Commun.Fac.Sci.Univ.Ank.Series A1 Volume 56, Number 2, Pages 1-9 (2007) ISSN 1303-5991

SLIGHTLY δ -PRECONTINUOUS FUNCTIONS

AYSE NAZLI URESIN, AYNUR KESKIN, TAKASHI NOIRI*

ABSTRACT. In this paper, a new weak form of slight precontinuity, called slight δ -precontinuity, is given and studied. Also, it is shown that slight δ -precontinuity is weaker than both almost δ -precontinuity and $(\delta$ -pre, s)-continuity.

1. INTRODUCTION

Recently, C.W.Baker [1] has introduced the notion of slight precontinuity and has shown that slight precontinuity is weaker than slight continuity and precontinuity.Quite recently, Erdal Ekici [4] has introduced the notion of almost δ -precontinuity and (δ -pre, s)-continuity by using δ -preopen sets. The aim of this paper is to introduce a new weak form of slight precontinuity which we shall call slight δ -precontinuity. Also, basic properties and preservation theorems of slightly δ precontinuous functions are investigated.

2. Preliminaries

In this paper, (X, τ) and (Y, σ) (or X and Y) denote topological spaces. Let A be a subset of X. We denote the interior and the closure of a set A by Int(A)and Cl(A), respectively. A subset A is called δ -closed [14] if $A = \delta Cl(A)$, where $\delta Cl(A) = \{x \in X : A \cap Int(Cl(U)) \neq \emptyset, U \in \tau, x \in U\}$. The complement of a δ closed set is called δ -open [14]. A subset A is said to be preopen [7] (resp. δ -preopen [10], regular open [13], regular closed) if $A \subset Int(Cl(A))$ (resp. $A \subset Int(\delta Cl(A))$, A = Int(Cl(A)), A = Cl(Int(A))). The complement of a preopen set is said to be preclosed [7].

The complement of a δ -preopen set is said to be δ -preclosed [10]. The intersection of all δ -preclosed sets of X containing A is called the δ -preclosure of A and is denoted by $\delta pCl(A)[10]$. The union of all δ -preopen sets of X contained in A is called δ -preinterior [10] of A and is denoted by $\delta pInt(A)$.

©2007 Ankara University

1

Received by the editors May 4, 2007; Accepted: Sept. 12, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 54C05, 54C08, 54C10.

Key words and phrases. preopen sets, δ -preopen sets, slight precontinuity, (δ -pre, s)-continuity.

The family of all preopen (resp. δ -preopen, regular open) sets of X is denoted by PO(X) (resp. $\delta PO(X)$, RO(X)). The family of all preopen (resp. δ -preopen, regular open) sets of X containing $x \in X$ is denoted by PO(X, x) (resp. $\delta PO(X, x)$, RO(X, x)).

A subset A of X is said to be clopen if it is both open and closed. The family of all clopen sets of X is denoted by CO(X). The family of all clopen sets of X containing $x \in X$ is denoted by CO(X, x). The clopen (resp. regular open) subsets of (X,τ) may be used as a base for a topology on X. The topology is called the ultra-regularization [9] (resp. semiregularization [13]) of τ and is denoted by τ_U (resp. τ_s). In case when $\tau = \tau_s$, the space (X, τ) is called semi-regular.

Definition 2.1. A function $f: (X, \tau) \longrightarrow (Y, \sigma)$ is said to be slightly precontinuous [1] if $f^{-1}(V)$ is preopen in X for every clopen set V of Y.

Definition 2.2. A function $f: (X, \tau) \longrightarrow (Y, \sigma)$ is said to be almost δ -precontinuous [4] if $f^{-1}(V)$ is δ -preopen in X for every regular open set V of Y.

Definition 2.3. A function $f: (X, \tau) \longrightarrow (Y, \sigma)$ is called $(\delta \text{-pre}, s)$ -continuous [4] if $f^{-1}(V)$ is δ -preopen in X for every regular closed set V of Y.

Definition 2.4. A function $f:(X,\tau) \longrightarrow (Y,\sigma)$ is called almost precontinuous [8] if $f^{-1}(V)$ is preopen in X for every regular open set V of Y.

Definition 2.5. A function $f: (X, \tau) \longrightarrow (Y, \sigma)$ is called slightly continuous [6] if $f^{-1}(V)$ is open in X for every clopen set V of Y.

