Commun.Fac.Sci.Univ.Ank.Series A1 Volume 58, Number 1, Pages 1-8 (2009) ISSN 1303-5991

STRONG FORM OF PRE-1-CONTINUOUS FUNCTIONS

J. BHUVANESWARI, N. RAJESH, A. KESKIN

ABSTRACT. In this paper, semiopen and pre-*I*-open sets used to define and investigate a new class of functions called strongly pre-*I*-continuous. Relationships between the new class and other classes of functions are established

1. INTRODUCTION

In 1990, Jankovic and Hamlett [14] have defined the concept of I-open set via local function which was given by Vaidyanathaswamy [25]. The latter concept was also established utilizing the concept of an ideal whose topic in general topological spaces was treated in the classical text by Kuratowski [16]. In 1992, Abd El-Monsef et al [1] studied a number of properties of I-open sets as well as I-closed sets and Icontinuous functions and investigated several of their properties. In 1999, Dontchev [10] has introduced the notion of pre-I-open sets which are weaker than that of Iopen sets. In this paper, a new class of functions called strongly pre-I-continuous functions in ideal topological spaces is introduced and some characterizations and several basic properties are obtained.

2. Preliminaries

Throughtuout this paper, for a subset A of a topological space (X, τ) , the closure of A and interior of A are denoted by (A) and (A), respectively. An ideal topological space is a topological space (X, τ) with an ideal I on X, and is denoted by (X, τ, I) , where the ideal is defined as a nonempty collection of subsets of X satisfying the following two conditions. (i) If $A \in I$ and $B \subset A$, then $B \in I$; (ii) If $A \in I$ and $B \in I$, then $A \cup B \in I$. For a subset $A \subset X$, $A^*(I) = \{x \in X \mid U \cap A \notin I \text{ for each}$ neighbourhood U of x $\}$ is called the local function of A with respect to I and τ [14]. When there is no chance of confusion, $A^*(I)$ is denoted by A^* . Note that often X^* is a proper subset of X. For every ideal topological space (X, τ, I) , there exists topology $\tau^*(I)$, finer than τ , generated by the base $\beta(I, \tau) = \{U \setminus I \mid U \in \tau \text{ and } T \}$

©2009 Ankara University

1

Received by the editors June 25, 2008, Accepted: Jan. 13, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 54C10.

 $Key\ words\ and\ phrases.$ Topological Space, ideal topological space, semiopen sets, pre-I -open sets.

 $I \in I$ }, but in general $\beta(I, \tau)$ is not always a topology [14]. Observe additionally that $*(A) = A^* \cup A$ defines a Kuratowski closure operator for $\tau^*(I)$. A subset S of an ideal topological space (X, τ, I) is said to be pre-I-open [10] (resp. semi I-open [12], *-dense-in-itself [13]) if $S \subset (*(S))$ (resp. $S \subset *((S)), S \subset S^*$). The complement of a pre-I-open set is called pre-I-closed [10]. The intersection of all pre-I-closed sets containing S is called the pre-I-closure [26] of S and is denoted by $P_I(S)$. A set S is pre-I-closed if and only if $P_I(S) = S$. The pre-I-interior [26] of S is defined by the union of all pre-I-open sets of (X, τ, I) contained in S and is denoted by $P_I(S)$. The family of all pre-I-open (resp. pre-I-closed, semi-I-open) sets of (X, τ, I) is denoted by PIO(X) [26] (resp. PIC(X), SIO(X)). The family of all pre-I-open (resp. pre-I-closed) sets of (X, τ, I) containing a point $x \in X$ is denoted by PIO(X, x) (resp. PIC(X, x)).

Definition 2.1. A subset A of a topological space (X, τ) is said to be:

- (i) semiopen if $A \subseteq ((A))$ [17].
- (i) preopen if $A \subseteq ((A))$ [21].

The complement of semiopen set is called semiclosed. The intersection of all semiclosed sets of (X, τ) containing $A \subset X$ is called semiclosure [7] of A and is denoted by s(A). The family of all semiopen subsets of (X, τ) is denoted by SO(X).

Definition 2.2. A function $f : (X, \tau, I) \to (Y, \sigma)$ is called pre-*I*-continuous [10] (resp. *I*-irresolute [27], irresolute [7], semi continuous [17]) if for every open (resp. semiopen, semiopen, open), $f^{-1}(V) \in PIO(X)$ (resp. $f^{-1}(V) \in SIO(X), f^{-1}(V) \in SO(X)$).

