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CHARACTERIZATIONS OF INCLINED CURVES WHICH IS
CONCERNED WITH OSCULATING SPHERE IN Ln FOR

SPACE-LIKE CURVES

A. FUNDA YALINIZ AND H.HILMI HACISALIHO ¼GLU

Abstract. In this study, we �rst calculate the higher ordered curvatures in
terms of higher ordered harmonic curvatures for the space-like curves in Ln .
Thus, we give characterizations of inclined curves in Ln for space-like curves.
Furthermore, we obtain the coordinates of the central point of the space-like
curve�s osculating sphere. Then we calculate the higher ordered curvatures
of the space-like curves in terms of the coordinates of the central point of its
osculating sphere. At the end, we give another characterization for inclined
curves in Ln, in terms of these coordinates.

1. Introduction

The characterizations of inclined curves in En is given in [3] and [4] that

1) 
 is an inclined curve in En ,
n�2P
i=1

H2
i =constant and

2) 
 is an inclined curve in En�1 , det
�
V

0

1 ; V
0

2 ; :::; V
0

n

�
= 0.

In Section 3 and Section 5, we show that inclined curves which is space-like in
Ln have the following characterizations:

1) 
 is an inclined curve in Ln ,
n�2P
i=1

"i+1H
2
i =constant and

2) 
 is an inclined curve in Ln�1 , det
�
V

0

1 ; V
0

2 ; :::; V
0

n

�
= 0.

In Section 4, we obtain the relation between the higher ordered curvatures and
the higher ordered harmonic curvatures.
In addition, characterizations of inclined curves which is concerned with oscu-

lating sphere in En are given in [7]. In Section 6, we show that if M is a space-like
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12 A. FUNDA YALINIZ AND H.HILMI HACISALIHO ¼GLU

curve in Ln then the coordinates of the central point of the osculating sphere of M
are

mi : I ! R

mi =

8><>:
0 ; i = 1
"1
k1(s)

; i = 2

fm0

i�1(s) + ki�2(s)mi�2(s)g "i�1"i�2ki�1(s)
; 2 < i � n:

In Section 7, we give the relation between the functions of mi and ki. In Section
8, we write the relationship between m

0

i and mi values in the matrix form. Let M
be a space-like curve in Ln+1, n � 4, and let n be an even number. If we denote
the coe¢ cient matrix as Bn; we get the following characterizations:

1) detBn = 0,
nP
i=2

"i�1m
2
i =constant

2) detBn = 0 , M � Ln+1 is an inclined curve in Ln; where m0

i =
dmi

ds and s
denotes the arc length parameter of M .

2. Preliminaries

2.1. Symmetric bilinear forms. Let V be a real vector space. A bilinear form
on V is an r-bilinear function:

h ; i : VxV! R.
We also consider only the symmetric case. A symmetric bilinear form h ; i on V is :
(a) positive [negative] de�nite providing that v 6= 0 implies hv; vi > 0 [ < 0 ] ,
(b) positive [negative] semide�nite providing that hv; vi � 0 [ � 0 ] for all v2 V.
(c) nondegenerate providing that hv; wi = 0 for all w 2 V implies v 6= 0:
If h ; i is a symmetric bilinear form on V, then, for any subspace W of V, the

restriction h ; i jWXWdenoted merely by h ; i jW is also symmetric and bilinear.
The index q of a symmetric bilinear form h ; i on V is the largest integer that is

the dimension of a subspace W � V on which h ; i jW is negative de�nite.
Thus, 0 � q � dim V and q =0 if and only if h ; i is positive semide�nite [5].