Definition 2.6. A function $f: (X, \tau) \longrightarrow (Y, \sigma)$ is called almost contra-precontinuous [3] if $f^{-1}(V)$ is preclosed in X for every regular open set V of Y.

3. Slightly δ -precontinuous functions

Definition 3.1. A function $f: (X, \tau) \longrightarrow (Y, \sigma)$ is said to be slightly δ -precontinuous if for each point $x \in X$ and each $V \in CO(Y)$ containing f(x), there exists a δ preopen set U in X containing x such that $f(U) \subset V$.

Theorem 3.2. The following statements are equivalent for a function $f:(X,\tau) \longrightarrow$ (Y,σ) :

- (a) f is slightly δ -precontinuous,
- (b) For every clopen set $V \subset Y$, $f^{-1}(V)$ is δ -preopen, (c) For every clopen set $V \subset Y$, $f^{-1}(V)$ is δ -preclosed,
- (d) For every clopen set $V \subset Y$, $f^{-1}(V)$ is δ -preclopen,
- (e) For every $A \subset X$, $f(\delta pCl(A)) \subset Cl_{\sigma_U}(f(A))$.

The following diagram holds:

almost δ -precontinuous \Leftarrow almost precontinuous $\downarrow \qquad \qquad \downarrow$ slightly δ -precontinuous \Leftarrow slight precontinuous $\uparrow \qquad \uparrow$ $(\delta$ -pre, s)-continuous \Leftarrow almost contra-precontinuous

Remark 3.3. None of these implications is reversible.

Example 3.4. Let $X=Y=\{a,b,c\}, \tau=\{X,\emptyset,\{c\},\{b,c\}\}$ and $\sigma=\{X,\emptyset,\{a,b\},\{c\}\}$. Let $f:(X,\tau) \longrightarrow (Y,\sigma)$ be the identity mapping. The set $\{a,b\}$ is clopen in (X,σ) and $f^{-1}(\{a,b\}) = \{a,b\}$. Since $\{a,b\}$ is not preopen in (X,τ) , f is not slightly precontinuous, but f is almost δ -precontinuous.

Example 3.5. Let τ_c be the cofinite topology and σ be the usual topology on \mathbb{R} . Let $f : (\mathbb{R}, \tau_c) \longrightarrow (\mathbb{R}, \sigma)$ be the identity mapping. Since the only clopen subsets of (\mathbb{R}, σ) are \mathbb{R} and \emptyset , f is slightly precontinuous. However, the open interval]a, b[is regular open in (\mathbb{R}, σ) , and $f^{-1}(]a, b[) =]a, b[$ is not δ -preopen in (\mathbb{R}, τ_c) . Therefore, f is not almost δ -precontinuous.

Example 3.6. Let $X = \{a,b,c,d\}, \sigma = \{X,\emptyset,\{a\},\{b,c\},\{a,b,c\}\}$ and $\tau = \{X,\emptyset,\{a\},\{c\},\{a,c\}\}$. Then the identity $f : (X,\tau) \longrightarrow (X,\sigma)$ is slightly precontinuous, but not $(\delta$ -pre, s)-continuous.

Remark 3.7. The function in Example 5 of [4] is $(\delta$ -pre, s)-continuous, but it is not almost contra-precontinuous.

- Recall that a space X is said to be:
- (a) extremally disconnected if the closure of each open set of X is open in X,
- (b) θ -dimensional if its topology has a base consisting of clopen sets.

Theorem 3.8. If $f : X \longrightarrow Y$ is slightly δ -precontinuous and Y is extremally disconnected, then f is $(\delta$ -pre, s)-continuous and almost δ -precontinuous.

Proof. Let V be a regular closed (resp. regular open) in Y. Since Y is extremally disconnected, V is open (resp. closed) in Y. Hence, V is clopen in Y. Then $f^{-1}(V)$ is δ -preopen in X. Therefore, f is $(\delta$ -pre, s)-continuous (resp. almost δ -precontinuous).

Theorem 3.9. If $f: X \longrightarrow Y$ is slightly δ -precontinuous and Y is 0-dimensional, then f is almost δ -precontinuous.

Proof. Let $x \in X$ and $V \in RO(Y, f(x))$. Since Y is 0-dimensional, there exists $G \in CO(Y, f(x))$ such that $f(x) \in G \subset V$. Since f is slightly δ - precontinuous, there exists a δ -preopen subset U in X containing x such that $f(U) \subset G \subset V$. Therefore, f is almost δ -precontinuous.