Definition 2.3. An ideal space (X, τ, I) is said to be **-space [15] if A in a *dense-in-itself for every $A \subseteq X$.

3. Strongly Pre-I-continuous functions

Definition 3.1. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be strongly pre-*I*-continuous if $f^{-1}(V)$ is pre-*I*-open in X for every semiopen set V of Y.

It is clear that every strongly pre-*I*-continuous function is pre-*I*-continuous. But the converse is not always true as shown in the following example.

Example 3.2. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, b\}, X\}, \sigma = \{\emptyset, \{a\}, X\}$ and $I = \{\emptyset, \{a\}\}$. Then the identity function $f : (X, \tau, I) \to (Y, \sigma)$ is pre-*I*-continuous but not strongly pre-*I*-continuous.

Definition 3.3. [5] A function $f : (X, \tau) \to (Y, \sigma)$ is said to be strongly precontinuous if $f^{-1}(V) \in PO(X)$ for every $V \in SO(Y)$.

Theorem 3.4. Let (X, τ, I) be **-space. Then the function $f : (X, \tau, I) \to (Y, \sigma)$ is strongly pre-*I*-continuous if and only if it is strongly precontinuous.

Proof. It follows from Theorem 6(a) of [15].

Recall that a topological space (X, τ) is said to be submaximal if every dense subset of X is open.

Definition 3.5. [3] A function $f : (X, \tau) \to (Y, \sigma)$ is said to be strongly semicontinuous if $f^{-1}(V)$ is open in (X, τ) for every semiopen set V of Y.

Theorem 3.6. Let $f: (X, \tau, I) \to (Y, \sigma)$ be a function. Then

- (i) If $I = \{\emptyset\}$, then f is strongly pre-I-continuous if and only if it is strongly precontinuous;
- (ii) If I = P(X), then f is strongly pre-I-continuous if and only if it is strongly semicontinuous;
- (iii) If $I = \mathcal{N}$ (= nowhere dense subsets of (X, τ)), then f is strongly pre-Icontinuous if and only if it is strongly precontinuous;
- (iv) If (X, τ) is submaximal and I is any ideal on X, then f is strongly pre-Icontinuous if and only if it is strongly semicontinuous.

Proof. Follows from Proposition 2.7 and Corollory 2.13 of [9].

Theorem 3.7. For a function $f: X \to Y$, the following are equivalent:

- (i) f is strongly pre-I-continuous;
- (ii) For each point $x \in X$ and each semiopen set V of Y containing f(x), there exists a pre-I-open set V of X containing x and $f(V) \subseteq V$;
- (iii) $f^{-1}(V) \subseteq (*(f^{-1}(V)))$ for every semiopen set V of Y;
- (iv) $f^{-1}(F)$ is pre-*I*-closed in X, for every semiclosed set F of Y;
- (v) $(*(f^{-1}(A))) \subseteq f^{-1}(s(A))$ for every subset A of Y;
- (vi) $f((*(B))) \subseteq s(f(B))$ for every subset B of X.

Proof. (i) \Rightarrow (ii): Let $x \in X$ and V be any semiopen set of Y containing f(x). Then $x \in f^{-1}(f(x)) \subseteq f^{-1}(V)$. Set $V = f^{-1}(V)$, then by (i), V is a pre-I-open subset of X containing x and $f(V) = f(f^{-1}(V)) \subseteq V$.

(ii) \Rightarrow (iii): Let U be any semiopen set of Y. Let x be any point in X such that $f(x) \in V$. Then $x \in f^{-1}(V)$. By (ii), there exists a pre-*I*-open set V of X such that $x \in V$ and $f(V) \subseteq V$. We obtain $x \in V \subseteq f^{-1}(f(V)) \subseteq f^{-1}(V)$. This implies that $x \in V \subseteq f^{-1}(V)$. Thus, we have $x \in V \subseteq (^*(V)) \subseteq (^*(f^{-1}(V)))$ and hence $f^{-1}(V) \subseteq (^*(f^{-1}(V)))$.

(iii) \Rightarrow (iv): Let F be any semiclosed subset of Y. Then Y-F is semiopen in Y. By (iii), we obtain $f^{-1}(X$ - $F) \subseteq (*(f^{-1}(X$ -F))). Then Y- $f^{-1}(F) \subseteq (*(Y$ - $f^{-1}(F))) = Y$ - $(*(f^{-1}(F)))$ and hence $f^{-1}(F)$ is pre-I-closed in X.

