Commun.Fac.Sci.Univ.Ank.Series A1 Volume 56, Number 1, Pages 33-40 (2007) ISSN 1303-5991

ON 1-EXTREMALLY DISCONNECTED SPACES

AYNUR KESKIN , SAZIYE YUKSEL AND TAKASHI NOIRI

ABSTRACT. We have introduced and investigated the notion of *I*-extremal disconnectedness on ideal topological spaces. First, we found that the notions of extremal disconnectedness and *I*-extremal disconnectedness are independent of each other. About the letter one, we observed that every open subset of an *I*-extremally disconnected space is also an *I*-extremally disconnected space. And also, in extremally disconnectedness spaces we have shown that *I*-open set is equivalent almost *I*-open and every β -*I*-open set is preopen. Finally, we have shown that α -*I*-continuity(resp. pre-*I*-continuity, *I*-continuity) is equivalent to semi-*I*-continuity(resp. strongly β -*I*-continuity, almost strongly *I*-continuity) if the domain is *I*-extremally disconnected.

1. INTRODUCTION

Throughout the present paper, spaces always mean topological spaces on which no separation property is assumed unless explicitly stated. In a topological space (X, τ) , the closure and the interior of any subset A of X will be denoted by Cl(A) and Int(A), respectively. An ideal is defined as a nonempty collection I of subsets of X satisfying the following two conditions: (1) If $A \in I$ and $B \subset A$, then $B \in I$; (2) If $A \in I$ and $B \in I$, then $A \cup B \in I$. Let (X, τ) be a topological space and I an ideal of subsets of X. An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I) . For a subset $A \subset X$, $A^*(I) = \{x \in X \mid U \cap A \notin I \text{ for each neighbourhood } U \text{ of } x\}$ is called the local function of A with respect to I and τ [12]. We simply write A^* instead of $A^*(I)$ in case there is no chance for confusion. X^* is often a proper subset of X. It is well-known that $Cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau *(I)$ which is finer than τ . A subset A of (X, τ, I) is called $\tau *$ -closed if $A^* \subset A$ [10].

First we shall recall some lemmas and definitions used in the sequel:

©2007 Ankara University

33

Received by the editors Nov. 9, 2006; Rev: March 23, 2007; Accepted: April 3, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54C08, 54A20; Secondary 54A05, 54C10. Key words and phrases. Weak regular-I-closed sets, I-open sets, I-extremally disconnected spaces, topological ideal.

Lemma 1.1. Let (X, τ, I) be an ideal topological space and A, B subsets of X. Then the following properties hold:

a) If $A \subset B$, then $A^* \subset B^*$, b) $A^* = Cl(A^*) \subset Cl(A)$, c) $(A^*)^* \subset A^*$, d) $(A \cup B)^* = A^* \cup B^*$, e) If $U \in \tau$, then $U \cap A^* \subset (U \cap A)^*$ (Janković and Hamlett [10]).

Definition 1.2. Let (X, τ, I) be an ideal topological space and S a subset of X. Then $(S, \tau |_S, I_S)$ is an ideal topological space with an ideal

$$I_S = \{I \in I \mid I \subset S\} = \{I \cap S \mid I \in I\}$$

on S (Dontchev [3]).

Lemma 1.3. Let (X, τ, I) be an ideal topological space and $A \subset S \subset X$. Then, $A^*(I_S, \tau \mid_S) = A^*(I, \tau) \cap S$ holds (Dontchev et al.[6]).

Definition 1.4. A subset A of an ideal topoogical space (X, τ, I) is said to be

a) *I-open* [1] if $A \subset Int(A^*)$, b) *pre-I-open* [4] if $A \subset Int(Cl^*(A))$, c) α -*I-open* [7] if $A \subset Int(Cl^*(Int(A)))$, d) *semi-I-open* [7] if $A \subset Cl^*(Int(A))$, e) β -*I-open* [7] if $A \subset Cl(Int(Cl^*(A)))$, f) *almost I-open* [2] if $A \subset Cl(Int(A^*))$, g) *strong* β -*I-open* [8] if $A \subset Cl^*(Int(Cl^*(A)))$, h) *almost strong I-open* [8] if $A \subset Cl^*(Int(A^*))$.

