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BISHOP FRAME OF THE SPACELIKE CURVE WITH A
SPACELIKE PRINCIPAL NORMAL IN MINKOWSKI 3-SPACE

BAHADDIN BUKCU AND MURAT KEMAL KARACAN

ABSTRACT. In this study, we generalize for a spacelike curve with a spacelike
principal normal which was studied by Bishop [1] to Minkowski 3-Space. In
addition, the Bishop Darboux vector (matrix) for spacelike curve is found.
Furthermore, using the derivative of the tangent vector T of the spacelike
curve, the relations between the curvature funtions x,7 and ki, k2 is found.

1. PRELIMINARIES

Let R = {(x1,22,73)| 71,72,23 € R} be a 3-dimensional vector space, and let
x = (z1, T2, ¥3) and y = (y1,¥2,¥3) be two vectors in R®. The Lorentz scalar
product of x and y is defined by

(m,y) = T1y1 + T2y2 — T3Y3.

E} = (R3,(z,y)) is called 3-dimensional Lorentzian space, Minkowski 3-space or
3- dimensional semi-Euclidean space. The vector z in E} is called a spacelike vector,
null vector or a timelike vector if (z,z), > 0or x =0, (z,z), =0 or (z,z), <0,
respectively. For x € E} , the norm of the vector z defined by |z|, = /|{z, )],
and = is called a unit vector if |[z||, = 1. For any z, y € E}, Lorentzian vectoral
product of x and y is defined by

T ALy = (Tays3 — T3y, T3Y1 — T1Y3, T2Y1 — T1Y2) -

The Lorentzian sphere of center m = (mj, mg, m3) and radius r € RT in the
Minkowski 3-space is defined by 57 = {a = (a1, a2, a3) € E{ | (a—m, a—m), =r?}.
Denote by {T', N, B} the moving Frenet frame along the curve o. Then T, N and
B are the tangent, the principal normal and vector binormal of the curve « re-
spectively. If a is a spacelike curve with a spacelike principal normal, then this
set of orthogonal unit vectors, known as the Frenet-Serret frame, have properties
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kN, N = —kT+7B, B =7N and (T, T), = (N, N), =1, (B, B), = —1

2. INTRODUCTION

The Frenet frame of a 3-times continuously differentiable non-degenerate space-
like curve with a spacelike principal normal invaryant in semi-Euclidean space has
long been the standart vehicle for analysing properties of the spacelike curve in-
variant under semi-Euclidean motions. For arbitrary moving frames that is, ortho-
normal basis fields, we can express the derivatives of the frame with respect to the
spacelike curve with a spacelike principal normal parameter in term of the frame
its self, and due to semi-ortonormality the coefficient matrix is always semi- skew
symmetric. Thus it generally has three nonzero entries. The Frenet frame gains part
of its special significance from the fact that one of the three derivatives is zero.
Another feature of the Frenet frame is that it is adapted to the spacelike curve with
a spacelike principal normal: the members are either tangent to or perpendicular
to the spacelike curve with a spacelike principal normal. It is the purpose of this
paper to show that there are other frames which have these same advantages and
to compare them with the Frenet frame.

3. PARALLEL FIELDS

3.1. Relatively Parallel Fields. We say that a normal vector field N along a
curve « is relatively parallel if its derivative tangential. Such a vector field turns
only whatever amount is necessary for it to remain normal, so it is as close to being
paralel as possible without losing normality. Since its derivative is perpendicular
to it, a relatively parallel normal vector field has constant length. Such fields
occur classically in the discussion of curves which are said to be parallel to given
spacelike curve with a spacelike principal normal.Indeed, if a curve « considered as
a displacement vector function of a parameter ¢, then if N is relatively parallel, the
spacelike curve with a spacelike principal normal with displacement vector oo + N
has velocity (a + N)/ = (v+ f)T, where T is the unit tangential vector field of
a, v is the speed of a, and N = fT. Thus the segment between two curve is
locally perpendicular to both. Whether or not this segment is locally a segment of
minimum length between the two curves depends on the curvature and the length
of N. It is easily verified that the segment local minimizes length if N is short
enough. Conversly, a spacelike curve with a spacelike principal normal which runs
at constant distance from « must be given o + N, where N relatively parallel.

