ideal topological space (X, τ, I) is said to be a *nowhere* τ^* - *dense set* if Int*(Cl(A))= \emptyset , where Int*(A) denotes the interior of A with respect to τ^* .

Theorem 2.4. A subset A of a space (X, τ, I) is semi - I - closed if and only if $Int(Cl^*(A)) = Int(A)$.

Proof. Necessity. Let A be semi - I - closed. Then we have $Int(Cl^*(A)) \subset A$. Then $Int(Cl^*(A)) \subset Int(A)$ and hence $Int(Cl^*(A)) \subset Int(A)$.

The sufficiency is clear.

Corollary 1. Let A be a subset of an ideal topological space (X, τ, I) . A is a semi -I - closed set if and only if $A = A \cup Int(Cl^*(A))$.

Proof. The necessity is clear as seen in Theorem 1.

Sufficiency.

$$Int(Cl^*(B) = Int(Cl^*(A \cup Int(Cl^*(A))))$$

$$\subset Int(Cl^*(A) \cup Int(Cl^*(Int(Cl^*(A)))))$$

$$= Int(Cl^*(A) \subset A \cup Int(Cl^*(A)) = B.$$

Thus we obtain that $Int(Cl^*(B)) \subset B$ and hence $B = A \cup Int(Cl^*(A))$ is semi - I - closed.

Definition 2.5. A subset A of a space (X, τ, I) is said to be $\beta - I$ - *closed* if its complement is $\beta - I$ - open.

The family of all β – I – closed sets in an ideal topological space (X, τ , I) is denoted by β IC (X, τ).

Theorem 2.6. Let A be subset of an ideal topological space (X, τ, I) . Then, If A is $\beta - I$ - closed, then $Int(Cl^*(Int(A))) \subset A$.

Proof. Since A is β -I - closed, X - A $\in \beta$ IO (X, τ). Since $\tau^*(I)$ is finer than τ , we have

$$\begin{array}{rcl} X - A & \subset & Cl(Int(Cl^*(X - A))) \\ & \subset & Cl(Int(Cl(X - A))) \\ & = & X - Int(Cl(Int(A))) \\ & \subset & X - Int(Cl^*(Int(A))). \end{array}$$

Therefore, we obtain $Int(Cl^*(Int(A))) \subset A$.

3. $\alpha_I \mathbf{N}_3 - \mathbf{sets}$

Proposition 1. Every semi - I - closed set of an ideal topological space is β - I - closed.

Proof. Let A be semi - I - closed. Then we have $Int(Cl^*(A)) \subset A$. Then $Int(Cl^*(Int(A))) \subset Int(Cl^*(A)) \subset A$ and hence $Int(Cl^*(Int(A))) \subset A$.

Remark 3.1. The converses of Proposition 1 need not be true as shown in the following example.

Example 3.2. Let $X = \{1, 2, 3, 4\}, \tau = \{\emptyset, X, \{1, 2\}, \{4\}, \{1, 2, 4\}\}$ and $I = \{\emptyset, \{3\}\}$. Then $A = \{2, 3, 4\}$ is a β - I - closed set, but not semi - I - closed. For, $Int(Cl^*(Int(A))) = Int(Cl^*(Int(\{2, 3, 4\}))) = Int(Cl^*(\{4\})) = Int(\{4\})^* \cup \{4\}) = Int(\{3, 4\} \cup \{4\}) = Int(\{3, 4\}) = \{4\}$ and hence $Int(Cl^*(Int(\{2, 3, 4\}))) = \{4\} \subset \{2, 3, 4\} = A$. This shows that A is a β - I - closed set. But A is not a semi - I - closed. For $Int(Cl^*(A)) = Int(Cl^*(\{2, 3, 4\})) = Int((\{2, 3, 4\})) = Int(Cl^*(\{2, 3, 4\})) = Int(Cl^*(\{2, 3, 4\})) = Int((\{2, 3, 4\})) = Int(Cl^*(A)) = Int(Cl^*(A)) = Int(Cl^*(A)) = Int(Cl^*(A)) \neq A$.

