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ROBUST ESTIMATION AND HYPOTHESIS TESTING IN 2k

FACTORIAL DESIGN

BIRDAL ŞENO¼GLU

Abstract. The topic of this work is an extension of our previous work on
robust 2k factorial design with Weibull error distributions. In this paper, we
obtain robust and e¢ cient estimators of the parameters in the 2k factorial de-
sign by using the methodology known as modi�ed maximum likelihood (MML)
and propose new test statistics based on MML estimators for testing the main
e¤ects and the interactions when the distribution of error terms is general-
ized logistic. We show that the proposed test statistics are more powerful
and robust than the traditional test statistics based on the least squares (LS)
estimators.

1. Introduction

Factorial designs are the most e¢ cient designs in terms of time and cost when we
evaluate two or more factors simultaneously. They provide us information about
the main e¤ects and the interactions among the various factors, Fisher [5] and Yates
[14]. 2k factorial design is the simplest type of factorial designs. Here, k represents
the number of factors and 2 represents the number of levels for each factor. These
levels are usually referred to as �low� and �high� levels. 2k factorial designs are
very useful for preliminary exploration when there are large numbers of factors in
a factorial design. They are used very widely in agricultural experimentations, in
engineering experimentations, etc.

Şeno¼glu [10] considered the 2k factorial design when the distribution of error
terms is Weibull W (p; �). From the methodology of modi�ed likelihood, they de-
veloped robust and e¢ cient estimators for the parameters in 2k factorial design. F
statistics based on MML estimators for testing main e¤ects and interactions were
de�ned. They were shown to have high powers and better robustness properties as
compared to the normal theory solutions.

Received by the editors April 6, 2007; Accepted: Dec.28, 2007.
2000 Mathematics Subject Classi�cation. Primary 62K15, 62F35; Secondary 62F03, 62F10.
Key words and phrases. Factorial design; Modi�ed maximum likelihood; Robustness; Gener-

alized logistic; Simulation .

c
2007 Ankara University

39



40 BIRDAL ŞENO ¼GLU

In this study, we extend the results to the case where the distribution of error
terms are independent and identically distributed (iid) according to a generalized
logistic distribution. The family of generalized logistic distribution GL(b; �) is given
by

b

�

exp(�e=�)
f1 + exp(�e=�)gb+1 ;�1 < e <1:

The cumulative distribution is given by

F (e) = (1 + exp(�e=�))�b: (1.2)

One of the main motivation of this work is that this family beautifully complements
the family of Weibull distributions, (i) its support is on IR: (�1;1) and (ii) its
represents leptokurtic distributions (�2 > 3) while most Weibull distributions are
mesokurtic (�2 < 3). See the following table for the skewness (

p
�1) and kurtosis

(�2) values of the GL(b; �) distribution.

b = 0:5 1 2 4 6p
�1 �0:86 0 0:33 0:75 0:92
�2 5:40 4:20 4:33 4:76 4:95

It may be noted that for b=1, GL(b; �) reduces to the well-known logistic distri-
bution which has been, in many studies, used as a substitute for a normal distrib-
ution; see, for example, Berkson [3].

2. The 23 design

It should be noted that 22 design is a special case of Şeno¼glu and Tiku [11],
because two-way classi�cation model reduces to 22 factorial design when i = j =
1; 2: Therefore, we will not pursue it in this study for the sake of brevity. Let�s
consider the case where there are three factors (say A, B and C), each of which has
two levels, i. e., 23 factorial design. The model for such an experiment is

yijkl = �+ � i + �j + 
k + (��)ij + (�
)ik + (�
)jk + (��
)ijk + eijkl (2.1)

(i=1, 2; j=1, 2; k =1, 2; l=1, 2,. . . .., n)

where �1 < � <1 is the general or overall mean common to all the observations.
� i, �j and 
k are the e¤ects due to the ith level of factor A, jth level of factor B and
kth level of factor C, respectively. (��)ij , (�
)ik and (�
)jk are the e¤ects of the
two-factor interactions between � i and �j , � i and 
k and �j and 
k, respectively.
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(��
)ijk is the e¤ect of three-factor interaction between � i, �j and 
k and eijkl is
the random error associated with the lth observation, at the ith level of the factor
A, jth level of factor B and kth level of factor C. The factors A, B and C are
considered as �xed and the designs are assumed to be completely randomized in
the rest of the paper.

