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Vo,— SLANT HELICES IN MINKOWSKI n-SPACE E7

ISMAIL GOK, CETIN CAMCI AND H. HILMI HACISALIHOGLU

ABSTRACT. In this paper we give a definition of harmonic curvature functions
in terms of V,, and define a new kind of slant helix which we call V,, —slant helix
in n—dimensional Minkowski space ET by using the new harmonic curvature
functions . Also we define a vector field Dy, which we call Darboux vector field
of V,,—slant helix in n—dimensional Minkowski space ET and we give some
characterizations about slant helices.

1. INTRODUCTION

Hayden gave more restrictive definition for generalized helices in [6]: If the fixed
direction makes a constant angle with all the vectors of the Frenet frame then the
curve is a generalized helix in £™. This definition only works in the odd dimensional
case. Moreover, in the same reference, it is proved that the definition is equivalent
to the fact that the ratios Z::; , Z::i s ee %’ being the curvatures, are constant. This
statement is related with the Lancret Theorem for generalized helices in E® (the
ratio of torsion to curvature is constant).

Later, Izumiya and Takeuchi defined a new kind of helix i.e.,slant helix and gave
a characterization of slant helices in Euclidean 3—space E* [8]. And then Kula and
Yayli investigated spherical images; the tangent indicatrix and binormal indicatrix
of a slant helix [10]. Morever, they gave a characterization for slant helices in E3 :
“For involute of a curve =, v is a slant helix if and only if its involute is a general
helix”. If a curve o in E™, for which all the ratios z::; , :::j s %‘ are constant was
called cer curves[11]. In the same reference, it is shown that in the even dimensional
case, a curve has constant curvature ratios if and only if its tangent indicatrix is a
geodesic in the flat torus. In 2008, Onder et al. [12] defined a new kind of slant
helix in Euclidean 4—space E* which they called By—slant helix and they gave
some characterizations of this slant helix in Euclidean 4—space E* . Ozdamar and
Hacisalihoglu defined harmonic curvature functions [13]. They generalized inclined
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curves in E? to E". Gok et al. gave the definition a vector field D in Euclidean
n—space E™, it is a new characterization for V,,—slant helix [4].

In this study, we define a new kind of slant helix in Minkowski n—space E7,
where we use the constant angle in between a fixed direction X and the nth Frenet
vector field V,, of the curve, this means that

9V, X) = Apen—1 = constant , A, # 0.

Since nth Frenet vector field V,, of the curve makes a constant angle with a fixed
direction X, we call it V;, —slant helix in Minkowski n—space ET. In this paper, at
first we give a generalization of Hacisalihoglu’s harmonic curvature functions [13].

In this case we define a new characterization in E} such as:
n—2

a:] CR— ET is a V,—slant helix, then Z En,(Hg)H;kz = constant
i=1

where H} is 4*" harmonic curvature function in terms of V,.

2. PRELIMINARIES

Let E} be the n —dimensional pseudo-Euclidean space with index 1 endowed
with the indefinite inner product given by

n
glx,y) =~z + Y zii,

i=2
where © = (21,22, - ,2n), ¥y = (Y1,Y2, "+ ,Yn) is the usual coordinate system.
Then v is said to be spacelike, timelike or null according to g(v,v) > 0, g(v,v) < 0,
or g(v,v) = 0 and v # 0, respectively. Notice that the vector v = 0 is spacelike.
The category into which a given tangent vector falls is called its causal character.
These definitions can be generalized for curves as follows. A curve « in E7 is said
to be spacelike if all of its velocity vectors o’are spacelike, similarly for timelike and
null [1].

Let us recall from [15, 7] the definition of the Frenet frame and curvatures.

Let o : I C R — EJ be non-null curve in E7. A non-null curve «(s) is said to
be a unit speed curve if g (a/(s),a’(s)) = ep, (o being +1 or —1 according to « is
spacelike or timelike respectively). Let {V7, V4, ..., V;,} be the moving Frenet frame
along the unit speed curve «, where V; (i = 1,2,...,n) denote ith Frenet vector
fields and k; be i*" curvature functions of the curve (i = 1,2,...,n — 1). Then the
Frenet formulas are given as

VWi = ks, (2.1)
VvVi = —eiegiikiaVici +EVip, 1<i<n
VVl Vn = _gn—QEn—lkn—IVn—l

where g (V;,V;) = €;-1 , and V is the Levi-Civita connection of E} [7].
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3. V,—SLANT HELIX IN ET

In this section we define V,, —slant helices in Minkowski n-space E]" and give some
characterizations by using the new harmonic curvatures H; for V,,—slant helix.