2.2. Scalar product. A scalar product h ; i on a vector space V is a nondegenerate
symmetric bilinear form on V [5].

Lemma 2.1. A scalar product space V 6=0 has an orthonormal basis.The matrix
of h ; i relative to an orthonormal basis e1; e2; :::; en for V is diagonal. In fact,

< ei; ej >= �i j"j where "j =< ej ; ej >= �1 [5]:

Lemma 2.2. Let e1; e2; :::; en be an orthonormal basis for V, with
"j = < ej ; ej >. Then, each v 2 V has a unique expression

v =
nX

i= 1

"i < v; ei > ei [5]:
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Lemma 2.3. For any orthonormal basis e1; e2; :::; en for V, the number of negative
signs in the signature ("1; "2; :::; "n) is the index q of V [5].

Lemma 2.4. For any orthonormal basis e1; e2; :::; en for V, the number of an
integer q with 0 � q � n , changing the �rst q plus signs above the minus, gives
tensor

< v;w >= �
qX

i= 1

viwi +
nX

j= q+1

vjwj

of index q.

The resulting semi-Euclidean space Rnq reduces to Rn if q = 0. For n � 2 , Rn1
is called Minkowski n-space; if n = 4, it is the simplest example of a relativistic
spacetime.
Fix the notation as follows:

"i = �1 for 0 � i � q � 1
"i = 1 for q � i � n� 1.

A Lorentz vector space is a scalar product space of index 1 and dimension � 2
[5]:

2.3. Lorentzian space. Let M be a smooth connected paracompact Hausdor¤
manifold, and let � : TM ! M denote the tangent bundle of M. A Lorentzian
metric <;> for M is a smooth symmetric tensor �eld of type (0,2) on M such that,
for each p 2 M, the tensor

<;>p: TPMxTPM ! R
is a nondegenerate inner product of signature (-, +, . . . ,+). In other words, a
matrix representation of <;> at p will have one negative eigenvalue, and all other
eigenvalues will be positive.
A Lorentzian manifold (M, <;>) is a manifold M together with a Lorentzian

metric <;> for M. All noncompact manifolds admit Lorentzian metrics. However,
a compact manifold admits a Lorentzian metric if its Euler characteristic vanishes
[6].
Lorentzian space is the manifold M =Rn together with the metric

ds2 = �dx21 +
nX
i=2

dx2i :

This space-time is time oriented by the vector �eld @ = @x
1
[6]:

De�nition 2.5. A tangent vector v 2 Ln is

(i) space-like if hv; vi > 0 or v = 0;
(ii) null if hv; vi = 0 and v 6= 0;
(iii) time-like if hv; vi < 0 [6].
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2.4. Curves and curvatures. A curve in a Lorentzian space, Ln, is a smooth
mapping:

� : I ! Ln

where I is open interval in the real line R: The interval I has a coordinate system
consisting of the identity map u of I: The velocity vector of � at t 2 I is

�
0
=
d�(u)

d(u)
jt:

A curve � is said to be regular if �
0
(t) does not vanish for all t in I: � 2 Ln is

space-like if its velocity vectors �
0
are space-like for all t 2 I; similar to time-like

and null.
If � is a space-like or time-like curve, we can reparametrize it such that
< �

0
(t); �

0
(t) >= "0 (where "0 = +1 if � is a space-like and "0 =-1 if � is

time-like, respectively ). In this case, � is said to be unit speed, or it has arc
length parameterization. Here and in the sequel, we assume that � has arc length
parametrization [5].

De�nition 2.6. Let M � Ln be the curve with coordinate neighborhood (I ,�);
and letfV1; V2; :::; Vrgbe the Frenet r-frame at �(s) with s2 I. Then, the function

ki : I ! R; 1 � i � r

s! ki(s) = < V
0

i (s); Vi+1(s) >

is called i.th curvature function of the curve M, and for s2 I, ki(s) is called i.th
curvature of M at �(s):

De�nition 2.7. Let M be curve in Ln , parametrized by its own arc length. Let
us denote the Frenet vector �elds of this curve fV1; V2; :::; Vrg. Then, the equality

ki = "i < V
0

i (s); Vi+1(s) >

is called the higher ordered curvatures of the curve M [2]:

Theorem 2.8. Let M � Lnbe a regular curve with coordinate neighborhood (I , �),
and let fV1; V2; :::; Vrgbe the Frenet r-frame at �(s) with s2 I. Then,

a) V
0

1(s) =k1(s)V2(s)
b) V

0

i(s) = �"i�2:"i�1:ki�1(s):Vi�1(s)+ki(s):Vi+1(s); i = 1; 2; ::; r
c) V

0

r(s) = �"r�2:"r�1:kr�1(s):Vr�1(s) [2]:
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3. A New Characterization for Inclined Curves in Lorentzian Spaces
for Sace-Like Curves

De�nition 3.1. Let 
 be a space-like curve in Ln; and let V1 be the �rst Frenet
vector �eld of 
. X 2 �(Ln) is a constant unit vector �eld. If

< V1; X >= cosh ' (constant)

then 
 is called a general helix (inclined curve) in Ln: ' is called slope angle, and
the space SpfXg is called slope axis [1].

De�nition 3.2. Assume that 
 is space-like or time-like curve in Ln: If the higher
ordered curvatures of 
 are kr , 1 < r � n � 1, then the higher ordered harmonic
curvatures Hr, 1 � r � n� 2, are

Hi : I! R

H1 = "0:"1
k1
k2

Hi =
n
H

0

i�1 + "i�1:"i:ki:Hi�2

o 1

ki+1
, 2 � i � n� 2

[1].

Theorem 3.3. Let 
 : I ! Ln be a general helix (inclined curve), parametrized by
its arc length. Let X be a unit and constant vector �eld of Ln; and let fV1; V2; :::; Vrg
be Frenet r-frame at the point of 
(s) of 
. If we consider the angle between 


0
and

X as ', we have
Hj : I ! R; < Vj+2; X >= Hj cosh ':

Then, the value of the Hj function at the point of 
(s) is called as the j-th harmonic
curvature according to X at the point of 
(s) of 
 [1].

Theorem 3.4. Let 
 be space-like curve in Ln. Let the Frenet frame of 
 be
F = fV1; V2; :::; Vng ; and the higher ordered harmonic curvatures be H1;H2; :::;Hn�2.
Then,


 is an inclined curve in Ln ,
n�2X
j=1

"j+1H
2
j = constant. (1)

Proof. ()) Let 
 be inclined curve in Ln. We denote slope angle of 
 with ';
and we also denote slope axis of 
 with SpfXg. From De�nition3.1 we can write
< V1; X >= cosh '; and from Theorem 3.1, we can write
< Vi+2; X >= Hi < V1; X >. If we take derivative of the equation

< V1; X >= cosh '

we will get < V
0

1 ; X >= 0 or < V2; X >= 0.
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Since X 2 Sp fV1; V2; :::; Vng we can write

X =
nX
i=1

"i�1 < Vi; X > Vi.

Thus, we have

X = "0 < V1; X > V1 + "1 < V2; X > V2 +
nX
i=3

"i�1 < Vi; X > Vi:

Since < V1; X >= cosh ' and < V2; X >= 0; we have

X = "0 cosh 'V1 +
n�2X
j=1

"j+1 < Vj+2; X > Vj+2

or

X = cosh '

8<:"0V1 +
n�2X
j=1

"j+1HjVj+2

9=; : (2)

Since X is a space-like and unit vector �eld, we can write

1 = kXk2 =< X;X > :

Thus, using the equation (2) ; we obtain

< X;X >= cosh2 '

8<:< V1; V1 > +
n�2X
j=1

H2
j < Vj+2; Vj+2 >

9=; :
Since < X;X >= 1 and < Vj+2; Vj+2 >= "j+1, we can write

1 = cosh2 '

8<:"0 +
n�2X
j=1

H2
j "j+1

9=;
or since "0 = 1, we can write

1 = cosh2 '