3. The MML estimators

Let zijk(l) = (yijk(l) � �� � i � �j � 
k � (��)ij � (�
)ik � (�
)jk � (��
)ijk)=�
(1 � i � 2; 1 � j � 2; 1 � k � 2; 1 � l � n) be the ordered variates, where
yijk(1) � yijk(2) � ::::::::: � yijk(n) are the ordered statistics obtined by arranging
the random observations in the ith level of the factor A, jth level of factor B and
kth level of factor C, i. e. yijkl, in ascending order of magnitude. The likelihood
function and the log-likelihood function are

L /
�
1

�

�N
e
�
P
i

P
j

P
k

P
l

zijk(l)Q
i

Q
j

Q
k

Q
l

[1 + e�zijk(l) ]
b+1

(3.1)

and

lnL / �N ln� �
P
i

P
j

P
k

P
l

zijk(l) � (b+ 1)
P
i

P
j

P
k

P
l

ln
�
1 + e�zijk(l)

�
; (3.2)

respectively. Since complete sums are invariant to ordering, i. e.,
nP
i=1

f(yi) =
nP
i=1

f(y(i))

where f(y) is any function of y. By using equation (3.2), we obtain the following
likelihood equations for each model parameters in (2.1)

@ lnL

@�
=
N

�
� (b+ 1)

�

P
i

P
j

P
k

P
l

e�zijk(l)

1 + e�zijk(l)
;

@ lnL

@� i
=
bcn

�
� (b+ 1)

�

P
j

P
k

P
l

e�zijk(l)

1 + e�zijk(l)
;

@ lnL

@�j
=
acn

�
� (b+ 1)

�

P
i

P
k

P
l

e�zijk(l)

1 + e�zijk(l)
;

@ lnL

@
k
=
abn

�
� (b+ 1)

�

P
i

P
j

P
l

e�zijk(l)

1 + e�zijk(l)
;

@ lnL

@(��)ij
=
cn

�
� (b+ 1)

�

P
k

P
l

e�zijk(l)

1 + e�zijk(l)
; (3.3)



42 BIRDAL ŞENO ¼GLU

@ lnL

@(�
)ik
=
bn

�
� (b+ 1)

�

P
j

P
l

e�zijk(l)

1 + e�zijk(l)
;

@ lnL

@(�
)jk
=
an

�
� (b+ 1)

�

P
i

P
l

e�zijk(l)

1 + e�zijk(l)
;

@ lnL

@(��
)ijk
=
n

�
� (b+ 1)

�

P
l

e�zijk(l)

1 + e�zijk(l)

and

@ lnL

@�
= �N

�
+
1

�

P
i

P
j

P
k

P
l

zijk(l) �
(b+ 1)

�

P
i

P
j

P
k

P
l

zijk(l)
e�zijk(l)

1 + e�zijk(l)
:

The likelihood equations in (3.3) do not yield explicit estimators of the model
parameters because of the awkward function g(z) = e�z

1+e�z and hence they must
be solved by numerical methods. However, solving them by iterations is indeed
problematic for reasons of (i) multiple roots, (ii) non-convergence of iterations,
and (iii) convergence to wrong values; see, for example, Smith [9], Puthenpura
and Sinha [8] and Vaughan [13]. Therefore, we linearize the term g(z) = e�z

1+e�z by
expanding it in a Taylor series around tijk(l) = E(zijk(l)), since g(z) is almost linear
in small intervals around tijk(l). This methodology is known as modi�ed maximum
likelihood and was initiated by Tiku [12]. We then get

g(zijk(l)) �= �l � �lzijk(l) (3.4)

where

�l =
e�tijk(l)

(1 + e�tijk(l))2
and (3.5)

�l =
e�tijk(l) + e�2tijk(l) + e�tijk(l)tijk(l)

(1 + e�tijk(l))2
(l = 1; 2; : : : :; n):

Exact values of tijk(l) are available for n � 15 (see [1]) but, for convenience, we
use their approximate values obtained from the equations

Z tijk(l)

�1

be�z

(1 + e�z)b+1
dz =

l

n+ 1
; tijk(l) = � ln

 �
l

n+ 1

��1=b
� 1
!
: (3.6)

