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INTERVAL OSCILLATION CRITERIA FOR SECOND-ORDER
DELAY AND ADVANCED DIFFERENCE EQUATIONS

A. FEZA GÜVENILIR

Abstract. Interval oscillation criteria are established for second-order
di¤erence equations in the form

�(k (n)�x(n))+p (n)x (g (n))+q (n) jx (g (n))j�1 x (g (n))=e (n) ; (E)

where n � n0; n0 2 N = f0; 1; :::g;  > 1; k; p; q; e and g are se-
quences of real numbers; k (n) > 0 is nondecreasing; g(n) is nondecreas-
ing, limn!1 g(n) =1: Several oscillation criteria are given for equation
(E) considered as to separate delay and advanced di¤erence equations
when g(n) < n and g(n) > n respectively. Illustrative examples are in-
cluded.

1. Introduction

We consider second-order di¤erence equations of the form,

�(k (n)�x(n))+p (n)x (g (n))+q (n) jx (g (n))j�1 x (g (n)) = e(n) (E)

where n � n0; n0 2 N = f0; 1; :::g;  > 1; k; p; q; e and g are sequences of real
numbers; k (n) > 0 is nondecreasing; g(n) is nondecreasing, limn!1 g(n) =1: � is
the forward di¤erence operator de�ned by�x(n) = x(n+1)�x(n): As is customary,
we assume that solutions of (E) exist on some set fn0; n0+1; :::g: For the theory
of existence of solutions of such equations, we refer [1]: A nontrivial solution fx(n)g
of (E) is called oscillatory if for any given ~n0 � n0 there exists an integer n1 � ~n0
such that x(n1)x(n1 + 1) � 0, otherwise it is called nonoscillatory. The equation
will be called oscillatory if every solution is oscillatory. Taking g(n) as �(n) with
�(n) < n and limn!1 �(n) = 1;  = �, equation (E) is considered as a delay
di¤erence equation

�(k (n)�x(n))+p1 (n)x (� (n))+q1 (n) jx (� (n))j
��1

x (� (n))=e (n) (ED)

Received by the editors April 16, 2009, Accepted: June. 16, 2009.
2000 Mathematics Subject Classi�cation. 34K11, 34C10.
Key words and phrases. Interval oscillation, Second-order, Delay argument, Advanced

argument, Oscillatory.

c2009 Ankara University

39



40 A. FEZA GÜVENILIR

or taking g(n) as �(n) with �(n) > n and  = �;equation (E) is considered as an
advanced di¤erence equation

�(k (n)�x(n))+p2 (n)x (� (n))+q2 (n) jx (� (n))j
��1

x (� (n))=e (n) : (EA)

In literature, there isn�t enough work dealing with the oscillation of di¤erence
equations (ED) and (EA): Equation (E); when k(n) � 1; p (n) � 0 or q (n) � 0
and g(n) = n; n+ 1; n� � has been studied by many authors, see [6; 7; 12; 13; 15]
and the references cited therein.
Using Riccatti tecnique, Saker[9] obtained some oscillation criteria for forced

Emden-Fowler superlinear di¤erence equation of the form

�2x(n)+q (n)x (n+ 1)=e(n)

when q(n) and e(n) are sequences of positive real numbers.
Zhang and Chen [14] established some oscillation criteria

�2x(n)+q (n) f (x (n+ 1))=0

whenf is nondecreasing and uf(u) > 0 for u 6= 0.
The �rst result concerning the interval oscillation of (E) when g(n) = n + 1;

q(n) � 0; e(n) � 0 has been studied by Kong and Zettl [7]: They have applied the
telescoping principle for equation of the form

�(k (n)�x(n))+p (n)x (n+ 1)=0:

Recently, Güvenilir and Zafer [4] has presented some su¢ cient conditions about
oscillation of second-order di¤erential equation