8<:1 +
n�2X
j=1

H2
j "j+1

9=; : (3)

Hence, we obtain
n�2X
j=1

H2
j "j+1 = � tanh2 ' = constant.
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(() Let us assume that
n�2P
j=1

H2
j "j+1 = � tanh2 '(=constant), and let us show

that 
 is an inclined curve. We know that

X = cosh'

8<:V1 +
n�2X
j=1

"j+1HjVj+2

9=; (4)

and X is a space-like vector �eld.
Hence, we show that X is a constant unit vector �eld. If we take the derivative

of (4) ; we will get

DV1X = cosh '

8<:DV1V1 +
n�2X
j=1

"j+1 (DV1HjVj+2 +HjDV1Vj+2)

9=; :
Using the value of DV1Hj in De�nition 3.2 and the value of DV1Vj+2 at Theorem
2.5, we obtain

DV1X = cosh '

8<:k1V2 +
n�2X
j=1

"j+1

�
kj+2Hj+1Vj+2 � "j"j+1kj+1Hj�1Vj+2
�"j"j+1kj+1HjVj+1 + kj+2HjVj+3

�9=; :
Hence, we also obtain DV1X = 0. As a result, X is a constant vector �eld. Fur-
thermore, < X;X >= +1, and this means that X is a unit vector �eld. Finally, for
space-like curve, 
 and the constant unit vector �eld (space-like), X we can write

< V1; X >=< V1; cosh '

8<:V1 +
n�2X
j=1

"j+1HjVj+2

9=; > :

Hence, we obtain
< V1; X >= cosh ':

This completes the proof of theorem. �

4. Higher Ordered Curvatures in Terms of Higher Ordered Harmonic
Curvatures

Theorem 4.1. Let 
 be an inclined curve (space-like) in Ln. The relation between
the higher ordered curvatures kr , 2 < r � n� 2, and the higher ordered harmonic
curvatures Hr, 1 � r � n� 2, is

kr = "r�1

r�2P
i=1

"i+1(H
2
i )

0

2Hr�1Hr�2
: (5)

Proof. We will prove the theorem by induction method. From De�nition 3.2; we
have

ki+1 =
H

0

i�1 + "i�1"ikiHi�2

Hi
; 1 < i � n� 2: (6)
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For i = 2, (6) gives us

k3 =
H

0

1 + "1"2k2H0
H2

: (7)

Since we assume that H0 = 0, (5) is satis�ed for i = 2. If we extend (7) by 2H1;

then we have k3 =
2H1H

0
1

2H1H2
or k3 =

1P
i=1

(H2
i )

0

2H1H2
. This proves that theorem is true for

r = 3.
Now,let us assume that the theorem is true for r = p� 1; and then let us prove

that the theorem is also true for r = p.
As our assumption, we have that

kp�1 = "p�2

p�3P
i=1

"i+1(H
2
i )

0

2Hp�2Hp�3
: (8)

In the equation (6) for i = p� 1; we have

kp =
H

0

p�2 + "p�2"p�1kp�1Hp�3

Hp�1
;

and if we replace here the value of kp�1, from (8), we will obtain

kp = "p�1

p�2P
i=1

"i+1(H
2
i )

0

2Hp�1Hp�2
.

Thus, the theorem is also true for r = p. This completes the proof of the theorem.
�

5. Another Characterization for Inclined Curvatures in Lorentzian
Spaces for Space-Like Curves

Theorem 5.1. Let 
 be space-like curve in Ln, n = 2k � 4. Let us assume that
the Frenet frame of 
 be F = fV1; V2; :::; Vng. Then,


 is an inclined curve in Ln�1 , det
�
V

0

1 ; V
0

2 ; :::; V
0

n

�
= 0:

Proof. In this proof, we use the induction method.
()) Let 
 be an inclined curve in Ln�1. Then, we show that
det