Using approximate values instead of exact values does not adversely a¤ect the e¢ -
ciency of the MML estimators. Incorporating (3.4) in (3.3), the modi�ed likelihood
equations are obtained. The solutions of these equations are the following MML
estimators;
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�̂ = �̂:::: � (�=m)�̂; �̂ i = �̂i::: � �̂::::; �̂j = �̂:j:: � �̂::::; 
̂k = �̂::k: � �̂::::;

(c��)ij = �̂ij:: � �̂i::: � �̂:j:: + �̂::::; (c�
)ik = �̂i:k: � �̂i::: � �̂::k: + �̂::::;
(c�
)jk = �̂:jk: � �̂:j:: � �̂::k: + �̂::::; (3.7)

(d��
)ijk = �̂ijk: � �̂ij:: � �̂i:k: � �̂:jk: + �̂i::: + �̂:j:: + �̂::k: � �̂::::
and

�̂ =
B +

p
B2 + 4NC

2
p
N(N � 23)

where

m =
nP
l=1

�l;�l = �l �
1

b+ 1
; � =

nP
l=1

�l; �̂:::: = (1=8m)
P
i

P
j

P
k

P
l

�lyijk(l);

�̂i::: = (1=4m)
P
j

P
k

P
l

�lyijk(l); �̂:j:: = (1=4m)
P
i

P
k

P
l

�lyijk(l);

�̂::k: = (1=4m)
P
i

P
j

P
l

�lyijk(l); �̂ij:: = (1=2m)
P
k

P
l

�lyijk(l);

�̂i:k: = (1=2m)
P
j

P
l

�lyijk(l); �̂:jk: = (1=2m)
P
i

P
l

�lyijk(l);

�̂ijk: = (1=m)
P
l

�lyijk(l); B = (b+ 1)
P
i

P
j

P
k

P
l

(yijk(l) � �̂ijk:)�l

and
C = (b+ 1)

P
i

P
j

P
k

P
l

(yijk(l) � �̂ijk:)2�l:

The divisor N in the expression for �̂ was replaced by
p
N(N � 23) as a bias

correction. It may be noted that, unlike the maximum likelihood (ML) estimator
of �, the MML estimator �̂ is always real and positive.

4. Properties of the estimators and hypotheses testing

The modi�ed likelihood equations are asymptotically equivalent to the corre-
sponding likelihood equations. Therefore, the MML estimators are asymptotically
unbiased and e¢ cient; see Bhattacharrya [4] and Şeno¼glu [10]. The following results
are instrumental for testing the null hypotheses;

H01 : � i = 0 (i = 1; 2);H02 : �j = 0 (j = 1; 2);H03 : 
k = 0 (k = 1; 2);

H04 : (��)ij = 0 (i = 1; 2 and j = 1; 2); (4.1)

H05 : (�
)ik = 0 (i = 1; 2 and k = 1; 2);

H06 : (�
)jk = 0 (j = 1; 2 and k = 1; 2) and

H07 : (��
)ijk = 0 (i = 1; 2; j = 1; 2 and k = 1; 2):
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Lemma 1: The estimator �̂ i is an unbiased estimator of � i and is asymptotically
normally distributed with variance �2=4m(b+ 1).
Proof: The result follows from the fact that @ lnL=@� i assumes the form (see

[6])

@ lnL

@� i
�=
@ lnL�

@� i
=
4m(b+ 1)

�2
(�̂ i � � i)

with E(@r lnL�=@� ri ) = 0 for all r � 3, see Bartlett [2].

From the same argument given in the proof of Lemma 1, �̂j and 
̂k are unbiased
estimators of �j and 
k, respectively, with variance �

2=4m(b + 1) and they are
asymptotically normally distributed.

Lemma 2: The estimator (c��)ij is an unbiased estimator of (��)ij and is
asymptotically normally distributed with variance �2=2m(b+ 1).
Proof: Asymptotically, @ lnL=@(��)ij assumes the form

@ lnL

@(��)ij
�=
@ lnL�

@(��)ij
=
2m(b+ 1)

�2
[(c��)ij � (��)ij ]:

From the same argument given in the proof of Lemma 2, (c�
)ik and (c�
)jk are
unbiased estimators of (�
)ik and (�
)jk, respectively, with variance �2=2m(b+1)
and they are asymptotically normally distributed.