(k(t)x0(t))0+p (t) jx (� (t))j��1 x (� (t))+q (t) jx (� (t))j��1 x (� (t))=e (t) : (1:1)

where n � 0. Later, in [2] Anderson generalized the results of Güvenilir and Zafer
[4] to the dynamic equation

(kx�)�(t)+p (t) jx (� (t))j��1 x (� (t))+q (t) jx (� (t))j��1 x (� (t))=e (t) (1:2)

where n � 0 for arbitrary time scales.
In this work, our purpose is to derive interval oscillation criteria as discrete

analogues of the ones contained [3]: The di¤erence between (E) and (1:2) is the
appearence of both linear and nonlinear terms. Therefore, the results in [2] fails to
apply for (E):
For our purpose, we denote

D (ak; bk) = fu : u (ak) = u (bk) = 0; k = 1; 2; u (n) 6� 0; n 2 N(ak; bk)g ;
where N(ak; bk) = fak; ak + 1; :::; bkg: As in [4]; we de�ne

P� (n) = � (� � 1)1=��1 q (n)1=� je (n)j1�1=� : (1:3)
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2. Delay Difference Equations

Suppose that for any given N � 0 there exist a1,a2,b1,b2 � N such that a1 < b1;
a2 < b2 and

p1 (n) � 0; q1(n) � 0 for n 2 N(� (a1) ; b1) [ N(� (a2) ; b2): (2:1)

Let e (n) satis�es
e (n) � 0; for n 2 N(� (a1) ; b1)
e (n) � 0; for n 2 N(� (a2) ; b2):

(2:2)

Theorem 2.1. Suppose that (2:1) and (2:2) hold. If there exist an H1 2
D (ai; bi) ; i = 1; 2; such that

bi�1X
n=ai

�
H2
1 (n+ 1) (p1 (n) + P� (n))

� (n)� � (ai)
n+ 1� � (ai)

� (�H1 (n))2k (n)
�
� 0; (2:3)

for i = 1; 2; then (ED) is oscillatory.
Proof. To get a contradiction, let us suppose that x (n) is a nonoscillatory

solution of equation (ED) : First, assume x (n) > 0, x (� (n)) > 0 for all n � n1 for
some n1 > 0:
We may say

F (x) = Ax� � � (�� 1)1=��1A1=�B1�1=�x+B � 0 for x 2 [0;1) (2:4)

where A, B are nonnegative constants and � > 1; [10]:
If we choose A = q1(t), B = �e(n) and � = � in (2:4), we have

q1 (t)x
� (� (n))� e (n) � � (�� 1)1=��1 q1 (n)

1
� je (n)j1�

1
� x (� (n)) : (2:5)

for n 2 N(�(a1); b1)
See also [8; 10]:
De�ne

w (n) = �k (n)�x (n)
x (n)

; n � n1; n1 > 0: (2:6)

In view of (ED) ; we see that

�w (n) = x(n)
k(n)x(n+1)w

2 (n) + p1 (n)
x(�(n))
x(n+1)

+ [q1 (n)x
� (� (n))� e (n)] 1

x(n+1) :
(2:7)

Using (2:1) and (2:5), we see from (2:7) that

�w (n) � x(n)

k (n)x(n+ 1)
w2 (n) + [p1 (n) + P� (n)]

x (� (n))

x (n+ 1)
; n 2 N(� (a1) ; b1):

Moreover
x(n+ 1) = x(n) + �x(n);
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x(n+ 1)

x(n)
= 1 +

�x(n)

x(n)

and then

x(n)

k (n)x(n+ 1)
=

1

k (n)� w (n) :

Therefore

�w (n) � 1

k (n)� w (n)w
2 (n) + [p1 (n) + P� (n)]

x (� (n))

x (n+ 1)
; n 2 N(� (a1) ; b1):