Lemma 3.3. (Acikgoz et. al [1]). Let (X, τ, I) be an ideal topological space and A a subset of X. Then the following properties hold:

- (1) If O is open in (X, τ, I) , then $O \cap Cl^*(A) \subset Cl^*(O \cap A)$.
- (2) If $A \subset X_0 \subset X$, then $Cl^*X_0(A) \subset Cl^*(A) \cap X_0$.

Proposition 2. Let (X,τ,I) be an ideal topological space. $A \in \alpha IO(X,\tau)$ if and only if $A \cap S \in SIO(X,\tau)$ for each $S \in SIO(X,\tau)$.

Proof. Necessity. Let $A \in \alpha IO(X,\tau)$ and $S \in SIO(X,\tau)$. Using Lemma 1, we obtain

$$\begin{split} S \cap A &\subset Cl^*(Int(S)) \cap Int(Cl^*(Int(A))) \\ &\subset Cl^*(Int(S) \cap Int(Cl^*(Int(A)))) \\ &\subset Cl^*(Int(S) \cap Cl^*(Int(A))) \\ &\subset Cl^*(Int(S) \cap Int(A))) \\ &\subset Cl^*(Cl^*(Int(S) \cap Int(A))) \\ &\subset Cl^*(Int(S \cap A)). \end{split}$$

This shows that $A \cap S \in SIO(X,\tau)$.

Sufficiency. Let $S \in SIO(X,\tau)$ and $A \cap S \in SIO(X,\tau)$. Then in particular $A \in SIO(X,\tau)$. Assume $x \in A \cap C(Int(Cl^*(Int(A))))$ (C denoting complement). Then $x \in Cl^*(S) = Cl^*(Int(S))$ by [7], where $S = C(Cl^*(Int(A)))$. Hence we obtain

$$S \cup Int(\{x\}) \subset Cl^*(Int(S))$$

= $Cl^*(Int(Int(\{x\}) \cup Int(S)))$
 $\subset Cl^*(Int(Int(S \cup \{x\})))$
= $Cl^*(Int(S \cup \{x\})).$

Thus $S \cup \{x\} \in SIO(X,\tau)$ and consequently $A \cap (S \cup \{x\}) \in SIO(X,\tau)$. But

$$A \cap (S \cup \{x\}) = (A \cap S) \cup (A \cap \{x\})$$

= $(A \cap S) \cup (A \cap \{x\})$
= $(A \cap S) \cup \{x\}$
= $(A \cap \{x\}) \cup (S \cap \{x\})$
= $\{x\}$

Hence $\{x\}$ is open. As $x \in Cl^*(Int(A))$, this implies $x \in Int(Cl^*(Int(A)))$, contrary to assumption. Thus $x \in A$ implies $x \in Int(Cl^*(Int(A)))$, and $A \in \alpha IO(X,\tau)$. This completes the proof.

Proposition 3. Let (X, τ, I) be an ideal topological space. $A \in \alpha IO(X, \tau)$ if and only if $A = U \cap D$ where $U \in \tau$ and Int(D) is τ^* – dense.

Proof. Necessity. If $A \in \alpha IO(X,\tau)$, then we have

$$A = Int(Cl^*(Int(A))) - (Int(Cl^*(Int(A))) - A)$$

where $Int(Cl^*(Int(A))) = U \in \tau$ and $Int(Cl^*(Int(A))) - A$ is nowhere τ^{*-} dense dense.

Sufficiency. Let $A = U \cap D$, where $U \in \tau$ and Int(D) is τ^* – dense. Since $A \subset U$

 $U = U \cap X = U \cap Cl^*(Int(D)) \subset Int(U) \cap Cl^*(Int(D)) \subset Cl^*(Int(U) \cap Int(D))$ = Cl^*(Int(A)) and we obtain U \subset Int(Cl^*(Int(A))). Hence A \subset Int(Cl^*(Int(A))) so that A $\in \alpha IO(X, \tau)$.