�
V

0

1 ; V
0

2 ; :::; V
0

n

�
= 0: From Theorem 2.5, we know that

V
0

1 = k1V2

V
0

2 = �"0"1k1V1 + k2V3
V

0

3 = �"1"2k2V2 + k3V4
V

0

4 = �"2"3k3V3:
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Then, we can write

det(V
0

1 ; V
0

2 ; V
0

3 ; V
0

4 ) =

��������
0 k1 0 0

�"0"1k1 0 k2 0
0 �"1"2k2 0 k3
0 0 �"2"3k3 0

��������
or

det(V
0

1 ; V
0

2 ; V
0

3 ; V
0

4 ) = "0"1"2"3k
2
1k
2
3: (9)

From the Theorem 4.1, we may write

k3 =

1P
i=1

(H2
i )

0

2H1H2
:

If we replace here the value of k3, from (9) ; we will obtain

det(V
0

1 ; V
0

2 ; V
0

3 ; V
0

4 ) = "0"1"2"3k
2
1

2664
1P
i=1

(H2
i )

0

2H1H2

3775
2

:

According to hypothesis, if 
 is an inclined curve in L3, then
1P
i=1

H2
i =const. Thus,

we have
1P
i=1

(H2
i )

0
= 0 or det(V

0

1 ; V
0

2 ; V
0

3 ; V
0

4 ) = 0.

As a result, the theorem is true for n = 4. Now, let us assume that the theorem
is true for n = p:We show that the theorem is also true for n = p+ 2.
As our assumption, we have
det (V

0

1; :::; V
0

p)

=

���������������

0 k1 0 � � � 0 0 0
�"0"1k1 0 k2 � � � 0 0 0

0 �"1"2k2 0 � � � 0 0 0
...

...
...

. . .
...

...
...

0 0 0 � � � 0 kp�2 0
0 0 0 � � � �"p�3"p�2kp�2 0 kp�1
0 0 0 � � � 0 �"p�2"p�1kp�1 0

���������������
or

det(V
0

1 ; :::; V
0

p ) = "0"1"2:::"p�1k
2
1k
2
3:::k

2
p�1: (10)

Now, we show that the theorem is true for n = p+ 2.
We have
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det (V
0

1; :::; V
0

p+2)

=

���������������

0 k1 0 � � � 0 0 0
�"0"1k1 0 k2 � � � 0 0 0

0 �"1"2k2 0 � � � 0 0 0
...

...
...

. . .
...

...
...

0 0 0 � � � 0 kp 0
0 0 0 � � � �"p�1"pkp 0 kp+1
0 0 0 � � � 0 �"p"p+1kp+1 0

���������������
:Calculation of this determinant gives us that

det(V
0

1 ; :::; V
0

p+2) = det(V
0

1 ; :::; V
0

p ):"p"p+1k
2
p+1

= "0"1"2:::"p�1"p"p+1k
2
1k
2
3:::k

2
p�1k

2
p+1

(11)

If we replace the value of kp+1 of Theorem 4.1, we will have

det(V
0

1 ; :::; V
0

p+2) = "0"1:::"p+1k
2
1k
2
3:::k

2
p�1

26664"p
p�1P
i=1

"i+1(H
2
i )

0

2HpHp�1

37775
2

:

According to the hypothesis, we may write
p�1X
i=1

"i+1H
2
i = constant )

p�1X
i=1

"i+1(H
2
i )

0
= 0:

Thus, the last equation becomes

det(V
0

1 ; :::; V
0

p+2) = 0;

and it proves the necessity of the theorem.
(()Let us assume that det(V 0

1 ; :::; V
0

n) = 0. Then, we will show that 
 is an
inclined curve. For the case of n = 4; we can write

det(V
0

1 ; V
0

2 ; V
0

3 ; V
0

4 ) = �

266664k1
�

1P
i=1

H2
i

�0

2H1H2

377775
2

:

According to the hypothesis, det(V
0

1 ; V
0

2 ; V
0

3 ; V
0

4 ) = 0:

Since k1 6= 0; we have
�

1P
i=1

H2
i

�0

= 0 or
1P
i=1

H2
i =constant.Thus, the theorem is

true for n = 4.
Now, let us assume that the theorem is true for n = p:We show that the theorem

is also true for n = p+ 2.
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In the case of n = p; we can write

det(V
0

1 ; :::; V
0

p ) = "0"1:::"p�1k
2
1k
2
3:::k

2
p�1

= 0:

Thus, for n = p+ 2; we have

det(V
0

1 ; :::; V
0

p+2) = det(V
0

1 ; :::; V
0

p )"p"p+1k
2
p+1

= "0"1:::"p+1 [k1k3:::kp+1]
2

= 0:

Since we assume that k1 6= 0; k3 6= 0; :::; kp�1 6= 0; then we obtain that kp+1 = 0.
This means that

kp+1 = "p

p�1P
i=1

"i+1(H
2
i )

0

2Hp�1Hp
= 0

or
p�1X
i=1

"i+1H
2
i = constant.

Thus, 
 is an inclined curve in Lp+1. As a result, the theorem is also true for
n = p+ 2. This means that the theorem is true. �

6. Finding the Coordinates of the Central Point of the Space-Like

Curves Osculating Sphere

Let M � Ln be a space-like curve with coordinate neighborhood (I; 
); and let
fV1(s); :::Vn(s)g be the Frenet n-frame at 
(s) with s 2 I. Let b be the center of
osculating sphere. Then, we can write

b = 
(s) +m1(s)V1(s) + :::+mn(s)Vn(s):

Thus, we have
b� 
(s) = m1(s)V1(s) + :::+mn(s)Vn(s); (12)

where mi denotes the coordinate functions of the centers of osculating spheres of
M .
Let r be the radius of osculating sphere of M . Then, we can write

j< b� 
(s); b� 
(s) >j = r2: (13)

If we take the derivative of (13) with respect to V1; we will obtain

< V1(s); b� 
(s) >= 0; (14)

and from equation (12) ; we have

< V1(s); b� 
(s) >= m1(s): (15)
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From (14 ) and (15) ; we get m1(s) = 0. If we take the derivative of the equation
(14) with respect to V1;

< V
0

1 (s); b� 
(s) > � < V1(s); V1(s) >= 0

is obtained, and using the value of V
0

1 (s) from (13), we get

< k1(s)V2(s); b� 
(s) > �"0 = 0;

where "0 = 1 since M � Ln is a space-like curve: Therefore, we can write

< V2(s); b� 
(s) >=
1

k1(s)
: (16)

Also from (12) ; we know that

< V2(s); b� 
(s) >= "1m2(s): (17)

Thus, from (16) and (17) ; we obtain

m2(s) =
"1
k1(s)

: (18)

If we take the derivative of (17) ; we will get

< V
0

2 (s); b� 
(s) > � < V2(s); V1(s) >= "1m
0

2(s):

We know that < V1(s); V2(s) >= 0 and

V
0

2 (s) = �"0"1k1(s)V1(s) + k2(s)V3(s)

from Theorem 2.5. Thus, we obtain

�"0"1k1(s) < V1(s); b� 
(s) > +k2(s) < V3(s); b� 
(s) >= "1m
0

2(s):

Since < V3(s); b� 
(s) >= "2m3(s) from (12) ; we can write

m3(s) = "1"2
m

0

2(s)

k2(s)
: (19)

If we continue in this way for i = 4; :::n, we can write from (12)

< Vi�1(s); b� 
(s) >= "i�2mi�1(s): (20)

If we take the derivation of equation (20) with respect to V1; we will obtain

< V
0

i�1(s); b� 
(s) > � < Vi�1(s); V1(s) >= "i�2m
0

i�1(s):