Definition 3.1. Let o : I C R — E7 be non-null curve with nonzero curvatures
ki(t = 1,2,...,n) in E} and {V1,Va,...,V,} denotes the Frenet frame of the curve
a. We call a as a Vj,—slant helix in E7* if n*" unit vector field V;, makes a constant
angle with a fixed direction X, that is,

9V, X) = Apen—1 = constant , A\, #0 .
Therefore, X is in the subspace Sp {V1, Vs, ..., V,—1, Vi, } and can be written as

X=>aVi , gX,X) =1,
=1

Definition 3.2. Let o : I C R — EJ be a unit speed non-null curve with non-
zero curvatures k;(1 = 1,2,...,n) in ET. Harmonic curvature functions in terms of
V,, for a are defined by

H':ICR—R

H = 0, (3.1)
kn—l
HY = n—3n—27__
! c 3 an72
Ene (i42)En— (i )
Hf = (ko iHj 5~ Vv, H,) w’ 2<i<n—2.
n—(i+1)

Theorem 3.3. Let o : I C R — ET be a non-null curve in ET' arc-lengthed
parameter and X a unit constant vector field and {V1,Va,...,V,} denote the Frenet
frame of the curve o, { H{,H3, ..., H’ _,} denote the harmonic curvature functions
of the curve a. If a: I C R — ET' is a V,—slant heliz then we have

IVn—(it1), X)=H] g(Vo, X), 1<i<n—2, (3.2)
where X is azis of the V,,—slant helix.

Proof. We will use the induction method.
Leti=1:
Since X is the axis of the V,,—slant helix «, we get

X=MV+XVo+..+\V,.
From the definition of V,,—slant helix we have
9V, X) = Anen—1. (3.3)
A differentiation in Eq.(3.3) and the Frenet formulas give us that
g(Vp—1,X) =0. (3.4)
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Again, differentiation in Eq.(3.4) and the Frenet formulas give

g(vVlvnflaX) = Oa
—en—36n—2kn_2g(Va—2,X) + kn_19(Vsr, X) = 0,
Ky —
g(Vn—2,X) = En—3En—27— :g(Vn,X)

g(Vn—27X) = Hik g(Vn7X),

respectively. Hence it is shown that the Eq.(3.2) is true for ¢ = 1.
We now assume the Eq.(3.2) is true for the first ¢ — 1. Then we have

9(Vni, X) = Hiy g(Var, X). (3.5)
A differentiation in Eq.(3.5) and the Frenet formulas give us that
—en—i—26n—i—1kn—i—1 9(Va—i—1, X) +kni g(Va—iv1, X) =V, H 4 g(V;,, X).
Since we have the induction hypothesis, g(Vio—iy1, X) = H 59(V,, X), we get
« « En—(i+2)En—(i+1
(kn—iH; 5 — Vv, H] ) % 9(Vi, X) = 9(Vo— i1y, X),
n—(i+1)
which gives
g(V—n—(i-ﬁ-l)v X) = Hz* g(anX)
O
Theorem 3.4. Let o : I C R — ET be a non-null curve in ET arc-lengthed para-
meter and X a unit constant vector field and {Vy,Va, ...,V } and {H{, H;, ..., H;_2}

denote the Frenet frame and the harmonic curvature functions of the curve a, re-
spectively. If o : I C R — EY is a V,,—slant heliz then we have

n—2
X =gV, X) (Z H Vi (i41)En—(i+2) T €n1Vn> :

i=1

Proof. If the axis of V,,—slant helix o in E7 is X, then we can write

X = zn:)\iV,-.
i=1

By using the Theorem(3.3) we get

A= g0 Hy 59(Va, X)),

A = &1 Hy 39(Va, X),
)\n—2 - 6n—3Hik g(Vna X)a
An-1 = 0,

)\n = E&n-1 g(V’rn X)
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Thus we can easily obtain that

n—2

X =g(Va, X) (Z H: 'V, _(i41)En—(i+2) + €n1Vn> .
i=1

U

Theorem 3.5. Let o : I CR — E7 be a non-null curve in ET' arc-lengthed para-
meter, X be a unit constant vector field and {V1,Va, ..., Vo }, {Hl*, H;, ..., Hj;fg} de-

note the Frenet frame and the harmonic curvature functions of the curve a,respectively.
n—2

