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INTERVAL OSCILLATION CRITERIA FOR SECOND-ORDER
DELAY AND ADVANCED DIFFERENCE EQUATIONS

A. FEZA GUVENILIR

ABsTrACT. Interval oscillation criteria are established for second-order
difference equations in the form

A (k(n) Az(n)) +p (n) z (9 (n)) +¢(n) |z (g ()" 2 (9 (n)) =e (n), (E)
where n > ng, no € N = {0,1,..}, v > 1; k, p, q, e and g are se-
quences of real numbers; k (n) > 0 is nondecreasing; g(n) is nondecreas-
ing, limn,—oo g(n) = co. Several oscillation criteria are given for equation
(E,) considered as to separate delay and advanced difference equations

when g(n) < n and g(n) > n respectively. Illustrative examples are in-
cluded.

1. Introduction

We consider second-order difference equations of the form,

A (k(n) Az(n)) +p (n) z (9 (n) +q (n) |2 (g ()" 2 (g (n)) =e(n)  (E,)

where n > ng, ng € N=1{0,1,...}, v > 1; k, p, ¢, e and g are sequences of real
numbers; k (n) > 0 is nondecreasing; g(n) is nondecreasing, lim,,_,o, g(n) = co. A is
the forward difference operator defined by Az(n) = z(n+1)—xz(n). As is customary,
we assume that solutions of (E,) exist on some set {ng, no + 1, ...}. For the theory
of existence of solutions of such equations, we refer [1]. A nontrivial solution {xz(n)}
of (E,) is called oscillatory if for any given g > ng there exists an integer ny > fg
such that z(ni1)z(n1 + 1) < 0, otherwise it is called nonoscillatory. The equation
will be called oscillatory if every solution is oscillatory. Taking g(n) as 7(n) with
7(n) < n and lim,_,., 7(n) = 00, ¥ = «, equation (E,) is considered as a delay
difference equation

A (k(n) Az(n)) +p; (n) 2 (7 (n)) +ay (n) |z (r ()| @ (7 (n)) =e(n)  (Ep)
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or taking g(n) as o(n) with o(n) > n and v = §,equation (E.) is considered as an
advanced difference equation
~1

A (k (n) Az(n)) +py (n) 2 (0 (n)) +¢5 (n) [ (0 ()| @ (0 (n) =e (n) . (Ea)

In literature, there isn’t enough work dealing with the oscillation of difference
equations (Ep) and (E4). Equation (E,), when k(n) =1, p(n) =0or ¢g(n) =0
and g(n) = n, n+ 1, n — 7 has been studied by many authors, see [6, 7, 12, 13, 15]
and the references cited therein.

Using Riccatti tecnique, Saker[9] obtained some oscillation criteria for forced
Emden-Fowler superlinear difference equation of the form

AZp(n)+q(n) 2" (n+1) =e(n)

when ¢(n) and e(n) are sequences of positive real numbers.
Zhang and Chen [14] established some oscillation criteria

A?z(n)+q(n) f (z (n+1))=0

whenf is nondecreasing and wuf(u) > 0 for u # 0.

The first result concerning the interval oscillation of (E«v) when g(n) = n + 1,
qg(n) =0, e(n) =0 has been studied by Kong and Zettl [7]. They have applied the
telescoping principle for equation of the form

A (k(n) Az(n)) +p (n) z (n+ 1) =0.

Recently, Giivenilir and Zafer [4] has presented some sufficient conditions about
oscillation of second-order differential equation

(k(D)2'(6))+p (1) |2 (r O)|" ™ & (7 () +4 (1) [« (0 (0)" @ (o (1) =e (8) . (1.1)

where n > 0. Later, in [2] Anderson generalized the results of Giivenilir and Zafer
[4] to the dynamic equation

a—1 1

(kx®)2()+p () |2 (r O)* 2 (7 (1) +q () |2 (0 ()" 2 (0 (1) =e(t)  (1.2)
where n > 0 for arbitrary time scales.