Theorem 3.10. If $f : X \longrightarrow Y$ is slightly δ -precontinuous and X is semi-regular, then f is slightly precontinuous.

Proof. Since X is semi-regular, δ -closure and closure of a set coincide. Therefore, f is slightly precontinuous.

The composition of two slightly δ -precontinuous functions need not be slightly δ -precontinuous.

Example 3.11. Let $X = \{a,b,c\}, \tau = \{X,\emptyset,\{c\},\{b,c\}\}, \sigma = \{X,\emptyset,\{a,b\},\{c\}\}, \tau_t = \{X,\emptyset\},$ and let $f : (X,\tau) \longrightarrow (X,\tau_t), g : (X,\tau_t) \longrightarrow (X,\sigma)$ be the identity function. Then f and g are slightly δ -precontinuous, but $g \circ f$ is not slightly δ -precontinuous.

Definition 3.12. A function $f: X \longrightarrow Y$ is called

(a) δ^* - almost continuous [11] if for every δ -preopen subset V in Y, $f^{-1}(V)$ is δ -preopen in X;

(b) δ -preopen [4] if for every δ -preopen subset W in X, f (W) is δ -preopen in Y.

Theorem 3.13. Let $f : X \longrightarrow Y$ and $g : Y \longrightarrow Z$ be functions, then the following properties hold:

(a) If f is slightly δ -precontinuous and g is slightly continuous, then $g \circ f : X \longrightarrow Z$ is slightly δ -precontinuous.

(b) If f is δ^* - almost continuous and g is slightly δ -precontinuous, then

 $g \circ f : X \longrightarrow Z$ is slightly δ -precontinuous.

(c) If f is δ^* - almost continuous and g is slightly continuous, then $g \circ f : X \longrightarrow Z$ is slightly δ -precontinuous.

Proof. (a) Let $W \in CO(Z)$. Since g is slightly continuous, $g^{-1}(W)$ is clopen in Y. Since f is slightly δ -precontinuous, $f^{-1}(g^{-1}(W)) = (g \circ f)^{-1}(W)$ is δ -preopen in X. Therefore, $g \circ f$ is slightly δ -precontinuous.

(b) Let $W \in CO(Z)$. Since g is slightly δ -precontinuous, $g^{-1}(W)$ is δ -preopen in Y. Since f is δ^* -almost continuous, $f^{-1}(g^{-1}(W)) = (g \circ f)^{-1}(W)$ is δ -preopen in X.

(c) can be obtained similarly.

Theorem 3.14. Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be functions.

(a) If f is a δ -preopen surjection and $g \circ f : X \longrightarrow Z$ is slightly δ -precontinuous, then g is slightly δ -precontinuous.

(b) Let f be a δ -preopen and δ^* -almost continuous surjection. Then g is slightly δ -precontinuous if and only if $g \circ f : X \longrightarrow Z$ is slightly δ -precontinuous.

Proof. (a) Let $G \in CO(Z)$. Since $g \circ f$ is slightly δ -precontinuous, $f^{-1}(g^{-1}(G))$ is δ -preopen in X. Since f is δ -preopen and surjective, $f(f^{-1}(g^{-1}(Z))) = g^{-1}(Z)$ is δ -preopen in Y. Therefore, g is slightly δ -precontinuous.

(b) (\Rightarrow): Let g be slightly δ -precontinuous, then by Theorem 5 (b) $g \circ f$ is slightly δ -precontinuous.

(⇐): Let $g \circ f$ be slightly δ -precontinuous. Then by (a) g is slightly δ -precontinuous.

Theorem 3.15. Let $f : X \longrightarrow Y$ be a function and $g : X \longrightarrow X \times Y$ be the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is slightly δ -precontinuous, then f is slightly δ -precontinuous.

Proof. Let $V \in CO(Y)$, then $X \times V \in CO(X \times Y)$. Since g is slightly δ -precontinuous, then $f^{-1}(V) = g^{-1}(X \times V) \in \delta PO(X)$. Thus, f is slightly δ -precontinuous.

Lemma 3.16. Let A and X_0 be subsets of a space (X, τ) . If $A \in \delta PO(X)$ and $X_0 \in \delta O(X)$, then $A \cap X_0 \in \delta PO(X_0)$ [10].

Theorem 3.17. If $f : X \longrightarrow Y$ is a slightly δ -precontinuous function and $A \in \delta O(X)$, then the restriction $f \mid_A : A \longrightarrow Y$ is slightly δ -precontinuous.

