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Vn� SLANT HELICES IN MINKOWSKI n-SPACE En1

·ISMAIL GÖK, ÇETIN CAMCI AND H. HILMI HACISALIHO ¼GLU

Abstract. In this paper we give a de�nition of harmonic curvature functions
in terms of Vn and de�ne a new kind of slant helix which we call Vn�slant helix
in n�dimensional Minkowski space En1 by using the new harmonic curvature
functions : Also we de�ne a vector �eld DL which we call Darboux vector �eld
of Vn�slant helix in n�dimensional Minkowski space En1 and we give some
characterizations about slant helices.

1. Introduction

Hayden gave more restrictive de�nition for generalized helices in [6]: If the �xed
direction makes a constant angle with all the vectors of the Frenet frame then the
curve is a generalized helix in En. This de�nition only works in the odd dimensional
case. Moreover, in the same reference, it is proved that the de�nition is equivalent
to the fact that the ratios kn�1kn�2

; kn�3kn�4
; :::; k2k1 being the curvatures, are constant. This

statement is related with the Lancret Theorem for generalized helices in E3 (the
ratio of torsion to curvature is constant).
Later, Izumiya and Takeuchi de�ned a new kind of helix i.e.,slant helix and gave

a characterization of slant helices in Euclidean 3�space E3 [8]. And then Kula and
Yayl¬investigated spherical images; the tangent indicatrix and binormal indicatrix
of a slant helix [10] : Morever, they gave a characterization for slant helices in E3 :
�For involute of a curve 
, 
 is a slant helix if and only if its involute is a general
helix�. If a curve � in En, for which all the ratios kn�1kn�2

; kn�3kn�4
; :::; k2k1 are constant was

called ccr curves[11]. In the same reference, it is shown that in the even dimensional
case, a curve has constant curvature ratios if and only if its tangent indicatrix is a
geodesic in the �at torus. In 2008, Önder et al. [12] de�ned a new kind of slant
helix in Euclidean 4�space E4 which they called B2�slant helix and they gave
some characterizations of this slant helix in Euclidean 4�space E4 : Özdamar and
Hac¬saliho¼glu de�ned harmonic curvature functions [13]. They generalized inclined
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curves in E3 to En: Gök et al. gave the de�nition a vector �eld D in Euclidean
n�space En; it is a new characterization for Vn�slant helix [4].
In this study, we de�ne a new kind of slant helix in Minkowski n�space En1 ;

where we use the constant angle in between a �xed direction X and the nth Frenet
vector �eld Vn of the curve, this means that

g(Vn; X) = �n"n�1 = constant , �n 6= 0.
Since nth Frenet vector �eld Vn of the curve makes a constant angle with a �xed
direction X, we call it Vn�slant helix in Minkowski n�space En1 : In this paper, at
�rst we give a generalization of Hac¬saliho¼glu�s harmonic curvature functions [13] :
In this case we de�ne a new characterization in En1 such as:

� : I � R �! En1 is a Vn�slant helix, then
n�2X
i=1

"n�(i+2)H
�2
i = constant

where H�
i is i

th harmonic curvature function in terms of Vn.

2. Preliminaries

Let En1 be the n �dimensional pseudo-Euclidean space with index 1 endowed
with the inde�nite inner product given by

g(x; y) = �x1y1 +
nX
i=2

xiyi;

where x = (x1; x2; � � � ; xn); y = (y1; y2; � � � ; yn) is the usual coordinate system.
Then v is said to be spacelike, timelike or null according to g(v; v) > 0; g(v; v) < 0;
or g(v; v) = 0 and v 6= 0; respectively. Notice that the vector v = 0 is spacelike.
The category into which a given tangent vector falls is called its causal character.
These de�nitions can be generalized for curves as follows. A curve � in En1 is said
to be spacelike if all of its velocity vectors �0are spacelike, similarly for timelike and
null [1].
Let us recall from [15, 7] the de�nition of the Frenet frame and curvatures.
Let � : I � R ! En1 be non-null curve in E