 $(iv) \Rightarrow (v)$: Let A be any subset of Y. Since s(A) is a semiclosed subset of Y, then $f^{-1}(s(A))$ is pre-I-closed in X and hence $(*(f^{-1}(s(A)))) \subseteq f^{-1}(s(A))$. Therefore, we obtain $(*(f^{-1}(A))) \subseteq f^{-1}(s(A))$.

 $(v) \Rightarrow (vi)$: Let B be any subset of X. By (v), we have $(*(B)) \subseteq (*(f^{-1}(f(B)))) \subseteq f^{-1}(s(f(B)))$ and hence $f((*(B))) \subseteq s(f(B))$.

 $(vi) \Rightarrow (i)$: Let U be any semiopen subset of Y. Since $f^{-1}(Y-U) =$

 $\begin{array}{l} Y \cdot f^{-1}(U) \text{ is a subset of } X \text{ and by (vi), we obtain } f((*(f^{-1}(X \cdot V)))) \subseteq s(f(f^{-1}(X \cdot U))) \subseteq s(X \cdot U) = Y \cdot s(U) = Y \cdot U \text{ and hence } X \cdot (*(f^{-1}(U))) = (*(X \cdot f^{-1}(U))) = (*(f^{-1}(Y \cdot U))) \subseteq f^{-1}(f((*(f^{-1}(U))))) \subseteq f^{-1}(X \cdot U) = Y \cdot f^{-1}(U). \text{ Therefore, we have } f^{-1}(U) \subseteq (*(f^{-1}(U))) \text{ and hence } f^{-1}(U) \text{ is pre-}I \cdot \text{open in } X. \text{ Thus, } f \text{ is strongly pre-}I \cdot \text{continuous.} \end{array}$

Lemma 3.8. [23] Let $(X_i, \tau_i)_{i \in \wedge}$ be any family of topological spaces. Let $X = \prod_{i \in \wedge} X_i$, let A_{i_n} be any subset of X_{α_n} , $\alpha_n \in \wedge$, for each n = 1 to m. Let $A = \prod_{n=1}^{m} A_{i_n} \times \prod_{\beta \neq i_n} X_{\beta}$ be any subset of X. Then λ is semiopen set in X if and only if A_{i_n} is semiopen set in X_{i_n} , for each n = 1 to m.

Theorem 3.9. A function $f : (X, \tau, I) \to (Y, \sigma)$ is strongly pre-*I*-continuous, if the graph function $g : (X, \tau, I) \to X \times Y$, defined by g(x) = (x, f(x)) for each $x \in X$, strongly pre-*I*-continuous.

Proof. Let $x \in X$ and $V \in SO(Y)$ containing f(x). Then $X \times V$ is a semi-open set of $X \times Y$ by Lemma 3.8 and contains g(x). Since g is strongly pre-I-continuous, there exists a pre-I-open set U of X containing x such that $g(U) \subset X \times V$. This shows that $f(U) \subset V$. By Theorem 3.7, f is strongly pre-I-continuous.

Theorem 3.10. If a function $f : X \to \Pi Y_i$ is strongly pre-*I*-continuous, then $P_i \circ f : X \to Y_i$ is strongly pre-*I*-continuous, where P_i is the projection of ΠY_i onto Y_i .

Proof. Let A_i be an arbitrary semiopen set of Y_i . Since P_i is continuous and open, it is irresolute [[8], Theorem 1.2] and hence $P_i^{-1}(V_i)$ is a semiopen set in ΠY_i . Since f is strongly pre-*I*-continuous, then $f^{-1}(P_i^{-1}(V_i)) = (P_i \circ f)^{-1}(V_i)$ is pre-*I*-open in X. Hence, $P_i \circ f$ is strongly pre-*I*-continuous for each $i \in \Lambda$. \Box

Recall that a subset A of X is said to be *-perfect if $A = A^*[13]$. A subset of X is said to be I-locally closed if it is the intersection of an open subset and a *-perfect subset of X [9]. An ideal space (X, τ, I) is I-submaximal if every subset of X is I-locally closed [4].

Proposition 1. If $f : (X, \tau, I) \to (Y, \sigma)$ is a strongly pre-*I*-continuous function and (X, τ, I) is an *I*-submaximal space, then *f* is strongly semi-continuous.

Proof. Follows from Lemma 4.4 of [4].