(2:8)
Now by the Mean Value Theorem in [1]

x(n)� x (� (a1)) �
k (�)�x (�)

k (�)
(n� � (a1))

for some � 2 N(� (a1) ; n): From which, for any n 2 N(a1; b1),we have

x(n) � �x (n) (n� � (a1)); n 2 N(a1; b1)
and hence,

�x (n)

x(n)
� 1

n� � (a1)
; n 2 N(a1; b1):

Moreover, following the arguments in [2], since

x(m)��x (m) (m� � (a1)) � 0; m 2 N(�(n); n+ 1); n 2 N(a1; b1)
we have

x(m)��x (m) (m� � (a1))
x(m)x(m+ 1)

� 0:

Therefore,

�(
m� � (a1)
x(m)

) � 0:

It follows that

nX
m=�(n)

�(
m� � (a1)
x(m)

) =
n+ 1� � (a1)
x(n+ 1)

� � (n)� � (a1)
x(� (n))

;

in other words
x(� (n))

x(n+ 1)
� � (n)� � (a1)
n+ 1� � (a1)

; n 2 N(a1; b1): (2:9)
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In view of (2:9), it follows from (2:8) that

�w (n) � 1

k (n)� w (n)w
2 (n) + [p1 (n) + P� (n)]

� (n)� � (a1)
n+ 1� � (a1)

; n 2 N(�(a1); b1):

(2:10)
Let H1 2 D (a1; b1) be given as in the hypothesis. Multiplying H2

1 (n+ 1) through
(2:10) we �nd

�w (n)H2
1 (n+ 1) � 1

k(n)�w(n)w
2 (n)H2

1 (n+ 1)

+ [p1 (n) + P� (n)]
�(n)��(a1)
n+1��(a1)H

2
1 (n+ 1)

for n 2 N(�(a1); b1): Since

�(H2
1 (n)w (n)) = H

2
1 (n+ 1)�w (n) + w (n)�H

2
1 (n)

�(H2
1 (n)) = �(H1 (n)H1 (n))

= H1(n+ 1)�H1 (n) +H1 (n)�H1 (n)

= �H1 (n) (H1(n+ 1) +H1 (n))

and

�(H2
1 (n)) = �H1 (n) [2H1(n+ 1)��H1 (n)]

then taking the sum from a1 to (b1 � 1) we obtain

b1�1X
n=a1

�
[p1 (n) + P� (n)]

� (n)� � (a1)
n+ 1� � (a1)

H2
1 (n+ 1)� k (n) (�H1 (n))2

�

� ��H2
1w (a1)�

b1�1X
n=a1

"
w(n)H1(n+ 1)p
k (n)� w (n)

+
p
k (n)� w (n)�H1 (n)

#2
:

b1�1X
n=a1

�
[p1 (n) + P� (n)]

� (n)� � (a1)
n+ 1� � (a1)

H2
1 (n+ 1)� k (n) (�H1 (n))2

�

� �
b1�1X
n=a1

"
w(n)H1(n+ 1)p
k (n)� w (n)

+
p
k (n)� w (n)�H1 (n)

#2
< 0: (2:11)

Note that

b1�1X
n=a1

"
w(n)H1(n+ 1)p
k (n)� w (n)

+
p
k (n)� w (n)�H1 (n)

#2
= 0
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is possible only if

w(n)H1(n+ 1)p
k (n)� w (n)

+
p
k (n)� w (n)�H1 (n) = 0:

Therefore

�w(n)H1(n+ 1)p
k (n)� w (n)

=
p
k (n)� w (n)�H1 (n)

�w(n)H1(n+ 1) = (k (n)� w (n))�H1 (n)
and then

k (n)�x (n)

x(n)
H1(n+ 1) =

k (n)x (n+ 1)

x(n)
�H1(n)

�x (n)H1(n+ 1) = x (n+ 1)�H1 (n) :

Hence

�(
H1 (n)

x (n)
) = 0

which implies
H1 (n) = cx (n) ;

where c is a constant. This, however, contradicts the positivity of x (n) : Now
(2:11) contradicts (2:3): Thus, the proof is complete, when x (n) is eventually posi-
tive. The proof can be accomplished similarly by working with N(a2; b2) instead of
N(a1; b1) when x (n) is eventually negative.