n
1 . A non-null curve �(s) is said to

be a unit speed curve if g (�0(s); �0(s)) = "0, ("0 being +1 or �1 according to � is
spacelike or timelike respectively). Let fV1; V2; :::; Vng be the moving Frenet frame
along the unit speed curve �, where Vi (i = 1; 2; :::; n) denote ith Frenet vector
�elds and ki be ith curvature functions of the curve (i = 1; 2; :::; n � 1): Then the
Frenet formulas are given as

rV1V1 = k1V2; (2.1)

rV1Vi = �"i�2"i�1ki�1Vi�1 + kiVi+1; 1 < i < n

rV1Vn = �"n�2"n�1kn�1Vn�1
where g (Vi; Vi) = "i�1 , and r is the Levi-Civita connection of En1 [7] :
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3. Vn�Slant Helix in En1
In this section we de�ne Vn�slant helices in Minkowski n-space En1 and give some

characterizations by using the new harmonic curvatures H�
i for Vn�slant helix.

De�nition 3.1. Let � : I � R ! En1 be non-null curve with nonzero curvatures
ki(i = 1; 2; :::; n) in En1 and fV1; V2; :::; Vng denotes the Frenet frame of the curve
�: We call � as a Vn�slant helix in En1 if nth unit vector �eld Vn makes a constant
angle with a �xed direction X, that is,

g(Vn; X) = �n"n�1 = constant , �n 6= 0 .
Therefore, X is in the subspace Sp fV1; V2; :::; Vn�1; Vng and can be written as

X =
nX
i=1

xiVi , g(X;X) = 1 .

De�nition 3.2. Let � : I � R �! En1 be a unit speed non-null curve with non-
zero curvatures ki(i = 1; 2; :::; n) in En1 : Harmonic curvature functions in terms of
Vn for � are de�ned by

H�
i : I � R �! R

H�
0 = 0; (3.1)

H�
1 = "n�3"n�2

kn�1
kn�2

;

H�
i =

�
kn�iH

�
i�2 �rV1H�

i�1
� "n�(i+2)"n�(i+1)

kn�(i+1)
; 2 � i � n� 2:

Theorem 3.3. Let � : I � R �! En1 be a non-null curve in En1 arc-lengthed
parameter and X a unit constant vector �eld and fV1; V2; :::; Vng denote the Frenet
frame of the curve �;

�
H�
1 ;H

�
2 ; :::;H

�
n�2
	
denote the harmonic curvature functions

of the curve �: If � : I � R �! En1 is a Vn�slant helix then we have
g(Vn�(i+1); X) = H

�
i g(Vn; X); 1 � i � n� 2; (3.2)

where X is axis of the Vn�slant helix.

Proof. We will use the induction method.
Let i = 1 :
Since X is the axis of the Vn�slant helix �; we get

X = �1V1 + �2V2 + :::+ �nVn:

From the de�nition of Vn�slant helix we have
g(Vn; X) = �n"n�1: (3.3)

A di¤erentiation in Eq.(3.3) and the Frenet formulas give us that

g(Vn�1; X) = 0: (3.4)
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Again, di¤erentiation in Eq.(3.4) and the Frenet formulas give

g(rV1Vn�1; X) = 0;

�"n�3"n�2kn�2g(Vn�2; X) + kn�1g(Vn; X) = 0;

g(Vn�2; X) = "n�3"n�2
kn�1
kn�2

g(Vn; X)

g(Vn�2; X) = H�
1 g(Vn; X);

respectively. Hence it is shown that the Eq.(3.2) is true for i = 1:
We now assume the Eq.(3.2) is true for the �rst i� 1: Then we have

g(Vn�i; X) = H
�
i�1 g(Vn; X): (3.5)