Lemma 3: The estimator (d��
)ijk is an unbiased estimator of (��
)ijk and is
asymptotically normally distributed with variance �2=m(b+ 1).
Proof: This follows from the fact that @ lnL�=@(��
)ijk is asymptotically eqi-

valent to @ lnL=@(��
)ijk and assumes the form

@ lnL

@(��
)ijk
�=

@ lnL�

@(��
)ijk
=
m(b+ 1)

�2
[(d��
)ijk � (��
)ijk];

see Lemmas 1 and 2.

Lemma 4: Asymptotically, the MML estimators �̂ i, �̂j , 
̂k, (c��)ij , (c�
)ik,
(c�
)jk, (d��
)ijk and �̂ are independently distributed.
Proof: Asymptotic independence of � i and � follows from the fact that
E(@r+s lnL�=@� ri @�

s)=0 for all r � 1 and s � 1; see Bartlett [2]. The MML
estimators �̂j , 
̂k, (c��)ij , (c�
)ik, (c�
)jk, (d��
)ijk are asymptotically independent
of �̂ from the same reasons given for �̂ i.
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Lemma 5: N�̂2=�2 is for large n (for known �ijk:) referred to a chi-square
distribution with � = N = 2kn degrees of freedom.
Proof: Write

B0 = (b+ 1)
P
i

P
j

P
k

P
l

(yijk(l) � �ijk:)�l and

C0 = (b+ 1)
P
i

P
j

P
k

P
l

(yijk(l) � �ijk:)2�l:

Realizing that B0�
p
NC0 �= 0 asymptotically and @ lnL=@� assumes the form

@ lnL

@�
�=
@ lnL�

@�
=
N

�3

�
C0
N
� �2

�
:

For testing the hypotheses given in (4.1), we de�ne the following test statistics
based on the MML estimators

F �A =

4m(b+ 1)
P
i

�̂2i

�̂2
; F �B =

4m(b+ 1)
P
j

�̂
2

j

�̂2
; F �C =

4m(b+ 1)
P
k


̂2k

�̂2

F �AB =

2m(b+ 1)
P
i

P
j

(c��)2ij
�̂2

; F �AC =

2m(b+ 1)
P
i

P
k

(c�
)2ik
�̂2

(4.2)

F �BC =

2m(b+ 1)
P
j

P
k

(c�
)2jk
�̂2

; F �ABC =

m(b+ 1)
P
i

P
j

P
k

(d��
)2ijk
�̂2

respectively.

Asymptotically, the null distributions of the test statistics in (4.2) are referred to
a central F distribution with degrees of freedom (�1; �8), (�2; �8), (�3; �8), (�4; �8),
(�5; �8),(�6; �8) and (�7; �8), respectively:

�1 = 1; �2 = 1, �3 = 1, �4 = 1; �5 = 1, �6 = 1, �7 = 1 and �8 = 23(n� 1):

To have an idea how accurate these central F approximations are, we simulated
the probabilities

P1 = prob [F
�
A � F0:05(�1; �8) j H01] ; P2 = prob [F �AB � F0:05(�4; �8) j H04]

(4.3)
and

P3 = prob [F
�
ABC � F0:05(�7; �8) j H07] ;
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from 10,000 Monte Carlo runs. The values are given in Table 1. It should be
noted that all of the main e¤ects and the two-factor interactions have similar power
properties, therefore, we will consider only one of the main e¤ects and one of the
two-factor interactions for conciseness.

Table 1. Simulated values of the probabilities.

b
0.5 1.0 2.0 3.0 4.0 6.0

n = 4 F �A 0.050 0.048 0.048 0.046 0.045 0.044
F �AB 0.046 0.047 0.048 0.046 0.046 0.045
F �ABC 0.044 0.040 0.042 0.042 0.041 0.040

n = 5 F �A 0.046 0.045 0.048 0.048 0.048 0.047
F �AB 0.049 0.046 0.046 0.043 0.042 0.043
F �ABC 0.048 0.046 0.046 0.045 0.046 0.044

n = 6 F �A 0.050 0.049 0.049 0.045 0.044 0.043
F �AB 0.051 0.046 0.047 0.046 0.047 0.045
F �ABC 0.054 0.053 0.050 0.050 0.049 0.048

The central F -distribution gives remarkably accurate approximations even for
small n.