Proof. Let $V \in CO(Y)$. Then $f \mid_A^{-1} (V) = f^{-1}(V) \cap A$. Since $f^{-1}(V)$ is δ -preopen in X and $A \in \delta O(X)$, it follows from Lemma 3.16 that $f \mid_A^{-1} (V)$ is δ -preopen in the subspace A.

Lemma 3.18. Let (X, τ) be a topological space and $A \subset X_0 \subset X$. If $X_0 \in \delta O(X)$ and $A \in \delta PO(X_0)$, then $A \in \delta PO(X)$ [10].

Theorem 3.19. Let $\{U_{\alpha} : \alpha \in I\}$ be a δ -open cover of a topological space X. If the restriction $f \mid_{U_{\alpha}} : U_{\alpha} \longrightarrow Y$ is slightly δ -precontinuous for each $\alpha \in I$, then $f : X \longrightarrow Y$ is a slightly δ -precontinuous function.

Proof. Let $V \in CO(Y)$. Since $f \mid_{U_{\alpha}}$ is slightly δ -precontinuous for each $\alpha \in I$, $f \mid_{U_{\alpha}}^{-1}(V) \in \delta PO(U_{\alpha})$. Since $U_{\alpha} \in \delta O(X)$, $f \mid_{U_{\alpha}}^{-1}(V) \in \delta PO(X)$ for each $\alpha \in I$. Then $f^{-1}(V) = \bigcup_{\alpha \in I} \left[f \mid_{U_{\alpha}}^{-1}(V) \right] \in \delta PO(X)$. Hence, f is slightly δ -precontinuous. \Box

Definition 3.20. A space X is said to be

(a) δ -pre-Hausdorff if for each pair of distinct points x and y in X, there exist $U \in \delta PO(X, x)$ and $V \in \delta PO(X, y)$ such that $U \cap V = \emptyset$ [4].

(b) δ -pre- T_1 if for each pair of distinct points x and y in X, there exist δ -preopen sets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$ [4].

Definition 3.21. A space X is said to be

(a) clopen T_1 if for each pair of distinct points x and y in X, there exist $U \in CO(X, x)$ and $V \in CO(X, y)$ such that $y \notin U$ and $x \notin V$ [5].

(b) *ultra*-Hausdorff if for each pair of distinct points x and y in X, there exist $U \in CO(X, x)$ and $V \in CO(X, y)$ such that $U \cap V = \emptyset$ [12].

Theorem 3.22. Let $f : X \longrightarrow Y$ be a slightly δ -precontinuous injection. Then the following properties hold:

- (a) If Y is ultra-Hausdorff, then X is δ -pre-Hausdorff.
- (b) If Y is clopen T_1 , then X is δ -pre- T_1 .

Proof. (a) Suppose that Y is ultra-Hausdorff. Then for any distinct points x and y in X, there exist $V \in CO(Y, f(x)), W \in CO(Y, f(y))$, such that $W \cap V = \emptyset$. Since f is slightly δ -precontinuous, $x \in f^{-1}(V) \in \delta PO(X, f(x))$ and $y \in f^{-1}(W) \in \delta PO(X, f(y))$ such that $f^{-1}(V) \cap f^{-1}(W) = \emptyset$. This shows that X is δ -pre-Hausdorff.

(b) Suppose that Y is clopen T_1 . Then for any distinct points x and y in X, there exist clopen sets U and W containing f(x) and f(y), respectively, such that $f(y) \notin U$ and $f(x) \notin W$. Since f is slightly δ -precontinuous, $f^{-1}(U)$ and $f^{-1}(W)$ are δ -preopen subsets of X such that $x \in f^{-1}(U)$, $y \notin f^{-1}(U)$, $x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. Therefore, X is δ -pre- T_1 .

Theorem 3.23. If $f : X \longrightarrow Y$ is a slightly continuous function, $g : X \longrightarrow Y$ is a slightly δ -precontinuous function and Y is ultra-Hausdorff, then $E = \{x \in X : f(x) = g(x)\}$ is δ -preclosed in X.