A di¤erentiation in Eq.(3.5) and the Frenet formulas give us that

�"n�i�2"n�i�1kn�i�1 g(Vn�i�1; X) + kn�i g(Vn�i+1; X) = rV1H�
i�1 g(Vn; X):

Since we have the induction hypothesis, g(Vn�i+1; X) = H�
i�2g(Vn; X); we get�

kn�iH
�
i�2 �rV1H�

i�1
� "n�(i+2)"n�(i+1)

kn�(i+1)
g(Vn; X) = g(Vn�(i+1); X);

which gives
g(Vn�(i+1); X) = H

�
i g(Vn; X):

�

Theorem 3.4. Let � : I � R �! En1 be a non-null curve in E
n
1 arc-lengthed para-

meter and X a unit constant vector �eld and fV1; V2; :::; Vng and
�
H�
1 ;H

�
2 ; :::;H

�
n�2
	

denote the Frenet frame and the harmonic curvature functions of the curve �; re-
spectively. If � : I � R �! En1 is a Vn�slant helix then we have

X = g(Vn; X)

 
n�2X
i=1

H�
i Vn�(i+1)"n�(i+2) + "n�1Vn

!
:

Proof. If the axis of Vn�slant helix � in En1 is X; then we can write

X =
nX
i=1

�iVi:

By using the Theorem(3.3) we get

�1 = "0 H
�
n�2g(Vn; X);

�2 = "1 H
�
n�3g(Vn; X);

...

�n�2 = "n�3H
�
1 g(Vn; X);

�n�1 = 0;

�n = "n�1 g(Vn; X):
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Thus we can easily obtain that

X = g(Vn; X)

 
n�2X
i=1

H�
i Vn�(i+1)"n�(i+2) + "n�1Vn

!
:

�

Theorem 3.5. Let � : I � R �! En1 be a non-null curve in E
n
1 arc-lengthed para-

meter, X be a unit constant vector �eld and fV1; V2; :::; Vng ;
�
H�
1 ;H

�
2 ; :::;H

�
n�2
	
de-

note the Frenet frame and the harmonic curvature functions of the curve �;respectively:

If � : I � R �! En1 is a Vn�slant helix, then
n�2X
i=1

"n�(i+2)H
�2
i = constant:

Proof. Let � be a Vn�slant helix with the arc length parameter s . Since X is a
unit vector �eld, by using Theorem(3.4) we obtain

(g(Vn; X))
2

 
"n�1 +

n�2X
i=1

"n�(j+2)H
�2
i

!
= 1: (3.6)

Thus we get
n�2X
i=1

"n�(i+2)H
�2
i =

1� "n�1�2n
�2n

:

for some non-zero constant �n, which completes the proof. �

De�nition 3.6. If X is the axis of Vn�slant helix � in En1 ; then from Theorem(3.4)
we can write

X = g(Vn; X)

 
n�2X
i=1

H�
i Vn�(i+1)"n�(i+2) + "n�1Vn

!
where g(Vn; X) = �n"n�1 = constant. And then we can de�ne a new vector �eld
as

DL = "0H
�
n�2V1 + "1H

�
n�3V2 + :::+ "n�3H

�
1Vn�2 + "n�1Vn

which is an axis of the Vn�slant helix �:

Theorem 3.7. Let � : I � R �! En1 be a non-null curve in E
n
1 arc-lengthed para-

meter, X be a unit constant vector �eld and fV1; V2; :::; Vng and
�
H�
1 ;H

�
2 ; :::;H

�
n�2
	

denote the Frenet frame and the harmonic curvature functions for Vn-slant helix �;
respectively. Then � is a Vn�slant helix if and only if DL is a constant vector �eld.