Ifa: I CR — ET is a V,,—slant heliz, then Z sn,(i+2)H;*2 = constant.
i=1

Proof. Let a be a V,,—slant helix with the arc length parameter s . Since X is a
unit vector field, by using Theorem(3.4) we obtain

n—2
(9(Va, X))? <6n—1 + Zgn*(jﬁL?)H: ) =1 (3.6)

i=1

Thus we get
n—2 2
2 1—c¢ ,1>\
>ty = LN
i=1 n
for some non-zero constant \,, which completes the proof. O

Definition 3.6. If X is the axis of V;,—slant helix o in E7, then from Theorem(3.4)
we can write

n—2
X =g(Vp, X) <Z Hi Vi (i41)8n—(iv2) T+ €n—1Vn>
i=1
where g(V,,, X) = \,en—1 = constant. And then we can define a new vector field
as
Dy = EoHthQVYl + €1H:;73Vv2 + ...+ Enngan72 +en-1Vp
which is an axis of the V,,—slant helix a.

Theorem 3.7. Let o : I CR — ET be a non-null curve in ET' arc-lengthed para-
meter, X be a unit constant vector field and {V1,Va,...,V,,} and {Hi*7 H;, ... H:L—2}
denote the Frenet frame and the harmonic curvature functions for V,-slant helix o,
respectively. Then « is a V,—slant helix if and only if Dy is a constant vector field.

Proof. Suppose that « is a V,—slant helix in E]" and X is the axis of a. From
Theorem(3.4), we get

n—2
X = g(vnv X) <Z H:Vn—(z'-t,-l)gn_(i.;.z) + €n1Vn> . (3.7)

i=1
From the Eq.(3.3) g(V,,, X) is a constant and so Dy, is a constant vector field.
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Conversely, since Dy, is a constant vector field then we can write that
X =g9(V,,X)Dy,
and then
9(X, X) = g(Va, X)g(X, Dr)
or since X is a unit vector field, we have

1
Vo, X) = ——+—
where ¢g(X, D) = constant. So, g(V,,,X) is constant and thus « is a V,,—slant
helix. (]

Corollary 1. Let a be a unit speed curve in E3, {V1,Va,V3} and {ki,ka} denote
the Frenet frame and curvature functions of the curve «, respectively. Then « is a
Vs—slant heliz if and only if % = constant.

Proof. Let a be Vz—slant helix in E?, from Theorem(3.7) for n = 3,

k2

D =
L 51k1

Vi + e2V3 = constant (3.8)

Differentation in(3.8) gives

k /
Vv, Dy = &1 (2> Vi =0,
k1

or Z—i = constant.

Conversely, if Z—f is constant, Vy, Dy, = 0 and Dy, = constant. From Theorem(3.7)
a is a V3—slant helix, which completes the proof. [l

Corollary 2. Let a be a non-degenerate W -curve i.e., all curvatures of the curve
are constant in E}, {V1,Va,Va}, {ki1,ka} denote the Frenet frame and curvature
functions of the curve o, respectively. In this case the curve « is a V3—slant heliz.

Proof. 1t is obvious from Corollary 1. O

Corollary 3. Let a be a non-degenerate W -curve i.e., all curvatures of the curve
are constant in Ef, {V1,Va, V3, Va}, {ki, ko, ks} denote the Frenet frame and cur-
vature functions of the curve a, respectively. In this case the curve a is not a
Vi—slant heliz i.e., Bo—slant heliz.

Proof. Let a be a non-degenerate W-curve i.e., all curvatures of the curve are
constant in Ef. From the Definition(3.2) and Definition(3.6) we can write

1 (k) ks
Dp=—¢—[— — .
I €1k1 (k‘g) +62k_2V2+83V4



V,,— SLANT HELIX IN E? 35

where k1, ko and k3 are curvatures of the curve. If all curvatures of the curve are
constants, i.e., the curve is a W —curve, then we get

k
Dy =32V 4 e3Va.
ko

If we take the derivative of W we get

k1ks
VVIDL = —€0€1€2T‘/1.
2
Since « is a non-degenerate curve, we obtain that Vy, Dy, # 0 or Dy, is constant
vector field. So, from Theorem (3.7) the curve is not Vy—slant helix i.e., Ba—slant
helix. O

Corollary 4. Let a be a non- degenerate curve in Ef. If the curve « is a Vy—slant
heliz i.e., Bo—slant helix then,

1 (k)

k1 \ ko
Proof. Let a be Vy—slant helix i.e., Bo—slant helix. From Theorem(3.5) for n = 4,
we have e1H} + e9H} =constant. By using the Definition(3.2)

! 2
2% L (ks _
£ (kg) + &0 o (162) ] = constant. (3.9)

By taking the derivative of Eq.(3.9) we obtain
1 (k)
k1 \ ko

Theorem 3.8. Let o be a non- degenerate curve in B3 and {Hf, Hs, ..., Hékmq}

’

k-
+ 5081/471%*‘2s =0.