In this work, our purpose is to derive interval oscillation criteria as discrete
analogues of the ones contained [3]. The difference between (E,) and (1.2) is the
appearence of both linear and nonlinear terms. Therefore, the results in [2] fails to
apply for (E,).

For our purpose, we denote

D (ag,bp) ={u:u(ar) =u(bg) =0, k=1,2, u(n) Z0, n € N(ag,bi)},
where N(ag, bi) = {ak,ar +1,...,b,}. As in [4], we define

P.(n) =x( =) gm) e )7 (1.3)
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2. DELAY DIFFERENCE EQUATIONS

Suppose that for any given N > 0 there exist ay,a2,b1,b0 > N such that a; < by,
as < by and
p1(n) >0, ¢1(n) >0 forn € N(7(a1),b1) UN(T (az), b2). (2.1)
Let e (n) satisfies
e(n) <0, forn € N(7 (a1),b1)
e(n) >0, for n € N(7 (az), b2).
Theorem 2.1. Suppose that (2.1) and (2.2) hold. If there exist an Hy €
D (a;,b;), 9= 1,2, such that
b;—1

3 [H% (n+1) (p1 (n) + Pa (n)

n=a;

(2.2)

7(n) - 7 (ai)

ni 1 r(a) (AH; (n))’k(n)| >0, (2.3)

for i =1,2, then (Ep) is oscillatory.
Proof. To get a contradiction, let us suppose that z(n) is a nonoscillatory
solution of equation (Ep) . First, assume z (n) > 0, z (7 (n)) > 0 for all n > n; for

some ni > 0.
We may say

F(z) = Agh — p(p— 1)Y/# 1 AVB =Yg 4 B >0 for z € [0, 00) (2.4)

where A, B are nonnegative constants and p > 1, [10].
If we choose A = ¢1(t), B= —e(n) and u = a in (2.4), we have

o (8 (r(n) —e(m) > ala—1)Y" g ()= le@m) =z (r(n). (2.5
for n € N(7(a1),b1)
See also [8, 10].
Define
w(n):—ﬂ, n>ng, ng > 0. (2.6)

In view of (Ep), we see that

Aw (n) = gty ® () + pr (0) 57 2.7)
+lar () (7 () — € (0)] ke

Using (2.1) and (2.5), we see from (2.7) that

Aw (n) > WwQ (n) + [p1 (n) + Py (n)] Tt ) n € N(7 (a1),by).

Moreover
z(n+1) =z(n) + Az(n),
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z(n+1) Ax(n)

O R

and then
z(n) _ 1
Em)z(n+1)  k(n)—w(n)
Therefore
1 > (7 (n))
Aw (n) > mw (n) 4 [p1 (n) + Py (n)] L) n € N(7 (a1),b1).
(2.8)
Now by the Mean Value Theorem in [1]
k(&) Az (€)
z(n) — (7 (a1)) > W(n -7 (a1))
for some & € N(7 (a1) ,n). From which, for any n € N(as, b1),we have
xz(n) > Az (n) (n — 7 (a1)), n € N(ay, by)
and hence,
Az (n) 1
x(n) < o T(a1)7 n e N(al,b1).
Moreover, following the arguments in [2], since
z(m) — Az (m) (m — 7 (a1)) >0, m € N(1(n),n+ 1), n € N(ay, b1)
we have
z(m) — Az (m) (m — 7 (a1))

x(m)x(m + 1) 20

Therefore,
m— 7 (ay)

A( xz(m) )20

It follows that
- m— 71 (ay) 7n+177'(a1)77'(n)77(a1)
2 A )T T e
in other words (r () ) (1)
z(n+1) " n+1-—r71(a) n € N(a1, by) (2.9)
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In view of (2.9), it follows from (2.8) that

1 m n 2 T =T N
B () 2 s (n) [ () + P ()] S € NG () ).
(2.10)

Let Hy € D (a1,b) be given as in the hypothesis. Multiplying H?(n + 1) through
(2.10) we find