Example 2.1. Consider the forced delay di¤erence equation,

�2x (n) +m1 sin
��n
60

�
x (n� 2) +m2 cos

��n
60

�
x3 (n� 2) = cos

��n
10

�
(2:12)

where m1; m2 > 0: Let

a1 = 8 + 120k; b1 = 11 + 120k;

a2 = 17 + 120k; b2 = 20 + 120k

for any nonnegative integer k and let H1 (n) = sin
�
� (n+1)3

�
: It is easy to check

that (2:1) is satis�ed, namely

p1(n) = m1 sin(
�n

60
) � 0; for n 2 N(6 + 120k; 11 + 120k) [ (15 + 120k; 20 + 120k):

q1(n) = m2 cos(
�n

60
) � 0; for n 2 N(6 + 120k; 11 + 120k) [ (15 + 120k; 20 + 120k):

and
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e(n) = cos(
�n

10
) � 0; for n 2 N(6 + 120k; 11 + 120k)

e(n) = cos(
�n

10
) � 0; for n 2 N(15 + 120k; 20 + 120k)

where �(n) = n� 2:
By Theorem 2.1, the equation (2:12) is oscillatory when m1 = 1 , m2 > 79;

when m2 = 1 , m1 > 14:

3. Advanced Difference Equations

Consider

�(k (n)�x(n))+p2 (n)x (� (n))+q2 (n) jx (� (n))j
��1

x (� (n))=e (n) : (EA)

where n � n0; n0 2 N = f0; 1; :::g ; � > 1; k; p2; q2; e and � are sequences of real
numbers, k (n) > 0 is nondecreasing; �(n) > n; � is nondecreasing. Suppose that
for any given N � 0 there exist c1; c2; d1; d2 � N such that c1 < d1; c2 < d2 and

p2 (n) � 0; q2 (n) � 0; for n 2 N(c1; �(d1)) [ N(c2; �(d2)): (3:1)

Let e (n) satis�es

e (n) � 0; for n 2 N(c1; �(d1))
e (n) � 0; for n 2 N(c2; �(d2)):

(3:2)

Now, we can give the following .

Theorem 3.1. Suppose that (3:1) and (3:2) hold. If there exist an H2 2
D (ci; di) such that

di�1X
n=ci

�
H2
2 (n+ 1) (p2 (n) + P� (n))

� (di)� � (n)
� (di)� (n+ 1)

� (�H2 (n))2k (n)
�
� 0 (3:3)

for i = 1; 2; then (EA) is oscillatory.

Proof. To arrive at a contradiction, let us suppose that x (n) is a nonoscillatory
solution of equation (EA) : First, assume x (n), x (� (n)) are positive for all n �
n1 for some n1 > 0:

Considering (2:6); in view of (EA), we see that

�w(n) =
x(n)

k (n)x(n+ 1)
w2 (n) + p2 (n)

x (� (n))

x (n+ 1)

+
�
q2 (n)x

� (� (n))� e (n)
� 1

x (n+ 1)
:

In (2:5) instead of �(n) ; � and q1 we take �(n) ; � and q2 respectively, we get
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�w (n) � x(n)

k (n)w (n+ 1)
w2 (n) + [p2 (n) + P� (n)]

x (� (n))

x (n+ 1)
; n 2 N(c1; �(d1)):

By the same steps in Theorem 2.1, we obtain

�w (n) � 1

k (n)� w (n)w
2 (n) + [p2 (n) + P� (n)]

x (� (n))

x (n+ 1)
; n 2 N(c1; �(d1)):

(3:4)
Note that �(k (n)�x(n)) � 0 on [c1;�(d1)] : In a similar manner as in the proof
of Theorem (2:1) we get

x(� (n))

x(n+ 1)
� � (d1)� � (n)
� (d1)� (n+ 1)