A single normal vector field Ny at a point «a(ty) generates a unique relatively
paralel field N such that N(to) = Np. The uniqueness is trivial: the difference of two
relatively parallel fields is obviously relatively parallel, so if two such coincide at one
point, their difference has constant length 0. To show existence one takes auxiliary
adapted frames; the Frenet frame would do if it exists, but we want existence even
for degenerate curves, that is, those which have curvature vanishing at some points.
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Such frames can be constructed locally by appling the Gram-Schmidt process to T
two parallel fields.

Theorem 3.1. Let o be spacelike curve with a spacelike principal normal with unit
speed. If T', N1, Ny is adapted frame, then we have

’

T/ 0 Por  —Po2 T
Ny | =1 =P 0 —pp2 Nt |- (3.1)
N, —po2 —P12 O N

Proof. If T , Ny are spacelike vectors but N, timelike vector then we can write
T = pooT + po1 N1 + po2 V2 (3:2)

for some the functions pyg, pp; and pgy. From the equation (3.2), we find pyq = 0,
Po1 = <T',N1>L and pgy = — <T’,NQ>L
So we get
T = 0T + po; N1 — pyoNa.

Similary, we can write

’

Ny = =pp1T 4+ ONy = p1aNo
and
Ny = —=poaT — p1aN1 + ONo.

Thus we have eq. (3.1) or shortly, X' = KX. Moreover K is semi skew-matrix for
satisfying KT = —eKe, where € is diag(1, 1, —1) matrix. Now we find the condition
for a normal field of constant L to relatively paralel. There is a smooth function 6
such that N = L [N; cosh @ + Ns sinh 6]. Differentiating, we have

N’ =L[(0' — p15) (N1 sinh 6 + N cosh ) — (py; cosh 8 + pyy sinh 6) T .

From this we see that N is relatively paralel if and only if 6" = p;,.

Since there is a solution for 6 satifying any initial condition, this shows that
localy relatively parallel normal fields exist. To get global existence we can patch
to gether local ones, which exist on a covering by interval. Smoothness at the points
where they link together is consequence of the uniqueness part.

We define a tangential field to be relatively parallel if it is a constant multiple of
the unit tangent field T'. An arbitrary field is relatively parallel if its tangential and
normal components are relatively parallel. We spell out the complete hypotheses
for the existence and uniqueness of these fields as follows. O

Theorem 3.2. Let a be a C* spacelike curve with a spacelike principal normal
in Minkowski 3-space which is regular, that is, the velocity never vanishes (k > 2).
Then for any vector Xq at o(ty) there is a unique C*~1 relatively parallel field X
along a such that X (to) = Xo and the scalar product of two relatively is constant.
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Proof. To prove that the scalar product (X,Y’); of two relatively paralel fileds
X,Y is constant, we observe that it is trivial for tangential ones and maybe verified
for the tangential and normal parts separately. Thus we assume X and Y are
normal, with derivatives f T" and g7'. Then the derivative of (X,Y), is

d , )
%<X’Y>L - <X7Y>L+<X’Y>L
= <fT7Y>L+<XagT>L
= f(TaY>L+g<X:T>L
= f0+g0=0
as desired. Thus, (X,Y), is constant. O

3.2. Special Adapted Frames. It should be clear that the relatively parallel
fields on C? regular form a 3-dimensional vector over R with distinguised sub-
spaces consisting of an oriented 1-dimensional tangential part and a 2-dimensional
normal part, and there is a Lorentzian scalar product inherited from the pointwise
scalar product on the ambient semi-Euclidean. We call an semi-orthonormal basis of
this vector space which fits the two subspaces a relatively paralel adapted frame or
RPAF. If we assume that the ambient semi-Euclidean space has a preferred orienta-
tion, then so does the normal space of the spacelike curve with a spacelike principal
normal, and we may refer to properly oriented RPAF. The totality of RPAF’s are in
the form of two circles(in the Lorentzian mean), one in each orientation class, since
they can be parametrized by the 2-dimensional semi-orthogonal group, according
to the following obvious result.

Theorem 3.3. If {T, N1, N2} is a relatively paralel adapted frame, then RPAF’s
consists of frames the form {T,aNy + bNa,cN1 + dNa}, where

a b
c d
runs through semi-orthogonal matrices having entries.