Aw(n)Hi(n+1) > goytamw? (n) HE (n+1)
+ [p1 (n) + Po (n)] S HE (n + 1)

for n € N(7(a1),b1). Since
A(H (n)w (n)) = Hi (n +1)Aw (n) +w (n) AHF (n)
A(HY (n)) = A(Hi(n) Hi (n))

and

A(H (n)) = AHy (n) [2Hi(n + 1) — AH, (n)]

then taking the sum from a; to (by — 1) we obtain

b1—1

7(n) — 7 (a1)
2;{@MM+¥EMHn+1_7mﬂHﬂn+D—kmﬂAHﬂmV}
b1—1 2

g-AH%@Q—EjVﬁfﬂ?i%+wmm—wWAmmﬂ.

b1—1

1 ()~ 7 (@) :

;;{bmm+fhmﬂn+1_TmﬂHdn+D—kmMAHMM)}

_nz; [\/Lf +k n)AH, (n ] <. (2.11)

Note that
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is possible only if
WO (4 ]) | s

k(n)—w(n

WD) | s

k(n) —w(n)

Therefore

—w(n)Hy(n+1) = (k (n) — w (n))AH, (n)

and then

+1)

Az(n)Hi(n+1)=xz(n+1)AH; (n).
Hence

which implies

Hy (n) = cz(n),
where ¢ is a constant. This, however, contradicts the positivity of z (n). Now
(2.11) contradicts (2.3). Thus, the proof is complete, when x (n) is eventually posi-
tive. The proof can be accomplished similarly by working with N(az, by) instead of
N(a1,b1) when z (n) is eventually negative.

Example 2.1. Consider the forced delay difference equation,

A%z (n) + my sin (%) x (n — 2) + mg cos (60> 23 (n —2) = cos ( 10) (2.12)

where my, mo > 0. Let

a1 = 8+120k, by = 11 + 120k,
as = 17+ 120k, by = 20 + 120k

for any nonnegative integer k and let H; (n) = sin (ﬂ'w) . It is easy to check
that (2.1) is satisfied, namely

p1(n) = myq sin( 60) >0, for n € N(6+ 120k, 11 + 120k) U (15 + 120k, 20 + 120k).

q1(n) = mao cos( 0 ) >0, for n € N(6+ 120k, 11 4+ 120k) U (15 + 120k, 20 + 120k).

and
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e(n) = cos(%) <0, forn e N(6+ 120k, 11 + 120k)
e(n) = cos(%) >0, for n € N(15+ 120k, 20 + 120k)

where 7(n) =n — 2.
By Theorem 2.1, the equation (2.12) is oscillatory when my = 1, mg > 79;
when my =1, my > 14.

3. ADVANCED DIFFERENCE EQUATIONS

Consider

A (k (n) Az(n)) +py (n) 2 (0 (1)) +4 (n) |2 (0 ()" @ (0 () =e (n) . (Ea)

where n > ng, no € N=1{0,1,...}, 8 > 1, k, pa, g2, e and o are sequences of real
numbers, k (n) > 0 is nondecreasing; o(n) > n, o is nondecreasing. Suppose that
for any given N > 0 there exist ¢1,co,d1,dys > N such that ¢; < dy, ca < dy and

p2(n) >0, g2(n) >0, for n € N(c1,0(d1)) UN(cz,0(d2)). (3.1)
Let e (n) satisfies
e(n) <0, for n € N(cr,0(dr)) (3.2)
e(n) >0, for n € N(cg,o(dz)).

Now, we can give the following .

Theorem 3.1. Suppose that (3.1) and (3.2) hold. If there exist an Hy €
D (c;,d;) such that

d;—1

3 [H (n+1) (p2 (n) + Ps (n))

n=c;

o (di) — o (n)

m—(ﬁfb(n))%(m >0 (3.3)

for i =1,2, then (E4) is oscillatory.
Proof. To arrive at a contradiction, let us suppose that z (n) is a nonoscillatory

solution of equation (E4). First, assume z (n), z (o (n)) are positive for all n >
ny for some n; > 0.