Proof. Suppose that � is a Vn�slant helix in En1 and X is the axis of �: From
Theorem(3.4), we get

X = g(Vn; X)

 
n�2X
i=1

H�
i Vn�(i+1)"n�(i+2) + "n�1Vn

!
: (3.7)

From the Eq.(3.3) g(Vn; X) is a constant and so DL is a constant vector �eld.
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Conversely, since DL is a constant vector �eld then we can write that

X = g(Vn; X)DL

and then
g(X;X) = g(Vn; X)g(X;DL)

or since X is a unit vector �eld, we have

g(Vn; X) =
1

g(X;DL)

where g(X;DL) = constant. So, g(Vn; X) is constant and thus � is a Vn�slant
helix. �

Corollary 1. Let � be a unit speed curve in E31 , fV1; V2; V3g and fk1; k2g denote
the Frenet frame and curvature functions of the curve �, respectively. Then � is a
V3�slant helix if and only if k2k1 = constant:

Proof. Let � be V3�slant helix in E31 ; from Theorem(3.7) for n = 3,

DL = "1
k2
k1
V1 + "2V3 = constant (3.8)

Di¤erentation in(3.8) gives

rV1DL = "1
�
k2
k1

�0
V1 = 0;

or k2
k1
= constant:

Conversely, if k2k1 is constant,rV1DL = 0 andDL = constant: From Theorem(3.7)
� is a V3�slant helix, which completes the proof. �

Corollary 2. Let � be a non-degenerate W -curve i.e., all curvatures of the curve
are constant in E31 ; fV1; V2; V3g ; fk1; k2g denote the Frenet frame and curvature
functions of the curve �, respectively. In this case the curve � is a V3�slant helix.

Proof. It is obvious from Corollary 1. �

Corollary 3. Let � be a non-degenerate W -curve i.e., all curvatures of the curve
are constant in E41 ; fV1; V2; V3; V4g ; fk1; k2; k3g denote the Frenet frame and cur-
vature functions of the curve �, respectively. In this case the curve � is not a
V4�slant helix i.e., B2�slant helix:

Proof. Let � be a non-degenerate W -curve i.e., all curvatures of the curve are
constant in E41 : From the De�nition(3.2) and De�nition(3.6) we can write

DL = �"1
1

k1

�
k3
k2

�0
+ "2

k3
k2
V2 + "3V4:
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where k1; k2 and k3 are curvatures of the curve. If all curvatures of the curve are
constants, i.e., the curve is a W�curve, then we get

DL = "2
k3
k2
V2 + "3V4:

If we take the derivative of W we get

rV1DL = �"0"1"2
k1k3
k2

V1:

Since � is a non-degenerate curve, we obtain that rV1DL 6= 0 or DL is constant
vector �eld. So, from Theorem (3.7) the curve is not V4�slant helix i.e., B2�slant
helix. �

Corollary 4. Let � be a non- degenerate curve in E41 : If the curve � is a V4�slant
helix i.e., B2�slant helix then,"

1

k1

�
k3
k2

�0#0
+ "0"1k1

k3
k2
= 0:

Proof. Let � be V4�slant helix i.e., B2�slant helix. From Theorem(3.5) for n = 4;
we have "1H�2

1 + "0H
�2
2 =constant. By using the De�nition(3.2)

"1

�
k3
k2

�2
+ "0

"
1

k1

�
k3
k2

�0#2
= constant. (3.9)

By taking the derivative of Eq.(3.9) we obtain"
1

k1

�
k3
k2

�0#0
+ "0"1k1

k3
k2
= 0: (3.10)

�

Theorem 3.8. Let � be a non- degenerate curve in E2m+11 ; and
�
H�
1 ;H

�
2 ; :::;H

�
2m�1

	
be the harmonic curvature functions of the curve �. If the ratios k2k1 ;

k4
k3
; k6k5 :::

k2m�2
k2m�3

; k2m
k2m�1

are constant, then we have for 2 � i � m

H�
2i�2 = 0

and

H�
2i�1 =

k2m
k2m�1

:
k2m�2
k2m�3

:::
k2m+1�(2i�1)

k2m+1�(2i)
"2m�1"2m�2:::"2m+1�(2i):

Proof. We apply the induction method for the proof .
Let i = 1 :
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From De�nition(3.2) we may write

H�
2 = (k2m�1H

�
0 �rV1H�

1 )
"2m�3"2m�2
k2m�2

H�
2 =

�
�"2m�2"2m�1

k2m
k2m�1

�0
"2m�3"2m�2
k2m�2

where k2m
k2m�1

= constant, so

H�
2 = 0;

and again De�nition(3.2) gives us

H�
3 = (k2m�2H

�
1 �rV1H�

2 )
"2m�4"2m�3
k2m�3

.