Definition 3.11. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be strongly irresolute if $f^{-1}(V)$ is semi-*I*-open in (X, τ, I) for every semiopen set *V* of *Y*.

Definition 3.12. An ideal space (X, τ, I) is said to be *P*-*I*-disconnected [4] if the $\emptyset \neq A^* \in \tau$ for each $A \in \tau$.

Proposition 2. If $f : (X, \tau, I) \to (Y, \sigma)$ is a strongly irresolute function and (X, τ, I) is a P-I-disconnected space, then f is strongly pre-I-continuous.

Proof. Follows from Proposition 4.2 of [4].

Theorem 3.13. If $f : (X, \tau, I) \to (Y, \sigma)$ is strongly pre-*I*-continuous and *A* is a semiopen subset of (X, τ) , then the restriction $f_{|A} : (A, \tau_{|A}, I_{|A}) \to (Y, \sigma)$ is strongly pre-continuous.

Proof. Let V be any semiopen set of (Y, σ) . Since f is strongly pre-*I*-continuous, we have $f^{-1}(V)$ is pre-*I*-open in (X, τ, I) . Since A is semiopen in (X, τ) , by Proposition 2.10(V) of [9], $(f_{|A})^{-1}(V) = A \cap f^{-1}(V)$ is preopen in A and hence $f_{|A}$ is strongly precontinuous.

Recall that a function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be pre-*I*-irresolute if $f^{-1}(V) \in PIO(X)$ for every preopen set V of Y [10].

Definition 3.14. An ideal space (X, τ, I) is said to be pre-*I*-connected if X is not the union of two disjoint non-empty pre-*I*-open sets of X.

Definition 3.15. [24] A topological space (X, τ) is said to be semiconnected if X cannot be expressed as the union of two nonempty disjoint semiopen sets of X.

Theorem 3.16. For the functions $f : (X, \tau, I) \to (Y, \sigma, J)$ and $g : (Y, \sigma, J) \to (Z, \eta, K)$, the following properties hold:

- (i) If f is pre-I-continuous and g is strongly semicontinuous, then $g \circ f$ is strongly pre-I-continuous;
- (ii) If f is strongly pre-I-continuous and g is semicontinuous, then $g \circ f$ is pre-I-continuous;
- (iii) If f is strongly pre-I-continuous and g is irresolute, then g f is strongly pre-I-continuous;
- (iv) If f is pre-I-irresolute and g is strongly pre-I-continuous, then $g \circ f$ is strongly pre-I-continuous.

Proof. Follows from their respective definitions.

Theorem 3.17. If $f : (X, \tau, I) \to (Y, \sigma)$ is strongly pre-*I*-continuous surjective function and (X, τ, I) is pre-*I*-connected, then Y is semi-connected.

Proof. Suppose Y is not semi-connected. Then there exist non-empty disjoint semiopen subsets U and V of Y such that $Y = U \cup V$. Since f is strongly pre-*I*continuous, we have $f^{-1}(U)$ and $f^{-1}(V)$ are non-empty disjoint pre-*I*-open sets in X. Moreover, $f^{-1}(U) \cup f^{-1}(V) = X$. This shows that X is not pre-*I*-connected. This is a contradiction and hence Y is semi-connected.

Lemma 3.18. [22] For any function $f : (X, \tau, I) \to (Y, \sigma), f(I)$ is an ideal on Y.

Now, we recall the following definitions.

Definition 3.19. An ideal space (X, τ, I) is said to be pre-*I*-compact (resp. pre-*I*-Lindelöf, *SI*-compact [2], *SI*-Lindelof [2]) if for every pre-*I*-open (resp. pre-*I*open, semiopen, semiopen) cover $\{W_{\alpha} : \alpha \in \Delta\}$ on X, there exists a finite (resp. countable) subset Δ_0 of Δ such that $X - \bigcup \{W_{\alpha} : \alpha \in \Delta_0\} \in I$. **Theorem 3.20.** If $f : (X, \tau, I) \to (Y, \sigma, J)$ is strongly pre *I*-continuous surjection and (X, τ, I) is pre *I*-compact, then Y is S-f(*I*)-compact.