The traditional F statistics based on LS estimators are given by

FA =
[(a� 1)(b+ 1)(c+ 1)]2

23n~�2
; FB =

[(a+ 1)(b� 1)(c+ 1)]2

23n~�2
;

FC =
[(a+ 1)(b+ 1)(c� 1)]2

23n~�2
; FAB =

[(a� 1)(b� 1)(c+ 1)]2

23n~�2
; (4.4)

FAC =
[(a� 1)(b+ 1)(c� 1)]2

23n~�2
; FBC =

[(a+ 1)(b� 1)(c� 1)]2

23n~�2
;

FABC =
[(a� 1)(b� 1)(c� 1)]2

23n~�2
and ~�2 =

P
i

P
j

P
k

P
l

(yijkl � �yijk:)2=(N � 23):

It should be noted that treatments are the combinations of the factor levels and are
represented by the letters (1), a, b, c, ab, ac, bc and abc. However, in formula (4.4)
they represent the totals of n observations in each treatment, see Montgomery [7]
for more information.

The distributions of FA, FB , FC , FAB , FAC , FBC and FABC are central or
noncentral F depending on whether H0i (i =1, 2, 3, 4, 5, 6, 7) are true or not.
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Given in Table 2 are the simulated values of the type I error and power of the
FABC and F �ABC tests; � was taken to be equal to 1 without loss of generality, and
presumed value of the type I error is 0.050. Simulation results show that the power
of the FABC test is considerably lower than that of the F �ABC test.

Table 2. Values of the power of FABC and F �ABC tests; n=4.

b d = 0:00 0:15 0:30 0:45 0:60 0:75 0:90 1:05 1:20 1:35
0.5 FABC 0.043 0.06 0.09 0.16 0.26 0.38 0.50 0.63 0.73 0.82

F �ABC 0.044 0.06 0.10 0.19 0.29 0.42 0.56 0.69 0.80 0.88
1.0 FABC 0.043 0.07 0.15 0.28 0.45 0.63 0.78 0.89 0.89 0.98

F �ABC 0.040 0.07 0.15 0.28 0.45 0.63 0.78 0.89 0.89 0.98
2.0 FABC 0.041 0.08 0.20 0.38 0.59 0.78 0.90 0.97 0.99 1.00

F �ABC 0.042 0.08 0.20 0.40 0.61 0.81 0.92 0.97 0.99 1.00
4.0 FABC 0.042 0.09 0.23 0.44 0.67 0.85 0.94 0.98 1.00 1.00

F �ABC 0.041 0.09 0.24 0.48 0.72 0.89 0.97 0.99 1.00 1.00
6.0 FABC 0.041 0.09 0.24 0.46 0.70 0.86 0.95 0.99 1.00 1.00

F �ABC 0.040 0.09 0.26 0.51 0.76 0.91 0.98 1.00 1.00 1.00

Robustness: The true value of shape parameter b may, in practice, be somewhat
di¤erent from the one assumed. In this section, we study the robustness of the test
statistics based on the MML and the LS estimators given in (4.2) and (4.4), respec-
tively, to understand how robust the test statistics are with respect to plausible
deviations from an assumed model.

The value of b is assumed to be 2 for illustration in GL(b; �). In fact, any other
value of b can be chosen with similar results. The model GL(2; �) will be called
population model. The alternatives to this model will be called sample models.
Out of a large number of plausible sample models, we choose the following sample
models;

(1) b=1.5, (2) b=3.0;
(3) Dixon�s outlier model: (n-1) observations come from GL(2; �) but one ob-

servation (we do not know which one) comes from GL(2; 2�);
(4) Mixture model: 0.90GL(2; �)+0.10GL(2; 2�);
(5) Contamination model: 0:90GL(2; �)+0.10Uniform(-1,1).