; n 2 N(c1; �(d1)): (3:5)

Applying inequality (3:5) to (3:4), we obtain

�w (n) � 1

k (n)� w (n)w
2 (n)+[p2 (n) + P� (n)]

� (d1)� � (n)
� (d1)� (n+ 1)

; n 2 N(c1; �(d1)):

Using the same steps in the proof of Theorem (2:1) we get

d1�1X
n=c1

�
[p2 (n) + P� (n)]

� (d1)� � (n)
� (d1)� (n+ 1)

H2
2 (n+ 1)� k (n) (�H2 (n))2

�

� �
d1�1X
n=c1

"
w(n)H2(n+ 1)p
k (n)� w (n)

+
p
k (n)� w (n)�H2 (n)

#2
< 0: (3:6)

(3:6) contradicts (3:3): Thus the proof is complete, when x(n) is eventually posi-
tive. The proof can be accomplished similarly by working with N(c2; d2) instead of
N(c1; d1) when x(n) is eventually negative.

Example 3.1. Consider the advanced di¤erence equation,

�2x (n) +m1 sin
��n
60

�
x (n+ 2) +m2 cos

��n
60

�
x3 (n+ 2) = cos

��n
10

�
(3:7)

where m1; m2 � 0: Let

c1 = 6 + 120k; d1 = 9 + 120k;

c2 = 15 + 120k; d2 = 18 + 120k

for any nonnegative integer k and let H2 (n) = sin
�
n�
3

�
: It is easy to check that

(3:1) is satis�ed, namely
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p2(n) = m1 sin(
�n

60
) � 0; for n 2 N(6 + 120k; 11 + 120k) [ (15 + 120k; 20 + 120k):

q2(n) = m2 cos(
�n

60
) � 0; for n 2 N(6 + 120k; 11 + 120k) [ (15 + 120k; 20 + 120k):

and

e(n) = cos(
�n

10
) � 0; for n 2 N(6 + 120k; 11 + 120k)

e(n) = cos(
�n

10
) � 0; for n 2 N(15 + 120k; 20 + 120k)

where �(n) = n+ 2:
By Theorem 3.1, the equation (3:7) is oscillatory when m1 = 1 , m2 > 10;

when m2 = 1 , m1 > 1:

4. Delay and Advanced Difference Equations

We obtain the delay and advanced di¤erence equations as follows:

�(k (n)�x(n)) + p1 (n)x (� (n)) + q1 (n) jx (� (n))j��1 x (� (n))
+p2 (n)x (� (n))+q2 (n) jx (� (n))j

��1
x (� (n))=e (n) ;

(EA;D)

where n � n0; n0 2 N = f0; 1; :::g ; � > 1; k; p1; p2; q1; q2; e; � and � are sequences
of real numbers, k (n) > 0 is nondecreasing; � (n) < n; �(n) > n; � and � are
nondecreasing and limt!1 � (t) =1 :

Suppose that for any given N � 0 there exist a1; a2; b1; b2 ; c1; c2; d1; d2 � N
such that a1 < b1; a2 < b2 and c1 < d1; c2 < d2:
Theorem 4.1. Suppose that (2:1); (2:2) and (3:1); (3:2) hold. If there exists an

H1 2 D (ai; bi) and H2 2 D (ci; di) such that either

bi�1X
n=ai

�
H2
1 (n+ 1) (p1 (n) + P� (n))

� (n)� � (ai)
n+ 1� � (ai)

� (�H1 (n))2k (n)
�
� 0;

or

di�1X
n=ci

�
H2
2 (n+ 1) (p2 (n) + P� (n))

� (di)� � (n)
� (di)� (n+ 1)

� (�H2 (n))2k (n)
�
� 0

for i = 1; 2, then (EA;D) is oscillatory.