For the relationship among several sets defined above, Hatir et al. [8] obtained the following diagram.

$$\begin{array}{c} \text{DIAGRAM I} \\ open \rightarrow \alpha \text{-}I\text{-}open \rightarrow semi\text{-}I\text{-}open \\ \downarrow \qquad \qquad \downarrow \\ I\text{-}open \rightarrow pre\text{-}I\text{-}open \rightarrow \beta\text{-}I\text{-}open \end{array}$$

We recall that a space (X, τ) is said to be extremally disconnected (briefly e.d.) if $Cl(A) \in \tau$ for each $A \in \tau$.

2. *I*-EXTREMALLY DISCONNECTED SPACES

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is said to be weak *regular-I-closed* if $A = Cl^*(Int(A))$.

We denote by $wR_IC(X,\tau)$ (resp. $S_IO(X,\tau)$, $P_IO(X,\tau)$) the family of all weak regular-*I*-closed (resp. semi-*I*-open, pre-*I*-open) subsets of (X,τ,I) , when there is no chance for confusion with the ideal.

Definition 2.2. An ideal topological space (X, τ, I) is said to be I-extremally disconnected (briefly I.e.d.) if $\operatorname{Cl}^*(A) \in \tau$ for each $A \in \tau$.

Proposition 1. For an ideal topological space (X, τ, I) , the following properties are equivalent:

a) (X, τ, I) is *I*.e.d., b) $S_IO(X, \tau) \subset P_IO(X, \tau)$, c) $wR_IC(X, \tau) \subset \tau$.

Proof. a) ⇒ b): Let $A \in S_IO(X, \tau)$. Then $A \subset Cl^*(Int(A))$ and by a) $Cl^*(Int(A)) \in \tau$. Therefore, we have $A \subset Cl^*(Int(A)) = Int(Cl^*(Int(A))) \subset Int(Cl^*((A)))$. This shows that $A \in P_IO(X, \tau)$.

b)==>c): Let $A \in wR_I C(X, \tau)$. Then $A = Cl^*(Int(A))$ and hence $A \in S_I O(X, \tau)$. By b), $A \in P_I O(X, \tau)$ and $A \subset Int(Cl^*((A)))$. Morever, A is τ^* -closed and $A \subset Int(Cl^*((A))) = Int(A)$. Therefore, we obtain $A \in \tau$.

c) ⇒ a): For $A \in \tau$, we show that $Cl^*(A) \in wR_IC(X,\tau)$. Since $Int(Cl^*(A)) \subset Cl^*(A)$, we have $(Int(Cl^*(A)))^* \subset (Cl^*(A))^* = (A \cup A^*)^* = A^* \cup (A^*)^* \subset A^* \cup A^* = A^* \subset Cl^*(A)$ by using Lemma 1d), c) respectively and hence $(Int(Cl^*(A)))^* \subset Cl^*(A)$. So, we have $Cl^*(Int(Cl^*(A))) = Int(Cl^*(A)) \cup (Int(Cl^*(A)))^* \subset Cl^*(A)$ and hence

$$\operatorname{Cl}^{*}(\operatorname{Int}(\operatorname{Cl}^{*}(A))) \subset \operatorname{Cl}^{*}(A).$$
 (2.1)

On the other hand, since A is open, according to Diagram I, it is a pre-*I*-open set and hence we have $A \subset Int(Cl^*(A))$. Then, we have

$$\operatorname{Cl}^{*}(A) \subset \operatorname{Cl}^{*}(\operatorname{Int}(\operatorname{Cl}^{*}(A))).$$
 (2.2)

By using (2.1) and (2.2), we have $\operatorname{Cl}^*(A) = \operatorname{Cl}^*(\operatorname{Int}(\operatorname{Cl}^*(A)))$. This shows that $\operatorname{Cl}^*(A)$ is weak regular -*I*-closed by using Definition 3. Furthermore, since $wR_IC(X,\tau) \subset \tau$, we have $\operatorname{Cl}^*(A) \in \tau$. This shows that (X,τ,I) is *I*.e.d. by Definition 4.