Definition 3.4. [3]. A subset H of an ideal topological space (X, τ, I) is called an $\alpha_I N_3$ – set if $H = A \cap B$ where $A \in \alpha IO(X, \tau)$ and B is a t – I – set.

The family of all $\alpha_I N_3$ – sets of (X, τ , I) is denoted by $\alpha_I N_3$ (X, τ) in this paper, when there is no chance for confusion with the ideal.

Theorem 3.5. For a subset A of an ideal topological space (X, τ, I) , the following properties are equivalent:

- (1) A is semi I closed,
- (2) A is βI closed and is an $\alpha_I N_3$ set,
- (3) A is βI closed and δI open.

Proof. a) \Rightarrow b). Let $A \in SIC(X,\tau)$. Since $SIC(X,\tau) \subset \beta IC(X,\tau)$ by Proposition 1 and $A = A \cap X$, where A is a t - I – set and $X \in \alpha IO(X,\tau)$. Therefore we have $SIC(X,\tau) \subset \beta IC(X,\tau) \cap \alpha_I N_3(X,\tau)$.

b) \Rightarrow c). The proof is seen in the Diagram.

c) \Rightarrow a). Let A be β – I – closed and δ – I – open. Since $Int(Cl^*(A)) \subset Int(Cl^*(Int(A)))$ and $Int(Cl^*(Int(A))) \subset A$, we obtain that $A \in SIC(X, \tau)$.

Proposition 4. Let (X, τ, I) be an ideal topological space. $H \in \alpha_I N_3(X, \tau)$ if and only if $H = B \cap D$ where $B \in B_I(X, \tau)$ and Int(D) is τ^* – dense.

Proof. Necessity. Let $H \in \alpha_I N_3(X,\tau)$ and write $H = A \cap B$ where $A \in \alpha IO(X,\tau)$ and B is a t - I – set. By Proposition 3, we write $A = U \cap D$ where $U \in \tau$ and Int(D) is τ^* – dense. Thus $H = A \cap B = (U \cap D) \cap B = (U \cap B) \cap D$ where $U \cap B \in B_I(X,\tau)$ and Int(D) is τ^* – dense as required.

Sufficiency. Assume that $H = B \cap D$ with $B \in B_I(X,\tau)$ and Int(D) is $\tau^* - dense$. Then we have $B = U \cap B_2$ where $U \in \tau$ and B_2 is a t - I – set. Thus $H = B \cap D = (U \cap B_2) \cap D = (U \cap D) \cap B_2$ where $U \cap D \in \alpha IO(X,\tau)$ by Proposition 3 and B_2 is a t - I – set. Therefore we obtain $H \in \alpha_I N_3(X,\tau)$.

Proposition 5. Let (X, τ, I) be an ideal topological space. $H \in \alpha_I N_3(X, \tau)$ if and only if $H = A \cap (H \cup Int(Cl^*(H)))$ where $A \in \alpha IO(X, \tau)$.

Proof. Necessity. Let $H \in \alpha_I N_3(X,\tau)$ and assume $H = A \cap B$ where $A \in \alpha IO(X,\tau)$ and B is a t - I – set. Since B is a t - I – set, we have

$$H = A \cap H$$

$$\subset A \cap (H \cup Int(Cl^*(H)))$$

$$\subset A \cap (B \cup Int(Cl^*(B)))$$

$$= A \cap (B \cup Int(B))$$

$$= A \cap B$$

$$= H.$$

So $H = A \cap (H \cup Int(Cl^*(H)))$, with $A \in \alpha IO(X,\tau)$ by Lemma 1 as required. Sufficiency. Assume that $H \subset X$ such that $H = A \cap (H \cup Int(Cl^*(H)))$ where $A \in \alpha IO(X,\tau)$. Since $H \cup Int(Cl^*(H))$ is semi – I – closed by Corollary 1 and hence it is a t – I – set. Therefore $H \in \alpha_I N_3(X,\tau)$.

Theorem 3.6. Let (X, τ, I) be an ideal topological space.