Given in Table 3 are the values of the power of the FABC and F �ABC statistics. It
is clear that F �ABC test has higher power than the traditional FABC test based on
LS estimators. Therefore, it is remarkably robust to deviations from an assumed
GL(b; �).
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Table 3. Values of the power for alternatives to GL(2, sigma);
n=4; alfa=0.050.

d = 0:0 0:2 0:4 0:6 0:8 1:0 1:2
True Model F �ABC 0.042 0.11 0.33 0.61 0.85 0.96 0.99

FABC 0.042 0.11 0.31 0.59 0.83 0.95 0.99
Model (1) F �ABC 0.043 0.10 0.29 0.55 0.80 0.93 0.98

FABC 0.042 0.10 0.28 0.54 0.79 0.93 0.98
Model (2) F �ABC 0.040 0.11 0.37 0.67 0.89 0.98 1.00

FABC 0.041 0.12 0.35 0.64 0.87 0.97 0.99
Model (3) F �ABC 0.042 0.10 0.30 0.58 0.83 0.95 0.99

FABC 0.043 0.09 0.28 0.55 0.80 0.93 0.98
Model (4) F �ABC 0.038 0.10 0.31 0.60 0.84 0.96 0.99

FABC 0.039 0.10 0.29 0.57 0.81 0.94 0.99
Model (5) F �ABC 0.041 0.13 0.35 0.63 0.86 0.96 0.99

FABC 0.043 0.13 0.34 0.61 0.84 0.95 0.99

5. Generalization to K-factor cases

Suppose that we have K factors, each at two levels, i. e. 2k factorial design. Sum
of squares for the main e¤ects and the interactions (two-factor, three-factor,. . . .,
k-factor etc.) are given by

SSA = 2
k�1m(b+ 1)

P
a
Â2a; SSB = 2

k�1m(b+ 1)
P
b

B̂2b ; : : : : : : ;

SSK = 2
k�1m(b+ 1)

P
k

K̂2
k ;

SSAB = 2
k�2m(b+ 1)

P
a

P
b

(dAB)2ab;
SSAC = 2

k�2m(b+ 1)
P
a

P
c
(dAC)2ac; : : : : : : ;

SSJC = 2
k�2m(b+ 1)

P
j

P
c
(cJC)2jc;

SSABC = 2
k�3m(b+ 1)

P
a

P
b

P
c
(\ABC)2abc;

SSABD = 2
k�3m(b+ 1)

P
a

P
b

P
d

(\ABD)2abd; ::::;

SSIJK = 2
k�3m(b+ 1)

P
i

P
j

P
k

([IJK)2ijk

and
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SSABC::::::K = m(b+ 1)
P
a

P
b

:::::
P
k

( \ABC:::K)2abc:::::k:

The mean square error is found by taking square of �̂ = B+
p
B2+4NC

2
p
N(N�2k)

. Here,

B = (b+ 1)
P
a

P
b

:::::::
P
k

P
l

�
yabc::::k(l) � �̂abc::::k:

�
�l and

C = (b+ 1)
P
a

P
b

::::::::
P
k

P
l

�
yabc::::k(l) � �̂abc::::k:

�2
�l:

6. Conclusions

In this study, we extend the results of Şeno¼glu [10] to the case where the under-
lying distribution of error terms is generalized logistic. We obtained the estimators
of the model parameters by using the methodology known as modi�ed maximum
likelihood and proposed new test statistics based on these estimators. Simulation
results reveal that our test statistics have higher power and are more robust than
the traditional tests statistics based on LS estimators.

2k FAKTOR·IYEL TASARIMDA DAYANIKLI TAHM·IN VE
H·IPOTEZ TEST·I

ÖZET: Bu çal¬̧sma, hata terimlerinin Weibull da¼g¬l¬ma sahip olmas¬durumunda
sa¼glam 2k faktöriyel tasar¬mlar isimli çal¬̧smam¬n geni̧sletilmi̧s bir halidir. Bu

makalede, Uyarlanm¬̧s En Çok Olabilirlik (UEÇO) metodolojisi kullan¬larak hata
terimlerinin Genelleştirilmi̧s Lojistik da¼g¬l¬ma sahip olmas¬durumunda 2k

faktöriyel tasar¬mdaki parametreler için sa¼glam ve etkin tahmin ediciler
bulunmuş, ana etki ve etkileşimleri test etmek için UEÇO tahmin edicilerine
dayanan yeni test istatistikleri önerilmi̧stir. Önerilen test istatistiklerinin, En
Küçük Kareler (EKK) tahmin edicilerine dayanan test istatistiklerinden daha

sa¼glam ve güçlü olduklar¬gösterilmi̧stir.
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