Example 2.3. Let (X, τ, I) is an ideal topological space. If I = P(X), then (X, τ, I) is *I*.e.d. .

Remark 2.4. I-extremally disconnectedness and extremally disconnectedness are independent of each other as following examples show.

Example 2.5. Let X={a,b,c}, τ ={X,Ø,{a},{b}} and I={Ø,{a},{b},{a,b}}. Then (X, τ, I) is an I.e.d. space which is not e.d. For A $\in \tau$, since A^{*} = Ø, we have $Cl^*(A) = A \cup A^* = A$. This shows that (X, τ, I) is an I.e.d. space. On the other hand, for A={a} $\in \tau$, since Cl(A)=Cl({a})={a,c}\notin \tau, (X, τ, I) is not e.d..

Example 2.6. Let $X=\{a,b,c,d,e\}$, $\tau=\{\emptyset,X,\{a\},\{a,c\},\{a,b,d\},\{a,b,c,d\}\}$ and $I=\{\emptyset,\{a\},\{d\},\{a,d\}\}$. Then, (X,τ,I) is e.d. which is not I.e.d. It is obvious that for every $A \in \tau$, since Cl(A)=X, (X,τ,I) is e.d. On the other hand, for $A=\{a,b,d\}\in \tau$, since $A^*=\{b,d,e\}$, we have $Cl^*(A)=A\cup A^*=\{a,b,d\}\cup\{b,d,e\}=\{a,b,d,e\}$ is not open set in (X,τ,I) . This shows that (X,τ,I) is not I.e.d. by using Definition 4.

Proposition 2. Let (X, τ, I) be an ideal topological space and $I = \{\emptyset\}$. Then (X, τ, I) is an I.e.d. space if and only if (X, τ, I) is an e.d. space.

Proof. If $I = \{\emptyset\}$, then it is well-known that $A^* = Cl(A)$ and $Cl^*(A) = A \cup A^* = A \cup Cl(A) = Cl(A)$. Consequently, we obtain $Cl(A) = Cl^*(A) \in \tau$ for every $A \in \tau$. This shows that (X, τ, I) is an *I*.e.d. space if and only if it is e.d..

Lemma 2.7. Let (X, τ, I) be an ideal topological space. If $A \cap B = \emptyset$ for every A, $B \in \tau$, then $A \cap Cl^*(B) = \emptyset$.

Proof. Since A∩B=Ø, we have A∩Cl^{*}(B) ⊂A∩(B ∪ B^{*})=(A∩B) ∪ (A ∩ B^{*}) ⊂ (A ∩ B) ∪ (A ∩ B)^{*} = Cl^{*}(A ∩ B) by using Lemma 1.e). On the other hand, since $\emptyset^* = \emptyset$ and $Cl^*(\emptyset) = \emptyset$, we have A∩Cl^{*}(B) ⊂ Cl^{*}(A ∩ B) =Ø. Thus, we obtain that A∩Cl^{*}(B)=Ø.

Lemma 2.8. Let (X, τ, I) be an *I.e.d.* space. If $A \cap B = \emptyset$ for every $A, B \in \tau$, then $Cl^*(A) \cap Cl^*(B) = \emptyset$.

Proof. The proof is obvious from Lemma 3 and Definition 4.

Lemma 4 is important because it is given that in any *I.e.d.* space every two disjoint τ -open sets have disjoint τ^* -closures.

Lemma 2.9. Let (X, τ, I) be an ideal topological space. If $Cl^*(A) \cap Cl^*(B) = \emptyset$ for any subsets A and B, then $A \cap B = \emptyset$.

Proof. Since $A \subset Cl^*(A)$ and $B \subset Cl^*(B)$, we have $A \cap B \subset Cl^*(A) \cap Cl^*(B) = \emptyset$. Then, we have $A \cap B = \emptyset$.

Theorem 2.10. Let (X, τ, I) be an I.e.d. space. For open subsets A, B of X, the following property hold: $A \cap B = \emptyset$ if and only if $Cl^*(A) \cap Cl^*(B) = \emptyset$.