 $\alpha \text{IO}(\mathbf{X},\tau) = \text{PIO}(\mathbf{X},\tau) \cap \alpha_I \mathbf{N}_3(\mathbf{X},\tau).$

Proof. Necessity. It is obvious that $\alpha IO(X,\tau) \subset PIO(X,\tau) \cap \alpha_I N_3(X,\tau)$.

Sufficiency. Let $H \in PIO(X,\tau) \cap \alpha_I N_3(X,\tau)$. Then we have $H \subset Int(Cl^*(H))$ and by Proposition 5, $H = A \cap (Int(Cl^*(H)) \cup H)$ where $A \in \alpha IO(X,\tau)$ and $T = (Int(Cl^*(H)) \cup H) \in SIC(X,\tau)$ by Lemma 1, respectively. But

 $T = H \cup Int(Cl^*(H)) = Int(Cl^*(H))$

Thus $H = A \cap Int(Cl^*(H))$ where $A \in \alpha IO(X,\tau)$ and $Int(Cl^*(H)) \in \tau \subset \alpha IO(X,\tau)$ and therefore $H = A \cap Int(Cl^*(H)) \in \alpha IO(X,\tau)$, because $\alpha IO(X,\tau)$ is a topology (see Corollary 3.2 of Acikgoz et.al [1]).

It is seen in the following example that the decomposition provided by Theorem 4 is different from the decomposition of α -I - continuity given in Theorem 4.2 by Acikgoz et.al [2].

Example 3.7. Let $X = \{1, 2, 3, 4\}$, $\tau = \{\emptyset, X, \{1, 2\}, \{4\}, \{1, 2, 4\}\}$ and $I = \{\emptyset, \{3\}\}$. Then $A = \{3\}$ is an $\alpha_I N_3$ – set, which is not semi – I – open. For, $Int(Cl^*(A)) = Int(Cl^*(\{3\})) = Int(\{3\}) = \emptyset = Int(\{3\}), A = \{3\} = \{3\} \cap X$ where A is a t – I – set and $X \in \alpha IO(X)$. This shows that A is an $\alpha_I N_3$ – set. On the other hand, since $Cl^*(Int(A)) = \emptyset$ and $A \not\subset Cl^*(Int(A))$, A is not semi – I – open.

Proposition 6. For a subset A of an ideal topological space (X, τ, I) , the following properties are equivalent:

- (1) A is αI open,
- (2) A is pre I open and semi I open,
- (3) A is pre I open and δ I open,
- (4) A is pre I open and $\alpha_I N_3$ set.

Proof. The proof is obvious (Acikgoz et al. [2] and [1]).

4.
$$\alpha_I \mathbf{N}_5$$
 - sets

Definition 4.1. A subset A of an ideal topological space (X, τ, I) is said to be an I - R closed [3] (resp. strong $\beta - I$ - closed [8]) set if $A = Cl^*(Int(A))$ (resp. $A \subset Cl^*(Int(Cl^*(A)))$).

Definition 4.2. A subset A of an ideal topological space (X, τ, I) is said to be an A_{I-R} set if $A \cap V$, where U is open and V is an I – R closed set.

The family of all I - R closed (resp. strong β - I - closed) sets in an ideal topological space (X, τ , I) is denoted by IRC (X, τ) (resp. S β IC (X, τ)).

Proposition 7. Let (X, τ, I) be an ideal topological space. $A \in SIO(X, \tau)$ if and only if $A = R \cap D$ where $R \in IRC(X, \tau)$ and Int(D) is $\tau^* - dense$.

Proof. Necessity. Let A∈SIO (X,τ). Then we have U ⊂ A ⊂ Cl*(U) such that U∈ τ by Theorem 3.2 of [7]. Note that Cl*(A) = Cl*(U). We write A = Cl*(U) – (Cl*(U) – A) = Cl*(U) ∩ [X – (Cl*(U) – A)], where Cl*(U) – A ⊂ Cl*(U) – U and Cl*(U) – U is nowhere τ* – dense in (X, τ, I). We assume D = X – (Cl*(U) – A). Then X – Cl(Cl*(U) – A) is an open τ* – dense subset of (X, τ, I) which is contained in D. Consequently, we use R = Cl*(U) to write A = R ∩ D where R is an I - R closed set and Int(D) is τ* – dense, as required.