Proof. Let $\{V_{\alpha} : \alpha \in \nabla\}$ be a semiopen cover of Y, then $\{f^{-1}(V_{\alpha}) : \alpha \in \nabla\}$ is a pre-*I*-open cover of X from strongly pre-*I*-continuity. By hypothesis, there exists a finite subcollection, $\{f^{-1}(V_{\alpha_i}): i = 1, 2, ..., n\}$ such that $X - \bigcup\{f^{-1}(V_{\alpha_i}): i = 1, 2, ..., n\} \in I$, implies, $Y - \bigcup\{V_{\alpha_i}: i = 1, 2, ..., N\} \in f(I)$. Therefore, (Y, σ) is S - f(I)-compact.

Theorem 3.21. Let $f : (X, \tau, I) \to (Y, \sigma)$ be a strongly pre-*I*-continuous surjection. If (X, τ, I) is pre-*I*-Lindelöf, then (Y, σ) is semi-f(I)-Lindelöf.

Proof. Similar to the proof of Theorem 3.20.

Definition 3.22. An ideal space (X, τ, I) is said to be:

- (i) pre-*I*-*T*₁ if for each pair of distinct points x and y of X, there exist pre-*I*-open sets U and V of (X, τ, I) such that $x \in U$ and $y \notin U$, and $y \in V$ and $x \notin V$.
- (ii) pre-*I*- T_2 if for each pair of distinct points x and y in X, there exists disjoint pre-*I*-open sets U and V in X such that $x \in U$ and $y \in V$.
- (iii) semi- T_1 if for each pair of distinct points x and y of X, there exist semiopen sets U and V of (X, τ, I) such that $x \in U$ and $y \notin U$, and $y \in V$ and $x \notin V$ [20].
- (iv) semi- T_2 if for each pair of distinct points x and y in X, there exist disjoint semiopen sets U and V in X such that $x \in U$ and $y \in V$ [20].

Theorem 3.23. If $f : (X, \tau, I) \to (Y, \sigma)$ is a strongly pre-*I*-continuous injection and (Y, σ) is semi- T_1 , then (X, τ, I) is pre-*I*- T_1 .

Proof. Suppose that (Y, σ) is semi- T_1 . For any distinct points x and y in X, there exist $V, W \in SO(Y)$ such that $f(x) \in V$, $f(y) \notin V$, $f(x) \notin W$ and $f(y) \in W$. Since f is strongly pre-I-continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are pre-I-open subsets of (X, τ, I) such that $x \in f^{-1}(V), y \notin f^{-1}(V), x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. This shows that (X, τ, I) is pre-I- T_1 .

Theorem 3.24. If $f : (X, \tau, I) \to (Y, \sigma)$ is a strongly pre-*I*-continuous injection and Y is semi-T₂, then (X, τ, I) is pre-*I*-T₂.

Proof. For any pair of distinct points x and y in X, there exist disjoint semiopen sets U and V in Y such that $f(x) \in U$ and $f(y) \in V$. Since f is strongly pre-I-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are pre-I-open sets in (X, τ, I) containing x and y, respectively. Therefore, $f^{-1}(U) \cap f^{-1}(V) = \emptyset$ because $U \cap V = \emptyset$. This shows that the space (X, τ, I) is pre-I- T_2 .

Theorem 3.25. If $f : (X, \tau, I) \to (Y, \sigma)$ is strongly semi continuous function and $g : (X, \tau, I) \to (Y, \sigma)$ is strongly pre-*I*-continuous function and (Y, σ) is semi T_2 , then the set $E = \{x \in X : f(x) = g(x)\}$ is pre-*I*-closed in (X, τ, I) .

Proof. If $x \in E^c$, then it follows that $f(x) \neq g(x)$. Since (Y, σ) is semi- T_2 , there exist $V, W \in SO(Y)$ such that $f(x) \in V$ and $g(x) \in W$ and $V \cap W = \emptyset$. Since f is strongly semi continuous and g is strongly pre *I*-continuous, $f^{-1}(V)$ is open and $g^{-1}(W)$ is pre-*I*-open in X with $x \in f^{-1}(V)$ and $x \in g^{-1}(W)$. Put $A_x = f^{-1}(V) \cap g^{-1}(W)$. By Theorem 2.1 of [9](ii), A_x is pre-*I*-open. If a point $z \in A_x$, then $f(z) \in V$ and $g(z) \in W$. Hence $f(z) \neq g(z)$. This shows that $A_x \subset E^c$ and hence E is pre-*I*-closed in (X, τ, I) .

Definition 3.26. A space (X, τ) is said to be:

- (i) s-regular if each pair of a point and a closed set not containing the point can be separated by disjoint semiopen sets [19].
- (iii) semi-normal if every pair of disjoint closed sets of X can be separated by semiopen sets [18].