Proof. This is an immediate consequence of Lemmas 4 and 5.

3. *I*-EXTREMALLY DISCONNECTEDNESS ON SUBSPACES

Theorem 3.1. Let (X, τ, I) be an I.e.d. space and S an open set in X. Then $(S, \tau \mid_S, I_S)$ is an I.e.d. space.

Proof. Let A be any open set in S. Since S is open in X and $A \subseteq S \subseteq X$, A is an open set in X. Since (X, τ, I) is an *I.e.d.* space, $Cl^*(A)$ is open in X by using Definition 4. Furthermore, we can say that $Cl_S^*(A)$ is open in S using Lemma 2. Therefore $(S, \tau \mid_S, I_S)$ is an *I.e.d.* space.

4. Functions on *I.E.D.* spaces

By $\alpha_I O(X, \tau)$ (resp. $\beta_I O(X, \tau)$)we denote the family of all α -*I*-open (resp. β -*I*-open) sets of (X, τ, I) , when there is no chance for confusion with the ideal. Furthermore, for almost *I*-open (resp. *I*-open, strong β -*I*-open, almost strong *I*-open) sets of (X, τ, I) we will use $AIO(X, \tau)$ (resp. $IO(X, \tau)$, $s\beta I(X, \tau)$, $asI(X, \tau)$) follow to [1], [2] and [8].

Hatir et al.[8] introduced notions of almost strong *I*-open sets and strong β -*I*-open sets and obtained the following diagram.

DIAGRAM II

Proposition 3. Let (X, τ, I) be an I.e.d. space and A a subset of X. Then, the following properties hold:

- a) $A \in S_I O(X, \tau)$ if and only if $A \in \alpha_I O(X, \tau)$,
- b) $A \in P_I O(X, \tau)$ if and only if $A \in s\beta I(X, \tau)$,
- c) $A \in IO(X, \tau)$ if and only if $A \in asI(X, \tau)$.

Proof. a) Sufficient condition is given in Proposition 2.2.b) of [7]. On the other hand, let $A \in S_I O(X, \tau)$. Then, we have $A \subset Cl^*(Int(A))$. Since (X, τ, I) is an *I*.e.d. space, for $Int(A) \in \tau$, we have $Cl^*(Int(A) \in \tau$. Therefore, we have

 $A \subset Cl^*(Int(A)) \subset Int(Cl^*(Int(A)))$

and hence A is α -*I*-open.

b) Necessary condition is obvious from Diagram II. On the other hand, let $A \in s\beta I(X, \tau)$ and hence $A \subset Cl^*(Int(Cl^*(A)))$. Since (X, τ, I) is an *I.e.d.* space, for $Int(Cl^*(A)) \in \tau$, we have $Cl^*(Int(Cl^*(A))) \in \tau$. So, we have

$$A \subset Cl^*(Int(Cl^*(A))) \subset Int(Cl^*(Int(Cl^*(A)))),$$

that is

$$A \subset Int(Cl^*(Int(Cl^*(A)))). \tag{4.1}$$

Besides, since $Int(Cl^*(A)) \subset Cl^*(A)$ and Cl^*is Krotowski closure operator, we have $Cl^*(Int(Cl^*(A))) \subset Cl^*(Cl^*(A)) = Cl^*(A)$ and hence

$$Int(Cl^*(Int(Cl^*(A)))) \subset Int(Cl^*(A)).$$

$$(4.2)$$

Consequently, by using (4.1) and (4.2) we have $A \subset Int(Cl^*(A))$ and hence A is *pre-I-open*.

c) Necessity condition is obvious from Diagram II. On the other hand, let $A \in asI(X, \tau)$, then we have $A \subset Cl^*(Int(A^*))$. Since (X, τ, I) is an *I.e.d.* space, for

Int $(A^*) \in \tau$, we have $Cl^*(Int(A^*) \in \tau$. Then, we have $A \subset Cl^*(Int(A^*)) \subset Int(Cl^*(Int(A^*))) \subset Int(Cl^*(A^*)) = Int(A^* \cup (A^*)^*) \subset Int(A^* \cup A^*) = Int(A^*)$ and hence $A \subset Int(A^*)$. This shows that A is *I*-open. \Box

We recall that a subset A of a topological space (X, τ) is said to be preopen if $A \subset Int(Cl(A))$ ([13]). The family of all preopen sets of (X, τ) is denoted by $PO(X, \tau)$.