Sufficiency. Assume that $A = R \cap D$ where R is I – R closed and Int(D) is τ^{*-} dense. We write $U \in \tau$ such that $R = Cl^{*}(U)$. We assume $V = U \cap Int(D)$. Then $V \in \tau$ with $V \subset A$. Finally, $Cl^{*}(V) = Cl^{*}(U \cap Int(D)) = Cl^{*}(U) = R$. Thus $V \subset A \subset Cl^{*}(V)$ and therefore $A \in SIO(X, \tau)$ using [7].

Definition 4.3. [3]. A subset H of an ideal topological space (X, τ, I) is called an $\alpha_I N_5$ – set if $H = A \cap B$ where $A \in \alpha IO(X, \tau)$ and B is a τ^* - closed set.

The family of all $\alpha_I N_5$ – sets of (X, τ , I) is denoted by $\alpha_I N_5$ (X, τ) in this paper, when there is no chance for confusion with the ideal.

Proposition 8. Let (X, τ, I) be an ideal topological space and $A = U \cap V$ a subset of X. Then the following hold:

- (1) If A is a weakly I locally closed set, then A is an $\alpha_I N_5$ set.
- (2) If A is an $\alpha_I N_5$ set, then A is an $\alpha_I N_3$ set.
- (3) If A is an α_I N₃ set, then A is δ I open.

Proof. a) and b) The proof is a direct consequence of the Definition 2 and Definition 8.

c) Let A be an $\alpha_I N_3$ – set. Then we have $A = U \cap V$ where $U \in \alpha IO(X,\tau)$ and V is a t – I – set. Since every α – I – open set is δ – I – open by [1] and every t – I – set is δ – I – open, therefore we obtain that $A \in \delta IO(X,\tau)$. Because $\delta IO(X,\tau)$ is a topology (see Corollary 3.2 of Acikgoz et.al [14]).

Remark 4.4. The converses of Proposition 3.1 need not be true as shown in the following example.

Example 4.5. Let $X = \{1, 2, 3, 4\}$, $\tau = \{\emptyset, X, \{1, 2\}, \{4\}, \{1, 2, 4\}\}$ and $I = \{\emptyset, \{3\}\}$. Then $A = \{3, 4\}$ is an $\alpha_I N_5$ – set, but not weakly I – locally – closed. $\alpha IO(X) = \{\emptyset, X, \{1, 2\}, \{4\}, \{1, 2, 4\}, \{3, 4\}\}$. For a subset $A = \{3, 4\} = X \cap \{3, 4\}$, where A is $\alpha - I$ – open and X is τ^* –closed. This shows that A is an $\alpha_I N_5$ – set. But A is not weakly I – locally – closed. Because $A \notin \tau$.

Example 4.6. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ and $I = \{\emptyset, \{a\}\}$. Then $A = \{c\}$ is an $\alpha_I N_3$ – set but it is not an $\alpha_I N_5$ – set. For $Int(Cl^*(A)) = Int(Cl^*(\{c\})) = Int(\{c\} \cup (\{c\})^*) = Int(\{c\} \cup \{b, c\}\} = Int(\{b, c\}) = \{c\}$, and so $A = A \cap X$ where A is a t – I – set and $X \in \alpha IO(X, \tau)$. This shows that A is an $\alpha_I N_3$ – set. But A is not an $\alpha_I N_5$ – set. For, $Cl^*(A) = Cl^*(\{c\}) = (\{c\})^* \cup \{c\} = \{b,c\} \cup \{c\} = \{b,c\} \neq \{c\}$ and $Cl^*(A) \neq A$.