Proof. Let $x \in X - E$, then it follows that $f(x) \neq g(x)$. Since Y is ultra-Hausdorff, there exist $V \in CO(Y)$ and $W \in CO(Y)$ containing f(x) and g(x), respectively, such that $V \cap W = \emptyset$. Since f is slightly continuous, $f^{-1}(V)$ is clopen and hence regular open in X. Since g is slightly δ -precontinuous, $g^{-1}(W)$ is δ -preopen in X and $x \in g^{-1}(W)$. Set $O = f^{-1}(V) \cap g^{-1}(W)$. O is δ -preopen in X. Therefore, $f(O) \cap g(O) = \emptyset$ and it follows that $x \notin pCl_{\delta}(E)$. This shows that E is δ -preclosed in X.

Definition 3.24. A graph G(f) of a function $f: X \longrightarrow Y$ is said to be δ^* -preclosed if for each $(x, y) \in (X \times Y) - G(f)$, there exist a δ -preclopen subset U of Xcontaining x and a clopen subset V of Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 3.25. A graph G(f) of a function $f: X \longrightarrow Y$ is δ^* -preclosed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) - G(f)$ there exist a δ -preclopen subset Uof X containing x and a clopen subset V of Y containing y such that $f(U) \cap V = \emptyset$.

Theorem 3.26. If $f : X \longrightarrow Y$ is slightly δ -precontinuous and Y is clopen T_1 , then G(f) is δ^* -preclosed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G(f)$, then $f(x) \neq y$ and there exist a clopen set T of Y such that $f(x) \in T$ and $y \notin T$. Since f is slightly δ -precontinuous, then $f^{-1}(T)$ is δ -preclopen subset of X containing x. Set $U = f^{-1}(T)$. We have $f(U) \subset T$. Therefore, we obtain $f(U) \cap (Y - T) = \emptyset$ and $Y - T \in CO(Y, y)$. This shows that G(f) is δ^* -preclosed.

Corollary 1. If $f: X \longrightarrow Y$ is slightly δ -precontinuous and Y is ultra-Hausdorff, then G(f) is δ^* -preclosed in $X \times Y$.

Theorem 3.27. Let $f : X \longrightarrow Y$ have a δ^* -preclosed graph G(f). If f is injective, then X is δ -pre- T_1 .

Proof. Let x and y be any two distinct points of X. Then we have $(x, f(y)) \in (X \times Y) - G(f)$. Since G(f) is δ^* -preclosed, there exist a δ -preclopen subset U of X and $V \in CO(Y)$ such that $(x, f(y)) \in U \times V$ and $f(U) \cap V = \emptyset$. Hence, $U \cap f^{-1}(V) = \emptyset$ and $y \notin U$. This shows that X is δ -pre-T₁.

Theorem 3.28. Let $f : X \longrightarrow Y$ have a δ^* -preclosed graph G(f). If f is a surjective δ -preopen function, then Y is δ -pre-Hausdorff.

Proof. Let $y_1, y_2 \in Y$ and $y_1 \neq y_2$. Since f is surjective, there exists a $x \in X$ such that $f(x) = y_1$ and $(x, y_2) \in (X \times Y) - G(f)$. Since G(f) is δ^* -preclosed, there exist a δ -preclopen subset U of X and $V \in CO(Y)$ such that $(x, y_2) \in U \times V$ and $(U \times V) \cap G(f) = \emptyset$. Then, we have $f(U) \cap V = \emptyset$. Since f is δ -preopen, then f(U) is δ -preopen in Y such that $f(x) = y_1 \in f(U)$. This implies that Y is δ -pre-Hausdorff.

4. Covering properties

Definition 4.1. A space X is said to be

(a) δ -pre-compact [4] if every δ -preopen cover of X has a finite subcover.

(b) countably δ -pre-compact [4] if every countable cover of X by δ -preopen sets has a finite subcover.

(c) δ -pre-Lindelof [4] if every δ -preopen cover of X has a countable subcover.

(d) mildly compact [12] if every clopen cover of X has a finite subcover.

(e) mildly countably compact [12] if every countable cover of X by clopen sets has a finite subcover.

(f) mildly Lindelof [12] if every clopen cover of X has a countable subcover.

Theorem 4.2. Let $f : X \longrightarrow Y$ be a slightly δ -precontinuous surjection. Then the following statements hold:

(a) if X is δ -pre-compact, then Y is mildly compact.

- (b) if X is δ -pre-Lindelof, then Y is mildly Lindelof.
- (c) if X is countably δ -pre-compact, then Y is mildly countably compact.