Proof. Now if {T, N1, N2} is a RPAF, denoting derivatives with respect to arc
length by a dot, we have,

’

T 0 ki —ko T
N, —k 0 0 N |- (3.3)
Né —ky O 0 No

This shows that we accomplished our original goal showing that there are other
adapted frames which have only two nonzero entires in their Cartan matrices.(for
a more general) discussion of Cartan matrices. In fact, given some one such RPAF,
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The Theorem 3.3 tells us that possible Cartan matrices for RPAF’s are
0 aky +bky cki+ dko
K= % 0 0
* 0 0

where * denotes an entry which can be determined by using semi skew-symmetry.
The Frenet frame has Cartan matrix

0 « O
k 0 T,
0 -7 0

and is unique once the orientation of the ambient space and a convention on the
sign of torsion 7 have been chosen. The only other possibilities for Cartan matrix
with one entry vanishing would be

00 f 0 f g
00 gl,|]—-f 00
f g 0 g 0 0

It is simple to relate the entries of the variuos Cartan matrices. Indeed,

K= HTHL = [[k1 N1 + k2 Nall, = £/ |kF — k3| .

Writing the principal normal as

k k
N = Nj coshf + Nysinh§ = (1) Ny + <2> Na, (3.4)

K K
and differentiating we obtain N’ = —kT'+7B = —&T +6' (N sinh 6 + Ny cosh 6) .
If {T, N1, N3} is properly oriented, we conclude that B = Ny sinh @ + N3 cosh 6 and
hence 6’ = 7. Thus x and indefined integral [ 7(s)ds are polar coordinates for the
curve (k1,ks). O

4. THE NORMAL DEVELOPMENT OF A SPACELIKE CURVE WITH A SPACELIKE
PRINCIPAL NORMAL

We want to view (ki1,k2) as a sort of invariant of spacelike curve o with a
spacelike principal normal . This slightly more difficult to conceive than in a case
of (k,T), since the RPAF is not unique. However, we have spelled out what degree
of freedom there is Theorem 3.3. (k1, k2) is determined up to an semi-orthogonal
transformation in the non oriented case and up to a semi-rotation about the origin
in the oriented case. Thus we must think of (ki,k2) as a parametrized (by an
arc length for « ) continuous spacelike curve with a spacelike principal normal in
a centro semi-FEuclidean plane, that is a semi-Euclidean plane having distiguished
point. When conceived of in this way we call (k1, k2) the normal development of
spacelike curve o with a spacelike principal normal. This situation is not really so
different from the case of the Frenet invariants (k, 7), because in the non oriented
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case (k,7) and the Frenet frame are determined only up to an action by the two-
element group, with the non identity changing the sign of 7 and B. That is, cannot
be distinguished from (x, —7). The standart facts about the relation (k1,k2) and
spacelike curve a spacelike curve with a spacelike principal normal as an object
of semi-Euclidean geometry correspond to similary facts about (ki,k2) and «.The
proofs are identical with the Frenet case, and in fact are partly given in unified
form in [3] .

Theorem 4.1. Two C? regulary spacelike curve with a spacelike principal normal
in semi-FEuclidean space are congurent if and only if they have the same normal
devolepment. For any parametrized continous curve in centro semi-Fuclidean plane
there is a C? regular curve in semi-Euclidean space having the given curve as its
normal development, i.e., Two curves are congruent if and only if they have the
same arc length parametrization of their curvature and torsion.

The modifications for the oriented case are clear: make both semi-Euclidean
space and the centro semi-Euclidean plane be oriented and congurences be proper.

Theorem 4.2. Let a be spacelike curve with a spacelike principal normal. A C?
reqular curve a lies on a Lorentzian sphere if and only if its normal devolepment
lies on a line not the origin. The distance of this line from the origin and the radius
of the Lorentzian sphere are reciprocals.
Proof. =: If a lies on a Lorentzian sphere with center p and radius r, then
(o —p,a—p), =1 (4.1)
Differentiating with respect to arc length gives
(T, a=p), =0, (4.2)
SO
o —p= fNi+gNo; (4.3)
for some functions f,g. From equation (4.3), we get
f:<a_paN1>ng:_<a_paN2>L‘ (44)
On deriving for equation (4.4), we have

’ d !
f = £<afp,N1>L: <T,N1>L+<Oé*p»N1>L =0—(a—p,kT), =0.
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Thus f is constant. Similary, g is constant. Then differentiating equation (4.2), we
get