Example 4.7. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}\}$, $I = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}$. Set $A = \{b, d\}$. Then A is a $\delta - I$ – open set which is not an $\alpha_I N_3$ – set. For $A = \{b, d\}$, since $Cl^*(A) = \{b, d\}$ and $Int(Cl^*(A)) = \emptyset$ so $Int(Cl^*(A)) \subset Cl^*(Int(A))$. This shows that A is a $\delta - I$ – open set. On the other hand, since $A \not\subset Int(Cl^*(Int(A))) = \emptyset$ and $A = A \cap X$ where $A \notin \alpha IO(X,\tau)$, A is not an $\alpha_I N_3$ – set.

The two classes $\alpha_I N_3 (X,\tau)$ and $\alpha_I N_5 (X,\tau)$ are related as seen in the next proposition, whose proof is omitted since it is similar to that of Proposition 3.

Proposition 9. Let (X, τ, I) be an ideal topological space. $H \in \alpha_I N_5(X, \tau)$ if and only if $H = B \cap D$ where B is a weakly I – locally – closed set and Int(D) is τ^* – dense.

Theorem 4.8. Let (X, τ, I) be an ideal topological space.

SIO $(X,\tau) = S\beta IO(X,\tau) \cap \alpha_I N_5(X,\tau).$

Proof. Necessity. Let $A \in SIO(X,\tau)$. Then we have $A \in S\beta IO(X,\tau)$ by Remark 1.1 of [2]. Now, by Proposition 7 we write $A = R \cap D$ where R is I – R closed and Int(D) is τ^* – dense. Since R is a weakly I – locally – closed set (because R is τ^* – closed) then A is an $\alpha_I N_5$ – set by Proposition 9.

Sufficiency. Let $H \in S\beta IO(X,\tau) \cap \alpha_I N_5(X,\tau)$. Then we have $H \subset Cl^*(Int(Cl^*(H)))$ and $H = A \cap F$ where $A \in \alpha IO(X,\tau)$ and F is τ^* – closed, respectively. Since $H \subset F$ then $Cl^*(Int(Cl^*(H))) \subset Cl^*(Int(Cl^*(F))) = Cl^*(Int(F)) \subset Cl^*(F) = F$. Thus $H \subset A \cap Cl^*(Int(Cl^*(H))) \subset A \cap Cl^*(Int(Cl^*(F))) \subset A \cap F = H$. So $H = A \cap Cl^*(Int(Cl^*(H)))$ where $A \in \alpha IO(X,\tau)$ and $Cl^*(Int(Cl^*(H))) \in SIO(X,\tau)$. Thus, we have $H \in SIO(X,\tau)$ by Proposition 2.

Proposition 10. For a subset A of an ideal topological space (X, τ, I) , the following properties are equivalent:

- (1) A is semi I open,
- (2) A is strong βI open and δI open,
- (3) A is strong β I open and is an α_I N₅ set.

Proof. The proof is obvious. (Acikgoz et al. [2]).

Remark 4.9. The relationships between the sets defined above, are shown in the following diagram.

DIAGRAM

Remark 4.10. By the examples stated below, we obtain the following results:

- (1) β -I closedness and $\alpha_I N_3$ set are independent of each other,
- (2) δ I openness and β I closedness are independent of each other,
- (3) t I set and $\alpha_I N_5$ set are independent of each other,
- (4) Strong β I openness and α_I N₅ set are independent of each other,
- (5) Pre I openness and $\alpha_I N_3$ set are independent of each other.

Example 4.11. Let (X, τ, I) and A be the same ideal topological space and the set, respectively, as in Example 1. We obtain that A is $\beta - I$ - closed but not is not an $\alpha_I N_3$ – set. Because $A = A \cap X$ where A is not a t – I – set and $X \in \alpha IO(X, \tau)$.

Example 4.12. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{b\}\}, I = \{\emptyset, \{c\}\}.$ Then $A = \{b\}$ is an $\alpha_I N_3$ – set which is not a β – I - closed set. For, $A = \{b\} = \{b\} \cap X$ where $\{b\} \in \alpha IO(X,\tau)$ and $Int(Cl^*(X)) = Int(X)$. This shows that A is an $\alpha_I N_3$ – set. On the other hand, since $Int(Cl^*(Int(A))) = X$ and $Int(Cl^*(Int(A))) \not\subset A$, A is not a β – I - closed set.