Proof. (a) Let $\{U_{\alpha} : \alpha \in I\}$ be a clopen cover of Y. Since f is slightly δ -precontinuous, $\{f^{-1}(U_{\alpha}) : \alpha \in I\}$ is a δ -preopen cover of X and there exists a finite subset I_0 of I such that $X = \cup \{f^{-1}(U_{\alpha}) : \alpha \in I_0\}$. Hence, $\{U_{\alpha} : \alpha \in I_0\}$ is a finite subcover of $\{U_{\alpha} : \alpha \in I\}$. Therefore, Y is mildly compact.

(b) and (c) can be obtained similarly.

Definition 4.3. A space X is said to be

(a) δ -preclosed-compact [4] if every δ -preclosed cover of X has a finite subcover.

(b) countably δ -preclosed-compact [4] if every countable cover of X by δ -preclosed sets has a finite subcover.

(c) δ -preclosed-Lindelof [4] if every cover of X by δ -preclosed sets has a countable subcover.

Theorem 4.4. Let $f : X \longrightarrow Y$ be a slightly δ -precontinuous surjection. Then the following statements hold:

- (a) if X is δ -preclosed-compact, then Y is mildly compact.
- (b) if X is δ -preclosed-Lindelof, then Y is mildly Lindelof.
- (c) if X is countably δ -preclosed-compact, then Y is mildly countably compact.

Proof. (a) Let $\{A_{\alpha} : \alpha \in \Delta\}$ be any clopen cover of Y. Since f is slightly δ -precontinuous surjection, then $\{f^{-1}(A_{\alpha}) : \alpha \in \Delta\}$ is a δ -preclosed cover of X. Since X is δ -preclosed-compact, there exists a finite subset Δ_0 of Δ such that $X = \cup \{f^{-1}(A_{\alpha}) : \alpha \in \Delta_0\}$. Hence, $\{A_{\alpha} : \alpha \in \Delta_0\}$ covers Y. This shows that Y is mildly compact.

(b) and (c) can be obtained similarly.

SLIGHTLY δ -PRE SÜREKLİ FONKSİYONLAR

Özet: Bu makalede, slight δ -pre süreklilik olarak adlandırılan, slight pre sürekliliğin yeni bir zayıf çeşidi takdim edilmiş ve çalışılmıştır. Ayrıca, slight δ -pre sürekliliğin hem almost δ -pre süreklilikten hem de (δ -pre, s)-süreklilikten daha zayıf olduğu gösterilmiştir.

References

- [1] C. W. Baker, Slightly precontinuous functions, Acta Math. Hungar., 94 (1-2) (2002), 45-52.
- [2] N. Bourbaki, General Topology, Part 1, Addison Wesley, Reading, Mass 1996.
- [3] E. Ekici, Almost contra-precontinuous functions, Bull. Malays. Math. Sci. Soc. (2), 27 (2004), 53-65.
- [4] E. Ekici, (δ-pre, s)-continuous functions, Bull. Malays. Math. Sci. Soc. (2), 27 (2004), 237-251.
- [5] E. Ekici, Slightly γ-continuous functions, Bol. Soc. Paran. Mat., (3s.) v. 22 2 (2004): 63-74.
- [6] R. C. Jain, The role of regularly open sets in general topology, Ph.D. Thesis, Meerut University, Institute of Advanced Studies (Meerut, India, 1980).
- [7] A. S. Mashour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt., 53 (1982), 47-53.
- [8] A. A. Nasef and T. Noiri, Some weak forms of almost continuity, Acta Math. Hungar., 74 (1997), 211-219.
- [9] T. Noiri, Slightly β -continuous functions, Int. J. Math. Math. Sci., 28:8 (2001) 469-478.
- [10] S. Raychaudhuri and N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), 357-366.
- [11] S. Raychaudhuri, Concerning δ*-almost continuity and δ-preregularity, Bull. Calcutta Math. Soc., 85 (1993), 385-392.
- [12] R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pasific J. Math., 50 (1974) 169-185.
- [13] M. H. Stone, Applications of the theory of Boolean rings to general topology, TAMS 41 (1937), 375-381.

[14] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.

Current address: Selcuk University Faculty of Science and Arts Department of Mathematics Campus 42075 Konya Turkey, 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken 869-5142, JAPAN

 $E\text{-}mail\ address:\ \texttt{ayseuresin@mynet.com}$, <code>akeskin@selcuk.edu.tr</code>, <code>*t.noiri@nifty.com</code> URL: <code>http://math.science.ankara.edu.tr</code>