Definition 3.27. An ideal space (X, τ, I) is said to be:

- (i) pre-*I*-regular if each pair of a point and a closed set not containing the point can be separated by disjoint pre-*I*-open sets.
- (ii) pre-*I*-normal if every pair of disjoint closed sets of X can be separated by pre-*I*-open sets.

Theorem 3.28. Let $f : (X, \tau, I) \to (Y, \sigma)$ be a strongly pre-*I*-continuous injection. Then the following properties hold:

- (a) If (Y, σ) is semi-T₂, then (X, τ, I) is pre-I-T₂,
- (b) If (Y, σ) is semi regular and f is open or closed, then (X, τ, I) is pre-I-regular,
- (c) If (Y, σ) is semi normal and f is closed, then (X, τ, I) is pre-I-normal.

Proof. Follows from their respective definitions.

ÖZET: Bu çalışmada; yarı açık ve ön-*I*-açık kümeler, kuvvetli ön-*I*-sürekli isimli fonksiyonların yeni bir sınıfını tanımlamak ve incelemek için kulllanıldılar. Fonksiyonların bu yeni sınıfı ile diğer sınıfları arasındaki ilişkiler elde edildi.

References

- M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On *I*-open sets and *I*-continuous functions, *Kyungpook Math. J.*, 32(1992), 21-30.
- [2] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, S-compactness via ideals, Tamkang J. Math., 24(4)(1993), 431-443.
- [3] M. E. Abd El-Monsef, R. A. Mahmoud and A. A. Nasef, Strongly semi-continuous functions, Arab J. Phys. Math., 11(1990).
- [4] A. Acikgoz, S. Yuksel and T. Noiri, α-I-preirresolute functions and β-I-preirresolute functions, Bull. Malays. Math. Sci. Soc., (2)(28)(1)(2005), 1-8.
- [5] Y. Beceren and T. Noiri, Strongly precontinuous functions, Acta Math. Hungar., 108(1-2)(2005), 47-53.
- [6] D. A. Carnahan, Some properties related to compactness in topological spaces, Ph.D. Thesis, Univ. of Arkansas, 1973.

- [7] S. G. Crossley and S. K. Hildrebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.
- [8] S. G. Crossley and S. K. Hildreband, Semi-topological spaces, Fund. Math., 74(3)(1972), 233-254.
- [9] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, preprint.
- [10] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2(1996).
- [11] R. L. Ellis, A non-archimedean analogue of the Tietz Urysohn extension theorem, Nederl. Akad. Wetensch. Proc. Ser. A., 70(1967), 332-333.
- [12] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 341-349.
- [13] E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [14] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, American Math. Monthly, 97(1990), 295-310.
- [15] A. Keskin and S. Yuksel, On **-spaces, JFS, 29(2006), 12-24.
- [16] K. Kuratowski, Topology, Academic Press, New York, 1966.
- [17] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [18] S. N. Maheshwari and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie N. S., 70(1978), 27.
- [19] S. N. Maheshwari and R. Prasad, On s-regular spaces, Glasnik Mat., 30(1975), 347-350.
- [20] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89(1975), 395-402.
- [21] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [22] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Thesis, University of California, USA (1967).
- [23] T. Noiri, Remarks on semi-open mappings, Bull. Calcutta Math. Soc., 65(1973), 197-201.
- [24] V. Pipitone and G. Russo, Spazi semiconnessi e spazi semiaperti, Rend. Circ. Mat. Palermo, (2)24(1975), 273-385.
- [25] R. Vaidyanatahswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [26] S. Yuksel, A. Acikgoz and E. Gursel, A new type of continuous functions in ideal topological space, to appear in J. Indian Acad. Math.
- [27] S. Yuksel, T. Noiri and A. Acikgoz, On strongly α-I-continuous functions, Far. East J. Math., 9(1)(2003), 1-8.

Current address: J. Bhuvaneswari: Department of Computer Applications Rajalakshmi Engineering College Thandalam, Chennai-602 105 TamilNadu, INDIA,, N. Rajesh: Department of Mathematics Kongu Engineering College Perundurai, Erode-638 052 Tamilnadu, INDIA,, A. Keskin: Selcuk University Faculty of Sciences and Arts, Department of Mathematics 42075, Campus Konya, TURKEY

E-mail address: sai_jbhuvana@yahoo.co.in, nrajesh_topology@yahoo.co.in, akeskin@selcuk.edu.tr