Example 4.13. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}, I = \{\emptyset, \{a\}\}\}$. Set $A = \{a, c\}$. Then A is a $\delta - I$ – open set but it is not a $\beta - I$ - closed set. For $A = \{a, c\}$, since $Int(Cl^*(A)) = X$, $Cl^*(Int(A)) = X$ and so $Int(Cl^*(A)) \subset Cl^*(Int(A))$. This shows that A is a $\delta - I$ – open set. On the other hand, since $Int(Cl^*(Int(A))) = X$ and $Int(Cl^*(Int(A))) \not\subset A$, A is not $\beta - I$ - closed.

Example 4.14. Let (X, τ, I) and A be the same ideal topological space and the set, respectively, as in Example 1. We obtain that A is β - I - closed but not δ - I - open.

Example 4.15. Let (X, τ, I) and A be the same ideal topological space and the set, respectively, as in Example 7. We obtain that A is an $\alpha_I N_5$ – set but not t – I – set.

Example 4.16. Let (X, τ, I) and A be the same ideal topological space and the set, respectively, as in Example 5. We obtain that A is a t - I – set but not an α_I N₅ – set.

Example 4.17. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{d\}, \{a, b, c\}\}, I = \{\emptyset, \{c\}\}.$ Set $A = \{c, d\}$. Then A is an $\alpha_I N_5$ – set but it is not a strong β – I - open set. For $A = \{c, d\}$, since $Cl^*(A) = \{c, d\}$ and $Cl^*(A) = A$, so $A = A \cap X$ where $X \in \alpha IO(X, \tau)$ and A is τ^* - closed. This shows that A is an $\alpha_I N_5$ – set. On the other hand, since $A \not\subset Cl^*(Int(Cl^*(A)))$, A is not strong β – I - open.

Example 4.18. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a, b\}\}, I = \{\emptyset, \{c\}\}$. Set $A = \{a, c\}$. Then A is a strong $\beta - I$ - open set but it is not an $\alpha_I N_5$ – set. For $A = \{a, c\}$, since $Cl^*(Int(Cl^*(A))) = X$ and $A \subset Cl^*(Int(Cl^*(A)))$, A is strong $\beta - I$ - open. On the other hand, since $Cl^*(A) = X \neq A$, A is not an $\alpha_I N_5$ – set.

Example 4.19. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a, b\}\}, I = \{\emptyset, \{c\}\}$. Set $A = \{b, c\}$. Then A is a pre – I – open set but it is not an $\alpha_I N_3$ – set. For $A = \{b, c\}$, since $Cl^*(A) = X$ and $Int(Cl^*(A)) = X$, so $A \subset X = Int(Cl^*(A))$. This shows that A is a pre – I – open set. On the other hand, since $Int(Cl^*(Int(A))) = \emptyset$ and $A \not\subset Int(Cl^*(Int(A)))$, A is not an $\alpha_I N_3$ – set.

Example 4.20. Let (X, τ, I) and A be the same ideal topological space and the set, respectively, as in Example 5. We obtain that A is an $\alpha_I N_3$ – set but it is not a pre – I – open set.

5. Decompositions of α - I - continuity and semi - I - continuity

Definition 5.1. A function $f: (X, \tau, I) \to (Y, \varphi)$ is said to be $\alpha - I$ - continuous [6] (resp. semi - I - continuous [6], pre - I - continuous [4], semi $\delta - I$ - continuous [2], strong $\beta - I$ - continuous [8]), if for every $V \in \varphi$, $f^{-1}(V)$ is an $\alpha - I$ - open set (resp. semi - I - open set, pre - I - open, $\delta - I$ - open, strong $\beta - I$ - open set) of (X, τ, I) .

Definition 5.2. A function $f: (X, \tau, I) \to (Y, \varphi)$ is said to be $\alpha_I N_3$ – continuous (resp. $\alpha_I N_5$ – continuous) if for every $V \in \varphi$, f^{-1} (V) is an $\alpha_I N_3$ – set (resp. $\alpha_I N_5$ – set) of (X, τ, I) .