’

k
+ eoerkr = = 0. (3.10)
ko

O

k‘2 k:4 ks k:277L72 k2m

be the harmonic curvature functions of the curve a. If the ratios =

k12 k3 ks kam—3 kam—1

are constant, then we have for 2 <i<m
H3_,=0
and

. kom  kom—o  Komi+1-(2i-1)
H2i71:

. 52m7152m72~-~52m+17(2i)-
kam—1 kom—3 k2nL+1—(2i)

Proof. We apply the induction method for the proof .
Leti=1:
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From Definition(3.2) we may write

* * s\ €2m—3€2m—
H; = (k2m71H0 - vV1Hl) %

!
kom ) €9m—3E2m—2

*
H2 <_52m252m1
k2m—1

k2m—2
where kkA = constant, so
2m—1
H; =0,
and again Definition(3.2) gives us
* €2m—4€2m—3
Hj = (kam-2H{ — Vv Hy) ————
ko3

By using Hj = 0 and Definition (3.2) we can write

kom  kom—
Hi = 2 2m—2

=% T €2m—1€2m—2€2m—3€2m—4 -
2m—1 2m—3

Let us assume that Theorem 3.8 is true for the case ¢ = p, then we may write that
H;p72 =0

and
kom  kom—o  Kom+1—(2p—1)

*
H2p71 = €2m—1€2m—2---€2m+1—(2p) -

kam—1 ) k2m—3 k2m+1—(2p)
Definition (3.2) gives us Hj, = 0 and

E2m—2p—2€2m—2p—1
* _ * *
Hjpiy = (kom—spH3, y — Vv, H3) h .

2m—2p—1

By using Hj,, = 0 and Definition (3.2) we can write

kom  kom—2 k2m+17(2p+1)

*
Hyph = €2m—1€2m—2---E2m+1—(2p+2) »

k2m71 ’ k2m73 k2m+17(2p+2)

which completes the proof. (I

Definition 3.9. Let a be a non- degenerate curve in EZ™ !, and {H{,H3,...,H3, 1}

. . . Fom—
be the harmonic curvature functions of the curve «. If the ratios ]%, %7 % k;” 2 , %
5 m— m—

are constant, then the curve « is called V;, — slant helix in the sense of Hayden, where
2<i<m.

Corollary 5. Let a be a non- degenerate curve in Efmﬂ, and {H{‘, H3, ..., Hikmq}

. . . Ko —
be the harmonic curvature functions of the curve a.. If the ratios k2 ks ke  Zam—2 ' kay
k17 k3’ ks " kam-—37 kam—1

are constant, then from Theorem (3.7) and Theorem(3.8) we can easily see that the
axis of a Vy,— slant helix in the sense of Hayden « is

Dy =eoH;,, Vi +e2Hs,, 3Va+ ...+ eom—oH{ Vo1 + €2m Vom+1.
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Proof. According to Definition (3.6) for n = 2m + 1 we have

Dy =eoHsy, 1 Vi +e1Hy oVo+ -+ eam—2H{ Vam—1 + €2m Vo1
where from Theorem(3.8) we get

Dy, =¢eoH5, Vi +e2Hs,, sVa+ ...+ com—oH{ Vo1 + €2m Vom+1,

which completes the proof. (I

OZET: Bu ¢ahgmada E} n-boyutlu Minkowski uzaymda yeni tanim-
lanan Harmonik egrilik fonksiyonlar1 yardimiyla V,,— slant helis
adinm1 verdigimiz yeni bir slant helis tanimlanmig ve bu helisin V,
cinsinden Harmonik egrilik fonksiyonlar1 verilmigtir. Ayrica E7 n-
boyutlu Minkowski uzayinda V,,— slant helis egrisi boyunca Dy, ile
gosterilen bir vektor alani tanimlanmig ve buna V,,— slant helisin
Darboux vektor alani denilmigtir. Bu vektor alani sayesinde slant
helislerin yeni bazi karakterizasyonlar: verilmistir.
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