By using H�
2 = 0 and De�nition (3.2) we can write

H�
3 =

k2m
k2m�1

:
k2m�2
k2m�3

"2m�1"2m�2"2m�3"2m�4 .

Let us assume that Theorem 3.8 is true for the case i = p, then we may write that

H�
2p�2 = 0

and

H�
2p�1 =

k2m
k2m�1

:
k2m�2
k2m�3

:::
k2m+1�(2p�1)

k2m+1�(2p)
"2m�1"2m�2:::"2m+1�(2p) .

De�nition (3.2) gives us H�
2p = 0 and

H�
2p+1 =

�
k2m�2pH

�
2p�1 �rV1H�

2p

� "2m�2p�2"2m�2p�1
k2m�2p�1

.

By using H�
2p = 0 and De�nition (3.2) we can write

H�
2p+1 =

k2m
k2m�1

:
k2m�2
k2m�3

:::
k2m+1�(2p+1)

k2m+1�(2p+2)
"2m�1"2m�2:::"2m+1�(2p+2) ,

which completes the proof. �

De�nition 3.9. Let � be a non- degenerate curve in E2m+11 ; and
�
H�
1 ;H

�
2 ; :::;H

�
2m�1

	
be the harmonic curvature functions of the curve �. If the ratios k2k1 ;

k4
k3
; k6k5 :::

k2m�2
k2m�3

; k2m
k2m�1

are constant, then the curve � is called Vn� slant helix in the sense of Hayden, where
2 � i � m.

Corollary 5. Let � be a non- degenerate curve in E2m+11 ; and
�
H�
1 ;H

�
2 ; :::;H

�
2m�1

	
be the harmonic curvature functions of the curve �. If the ratios k2k1 ;

k4
k3
; k6k5 :::

k2m�2
k2m�3

; k2m
k2m�1

are constant, then from Theorem (3.7) and Theorem(3.8) we can easily see that the
axis of a Vn� slant helix in the sense of Hayden � is

DL = "0H
�
2m�1V1 + "2H

�
2m�3V3 + :::+ "2m�2H

�
1V2m�1 + "2mV2m+1:
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Proof. According to De�nition (3.6) for n = 2m+ 1 we have

DL = "0H
�
2m�1V1 + "1H

�
2m�2V2 + � � �+ "2m�2H�

1V2m�1 + "2mV2m+1

where from Theorem(3.8) we get

DL = "0H
�
2m�1V1 + "2H

�
2m�3V3 + :::+ "2m�2H

�
1V2m�1 + "2mV2m+1;

which completes the proof. �

ÖZET: Bu çal¬̧smada En1 n-boyutlu Minkowski uzay¬nda yeni tan¬m-
lanan Harmonik e¼grilik fonksiyonlar¬ yard¬m¬yla Vn� slant helis
ad¬n¬verdi¼gimiz yeni bir slant helis tan¬mlanm¬̧s ve bu helisin Vn
cinsinden Harmonik e¼grilik fonksiyonlar¬verilmi̧stir. Ayr¬ca En1 n-
boyutlu Minkowski uzay¬nda Vn� slant helis e¼grisi boyunca DL ile
gösterilen bir vektör alan¬tan¬mlanm¬̧s ve buna Vn� slant helisin
Darboux vektör alan¬denilmi̧stir. Bu vektör alan¬sayesinde slant
helislerin yeni baz¬karakterizasyonlar¬verilmi̧stir.
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