Theorem 5.3. A function $f: (X, \tau, I) \rightarrow (Y, \varphi)$ is $\alpha - I$ – continuous if and only if it is pre -I – continuous and $\alpha_I N_3$ – continuous.

Proof. This is a direct consequence of Theorem 4.

Theorem 5.4. For a function $f : (X, \tau, I) \to (Y, \varphi)$ the following properties are equivalent:

- (1) f is α I continuous;
- (2) f is pre I continuous and semi I continuous;
- (3) f is pre I continuous and δ I continuous;
- (4) f is pre I continuous and $\alpha_I N_3$ continuous.

Proof. This follows immediately from Proposition 6.

Theorem 5.5. A function $f: (X, \tau, I) \rightarrow (Y, \varphi)$ is semi – I – continuous if and only if it is strong β – I – continuous and $\alpha_I N_5$ – continuous.

Proof. This is a direct consequence of Theorem 5.

Theorem 5.6. For a function $f: (X, \tau, I) \to (Y, \varphi)$ the following properties are equivalent:

- (1) f is semi I continuous;
- (2) f is strong βI continuous and δI continuous;
- (3) f is strong βI continuous and $\alpha_I N_5$ continuous.

Proof. This is an immediate consequence of Proposition 10.

Ozet: Bu çalısmada, $\alpha_I N_3 - [3]$ and $\alpha_I N_5 - [3]$ kümeleri verilecek, $\alpha - I - açık$, semi - I - açık, $\alpha_I N_3 - ve \alpha_I N_5 - k$ ümelerinin karakterizasyonları incelenecektir. Bu kümelerden yararlanarak α - I - sürekli ve semi - I - sürekliliğin yeni ayrışımları da elde edilecektir.

References

- A. Açıkgöz, T. Noiri and Ş. Yüksel, On α I continuous and α I open functions, Acta Math. Hungar., 105 (2004), 27 – 37.
- [2] A. Acikgoz, T. Noiri and S. Yuksel, On δ- I open sets and decomposition of α I continuity, Acta Math. Hungar., 102 (4) (2004), 349 - 357.
- [3] A. Acikgoz and S. Yüksel, Some new sets and decompositions of A_{I-R} continuity, $\alpha I -$ continuity, continuity via idealization, Acta Math. Hungar., **114** (1-2) (2007), 79-89.
- [4] J. Dontchev, On pre I open sets and a decomposition of I continuity, Banyan Math. J., Vol. 2 (1996).
- [5] J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, Topology and its applications, vol. 93 (1999), 1 – 16.
- [6] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96 (2002), 341 – 349.
- [7] E. Hatir and T. Noiri, On semi I open sets and semi I continuous functions, Acta Math. Hungar., 10 (4) (2005), 345 – 353.
- [8] E. Hatir, A. Keskin and T. Noiri, On a new decomposition of continuity via idealization, J. Geometry and Topology, 1 (2003), 55 – 64.
- [9] E. Hayashi, Topologies defined by local properties, Math. Ann. 156 (1964), 205 215.
- [10] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295 – 310.
- [11] A. Keskin, Ş. Yüksel and T. Noiri, "Decompositions of I continuity and continuity", Commun. Fac. Sci. Üniv. Ank. Series A1, 53 (2004), 67 – 75.
- [12] N. Levine, Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, Vol. 70 (1963), 36 – 41.
- [13] P. Samuels, A topology formed from a given topology and ideal, J. London Math. Soc. (2), 10 (1975), 409 - 416.
- [14] S. Yuksel, A. Acikgoz and T. Noiri, On δ I continuous functions, Turk J Math., **29** (2005), 39-51.

Current address: A. ACIKGOZ, Aksaray University, Faculty of Arts and Sciences, Department of Mathematics, 68100 AKSARAY, S. YUKSEL Selçuk University, Faculty of Arts and Sciences, Department of Mathematics, 42031 CAMPUS – KONYA

 $E\text{-}mail \ address: \texttt{syuksel@selcuk.edu.tr}$