(Tha=p), = 0
<T', a —p>L +(T,T)y, = 0
(kiN1 — kaNa, o —p), + 1 0
ki(Ni, a—p)y —ka (N2, a—p)p+1 = 0
f -9
fki+gks+1 = 0.
That is, (k1, k2) is on the line
fx+gy+1=0. (4.5)
Moreover, distance of line [ from the origin is
ﬁ:%:d, fP=¢*>0,7r>0
<: Conversly, suppose that
fr+gy+1=0.
where f and g are constant. Let
pa = fN1 + gNa,
then
—p = —a + fN; +gN,
= T — fkT — gk,T
= (1+ fk1+gk2) T
0
so p is constant. Moreover, let
1B8II7 = (o~ poa—p)y.
then
%(a—p, a—p);, =T, a—p), =0.
Thus (o — p, @ — p); = r? is constant and spacelike curve with a spacelike principal
normal lies on a Lorentzian sphere of radius r and center p. O

Definition 4.3. If a rigid body moves along a spacelike curve o with a spacelike
principal normal(which we suppose is unit speed), then the motion of body con-
sists of translation along spacelike curve a with a spacelike principal normal and
rotation about spacelike curve a with a spacelike principal normal. The rotation is
determined by an angular velocity vector w which satifies

T =wALT, N, =wAr N1, Ny =w Ay No.
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The vector w is called the Darboux vector.

Theorem 4.4. Darboux matriz have form:

0 —ki —ko
W = k1 0 0
—ky O 0

Proof. First of all let us find Darboux vector w. Then we write
w =aTl + bNy + cNy (4.7)

and take cross products with T, N7 and Ns to determine a,b and c. After some
calculations we can find as a = 0, b = —ks and ¢ = k;. Thus we can write Darboux
vector as follows,

w= —kaN1 4+ k1 No = (0, ko, k1) (1, Ny, No3-

Moreover, since w A, X = W.X for each X in E}, we get

0 -k —ko
W = k1 0 0
—ky O 0

O

Theorem 4.5. If T is tangent vector of a space curve o with a spacelike principal
normal, then the following the formulas hold:

(@) T ALT” = (kok) — Kyk)) T — k%w; ki #0
(b)  det (T, T, T”) = kb1 — kok,

det (T,T’ ,T”) ,
(c) BT = 0 or 7

[ A’

where w is the Darboux vector of spacelike curve o with a spacelike principal normal.
Proof. (a) From T = ki Ny — ky Ny we get
T" = kyNi—kyNy+ ki(—k1T) — ko(—koT)
= — (K = k) T+ k Ni — kyNy
= —k’T + ki Ny — kyNy.
Moreover one can easly find
<TH, T>L _ —/{2
(T",N1), = Ky,
(T",N3);, = kb
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From definition of Darboux vector w, we write 7 = w Az T. So we get

T'ALT" = =T A (wApT)
= (I".T)pw—(T"w), T
—K%w — (T, —koNy + k1 No), T
= —Kkw+ko (T",N1), T — ki (T",No), T
= (kok} — k1kD) T — KPw
= (kok} — khk)) T — KPw.
(b) From the last equation we get
(T, T'ALT"), = (T, — k*w+ (koki — k1k) T),
det(T, T, T") = &*(T,w), + (kok| — k1) (T, T),

= —k*(T, — kaNy + k1 No) + (koky — kikb) (+1)
= kok| — k1k).

(¢) From the equality T" = w Ay T, we can write —w = T Ay T and || T Ag T’Hi =

|k? — k3| . From the equality (3.4) we immediately see that tanh§ = % or

k
0= argtanh(ﬁ). (4.8)

Differentiating from the equation (4.8), we find

g (B) kb — kokf
1 ()2 ki — k3

Thus we have
' idet(T,T’,T”)
= 2
1T AL T'|7,
or

0 ==+7.

OZET : Bu cahsmada, Bishop [1] tarafindan yapilan galigmayi,
spacelike asli normalli spacelike egriler i¢in Minkowski 3-uzayina
genellestirdik. Ilaveten, spacelike egriler icin Bishop Darboux vek-
toril (matrisi) bulundu. Ayrica, spacelike egrinin T teget vek-
tortintin tiirevi kullanilarak, (k,7) ve (k1, k2) egrilik fonksiyonlar:
arasindaki iligkiler bulundu.
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