Proposition 4. Let (X, τ, I) be an e.d. space and A a subset of X. Then, the following properties hold:

- a) $A \in IO(X, \tau)$ if and only if $A \in AIO(X, \tau)$,
- b) If $A \in \beta_I O(X, \tau)$, then $A \in PO(X, \tau)$.

Proof. a) Necessary condition is obvious from Diagram II. On the other hand, let $A \in AIO(X, \tau)$. Since (X, τ, I) is an e.d. space, for $Int(A^*) \in \tau$, we have $Cl(Int(A^*)) \in \tau$. Since $A \in AIO(X, \tau)$, we obtain

 $A \subset \operatorname{Cl}(\operatorname{Int}(A^*)) = \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A^*))) \subset \operatorname{Int}(\operatorname{Cl}(A^*)) \subset \operatorname{Int}(A^*)$

by using Lemma 1.b). This shows that A is *I*-open.

b) Let $A \in \beta_I O(X, \tau)$, then we have $A \subset Cl(Int(Cl^*(A)))$. Since (X, τ, I) is an e.d. space, for $Int(Cl^*(A)) \in \tau$, we have $Cl(Int(Cl^*(A))) \in \tau$. So, we have

 $\begin{array}{l} A \subset Cl(Int(Cl^{*}(A))) \\ \subset Int(Cl(Int(Cl^{*}(A)))) \\ \subset Int(Cl(Cl^{*}(A)))) \\ \subset Int(Cl(A \cup A^{*})) \\ = Int(Cl(A) \cup Cl(A^{*})) \\ \subset Int(Cl(A)) \end{array}$

by using Lemma 1.b). Therefore, $A \subset Int(Cl(A))$ and hence A is preopen.

Corollary 1. Let (X, τ, I) be an ideal topological space such that $I = \{\emptyset\}$ and A a subset of X. Then, the following properties hold:

a) $A \in IO(X, \tau)$ if and only if $A \in AIO(X, \tau)$, b) If $A \in \beta_I O(X, \tau)$, then $A \in PO(X, \tau)$.

Proof. This is an immediate consequence of Propositions 2 and 4.

Definition 4.1. A function $f:(X,\tau,I) \longrightarrow (Y,\varphi)$ is said to be almost strongly I-continuous (resp. weakly regular-I-continuous) if for every $V \in \varphi$, $f^{-1}(V)$ is almost strong I-open (resp. weak regular-I-closed) in (X,τ,I) .

Definition 4.2. A function $f:(X,\tau,I) \longrightarrow (Y,\varphi)$ is said to be I-continuous [1] (resp. almost I-continuous [2], pre-*I*-continuous [4], semi-*I*-continuous [7], α -*I*-continuous [7], strongly β -*I*-continuous [8]) if for every $V \in \varphi$, $f^{-1}(V)$ is *I*-open, almost *I*-open, pre-*I*-open, semi-*I*-open, strong β -*I*-open) in (X,τ,I) . **Theorem 4.3.** Let (X, τ, I) be an I.e.d. space. For a function $f:(X, \tau, I) \longrightarrow (Y, \varphi)$, then the following properties hold:

- a) If f is semi-*I*-continuous, then it is pre-*I*-continuous,
- b) If f is weakly regular-I-continuous, then it is continuous.

Proof. The proof is obvious from Proposition 1.

Theorem 4.4. Let (X, τ, I) be an *I.e.d.* space. For a function $f:(X, \tau, I) \longrightarrow (Y, \varphi)$, then the following properties hold:

- a) f is semi-I-continuous if and only if it is α -I-continuous,
- b) f is pre-I-continuous if and only if it is strongly β -I-continuous,
- c) f is I-continuous if and only if it is almost strongly I-continuous.