Considering (2.6), in view of (E4), we see that

z(n) x (o (n))
A = ey TR0 T
Haa ()2 (0 () = e )] s

In (2.5) instead of 7(n) , @ and ¢; we take o(n) , and ¢y respectively, we get
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E(n)w(m+1)

By the same steps in Theorem 2.1, we obtain

w? (n) + [p2 (n) + P3 (n)]) 2T

Aw (”) > ma

n € N(c1,0(dy)).

1 z (o (n))
Aw (n) > m m, nc N(Cl,a(dl)).
(3.4)

Note that A (k(n) Az(n)) < 0 on [c1,0(d1)]. In a similar manner as in the proof
of Theorem (2.1) we get

zlo(n) o old)—o(n)

w? (n) + [p2 (n) + Ps (n)]

,’L‘(’I’L—|— ) (dl) (n+1), n e N(Cl,d(dl)) (35)
Applying inequality (3.5) to (3.4), we obtain
A () 2 e (n) )+ P )] ST =T € e ota)

Using the same steps in the proof of Theorem (2.1) we get

di—1

> {ipa )+ 2s o) mﬂ (1) = k() (A (1)
di—1 2
< -y [(kzh;?_”“ Ve WAH, (n 1 <0. (3.6)

(3.6) contradicts (3.3). Thus the proof is complete, when z(n) is eventually posi-
tive. The proof can be accomplished similarly by working with N(cq, ds) instead of
N(ci1,dr) when z(n) is eventually negative.

Example 3.1. Consider the advanced difference equation,
A2z (n) 4+ my sin (%) x(n+2) + mscos (%) 23 (n+2) = cos (%) (3.7)

where mq, mo > 0. Let

C1 = 6 + 120k, d1 = 9 —+ 120]17,
ca = 154120k, dy = 18 + 120k

for any nonnegative integer k and let Hs (n) = sm( ) It is easy to check that
(3.1) is satisfied, namely
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pa2(n) = myq sin( 60) >0, for n € N(6+ 120k, 11 + 120k) U (15 + 120k, 20 + 120k).

g2(n) = ma cos( o0 ) >0, for n € N(6+ 120k, 11 4+ 120k) U (15 + 120k, 20 + 120k).

and
™m
e(n) = cos(l—o) <0, forn e N(6+ 120k, 11 + 120k)

e(n) = cos( 10) >0, for n e N(15+ 120k, 20 + 120k)

where o(n) =n + 2.
By Theorem 3.1, the equation (3.7) is oscillatory when m; = 1, mgy > 10;
when my =1, my > 1.

4. DELAY AND ADVANCED DIFFERENCE EQUATIONS

We obtain the delay and advanced difference equations as follows:

A (k (n) Az(n)) + p1 (n)z (7 (n) + a1 (n) |z (7 (n))|* " @ (7 (n) (Bap)
) k]

+p3 (n) 2 (0 (n)) +45 (n) |z (o (n))" ™" 2 (0 (n)) =e (),

where n > ng, ng € N=1{0,1,...}, 8> 1, k, p1, p2,q1, 2, e, 7 and o are sequences
of real numbers, k(n) > 0 is nondecreasing; 7(n) < n, o(n) > n, 7 and o are
nondecreasing and limg_, o, 7 () = 00 .

Suppose that for any given N > 0 there exist ai,as,b1,b2 ,c1,c2,d1,do > N
such that a1 < b1, ag < by and ¢; < dy, co < ds.
Theorem 4.1. Suppose that (2.1), (2.2) and (3.1), (3.2) hold. If there exists an
H, € D(a;,b;) and Hy € D (c;,d;) such that either

b;—1

Z [le (n+1) (p1 () + Pa (n)) m — (AH; (n))2k(n)} >0,
d;—1

i 2 U(dl) (n) ,

7;i [Hz (n+1) (p2 (n) + P3 (n)) o) (D (AH; (n))%k (n)] >0

for ¢ = 1,2, then (E4,p) is oscillatory.