Proof. The proof is obvious from Proposition 3.

We recall the following definition: A function $f:(X,\tau) \longrightarrow (Y,\varphi)$ is said to be precontinuous ([13]) if for every $V \in \varphi$, $f^{-1}(V)$ is preopen in (X,τ) ..

Theorem 4.5. Let (X, τ, I) be an e.d. and I.e.d. such that $I = \{\emptyset\}$, respectively. For a function $f:(X,\tau,I) \longrightarrow (Y,\varphi)$, the following properties hold:

- a) f is I-continuous if and only if it is almost I-continuous,
- b) If f is β -I-continuous, then it is precontinuous.

Proof. The proof is obvious from Proposition 4 and Corollary 1.

ÖZET:İdeal topolojik uzaylarda; *I*-extremal (sonderece) disconnectedness (bağlantısızlık) kavramını tanımladık ve inceledik. İlk olarak; extremal (sonderece) disconnectedness (bağlantısızlık) ve *I*-extremally (sonderece) disconnectedness (bağlantısızlık) kavramlarının birbirinden bağımsız olduklarını elde ettik. Sonra; *I*-extremally (son dereceli) disconnected (bağlantısız) bir uzayın her açık alt kümesinin de *I*-extremally (son dereceli) disconnected (bağlantısız) uzay olduğunu gözledik. Aynı zamanda; extremally(son dereceli) disconnected (bağlantısız) bir uzayda *I*-açık kümenin almost *I*-açık kümeye denk olduğunu ve her β-*I*-açık kümenin pre(ön) açık küme olduğunu da gösterdik. Son olarak; eğer tanım uzayı, *I*-extremally(son dereceli) disconnected(bağlantısız) bir uzay ise; sırasıyla α-*I*-süreklilik ile semi(yarı)-*I*-sürekliliğin, pre(ön)-*I*-süreklilik ile strongly(kuvvetli) β-*I*-sürekliliğin, *I*-süreklilik ile almost(hemen hemen) strongly(kuvvetli) *I*-sürekliliğin denk olduklarını gösterdik. 39

References

- M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On *I*-open sets and *I*-continuous functions, Kyungpook Math. J., 32(1) (1992), 21-30.
- [2] M. E. Abd El-Monsef, R. A. Mahmoud and A. A. Nasef, Almost *I*-openness and almost *I*-continuity, J. Egypt. Math. Soc. ,7(2)(1999), 191-200.
- [3] J. Dontchev, On Hausdorff spaces via topological ideals and *I*-irresolute functions, Annals of the New York Academy of Sciences, Papers on General Topology and Applications, Vol. 767 (1995), 28-38.
- [4] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2 (1996).
- [5] J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, Topology Appl., 93 (1999), 1-16.
- [6] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japon., 49 (1999), 395-401.
- [7] E. Hatir and T. Noiri, On decomposition of continuity via idealization, Acta Math. Hungar., 96 (4)(2002), 341-349.
- [8] E. Hatir, A. Keskin and T. Noiri, On a new decomposition of continuity via idealization, JP J. Geometry&Topology, 1(3)(2003), 53-64.
- [9] E. Hayashi, Topologies defined by local properties, Math. Ann., 156 (1964), 205-215.
- [10] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [11] J. Kelley, General Topology, D. Van Nostrand Co. Inc., Princeton, New Jersey, 1955.
- [12] K. Kuratowski, Topology, Vol.I, Academic Press, New York, 1966.
- [13] A.S.Mashhour, M.E.Abd-El Monsef and S.N.El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.

Current address: Aynur KESKIN, Selcuk University, Department of Mathematics, 42075 Campus-Konya TURKEY, Sazıye YUKSEL, Selcuk University, Department of Mathematics, 42031 Campus-Konya TURKEY, Takashi NOIRI, 2949-1 Shiokita-cho, Hinagu Yatsushiro-shi, Kumamoto-ken 869-5142 JAPAN

 $E\text{-}mail\ address:$ akeskin@email.selcuk.edu.tr, syuksel@selcuk.edu.tr, t.noiri@nifty.com