Since V
0

i�1(s) = �"i�3"i�2ki�2(s)Vi�2(s) + ki�1(s)Vi(s) from Theorem 2.5, the
result is

mi(s) =
"i�1"i�2
ki�1(s)

fm
0

i�1(s) + ki�2(s)mi�2(s)g: (21)

Finally we can give the following.
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De�nition 6.1. Let M be a space-like curve in Ln+1; and let the coordinate
functions of osculating sphere of M be m1; :::;mn+1:Then

mi : I ! R

mi =

8><>:
0 ; i = 1
"1
k1(s)

; i = 2
"i�1"i�2
ki�1(s)

fm0

i�1(s) +mi�2(s)g ; 2 < i � n

(22)

where ki, 1 � i � n, are the higher ordered curvatures of the space-like curve.

7. The Relations Between the functions of mi and ki

Theorem 7.1. Let M be a space-like curve in Ln+1. Then, the relation between
the functions of mi and ki is

kp = "p

pP
i=2

"i�1(m
2
i )

0

2mpmp+1
; 2 � p < n+ 1 (23)

where mi and kp denote the coordinate functions of the centers of osculating spheres
of M and the curvature functions of M � Ln+1, respectively.

Proof. We will use the induction method.
From De�nition 6.1 we have

ki�1 = fm
0

i�1 + ki�2mi�2g
"i�1"i�2
mi

; 2 < i < n+ 1

or for the case of i = j + 1, we have

kj = fm
0

j + kj�1mj�1g
"j"j�1
mj+1

; 1 < j < n: (24)

If we get j = 2 in the equation (24) ; we will have

k2 = "1"2
m

0

2

m3
:

On the other hand, if we write p = 2 in the equation (23) ; we will obtain

k2 = "1"2
m

0

2

m3
:

Therefore, the theorem is true for p = 2. Now, we assume that the theorem is true
for p = r; and let us prove it for p = r + 1.
For p = r; we have

kr = "r

rP
i=2

"i�1(m
2
i )

0

2mrmr+1
: (25)



24 A. FUNDA YALINIZ AND H.HILMI HACISALIHO ¼GLU

Now, we get j = r + 1 in the equation (24). Then, we obtain

kr+1 = "r"r+1
m

0

r+1 + krmr

mr+2
: (26)

If we replace kr from (25) into (26), we will obtain

kr+1 = "r+1

r+1P
i=2

"i�1(m
2
i )

0

2mr+1mr+2
:

This completes the theorem. �

8. Characterization of Inclined Curves Which is Concerned With
Osculating Sphere in Ln for Space-Like Curves

Theorem 8.1. Let M be a space-like curve in Ln+1, n � 4, and let n be an even
number. Then, the relationship between m0i and mi values in the matrix form as
follows:266666666664

m0
2

m0
3

m0
4

:
:

m0
n�1
m0
n

m0
n+1

377777777775
=

26666666666664

0 "1"2k2 0 � � � 0 0 0
�k2 0 "2"3k3 � � � 0 0 0
0 �k3 0 � � � 0 0 0
...

...
...

...
...

...
...

...
...

... � � �
...

...
...

0 0 0 � � � 0 "n�2"n�1kn�1 0
0 0 0 � � � �kn�1 0 "n�1"nkn
0 0 0 � � � 0 �kn 0

37777777777775

266666666664

m2

m3

m4

:
:

mn�1
mn

mn+1

377777777775
(27)

If we denote the coe¢ cient matrix as Bn; we will get the following characteriza-
tions:

Theorem 8.2. (1) detBn = 0,
nP
i=2

"i�1m
2
i =constant

(2) detBn = 0, M � Ln+1 is an inclined curve in Ln; where m0

i =
dmi

ds and
s denotes the arc length parameter of M .
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Proof. 1: ())Let us assume that detBn = 0:We show that
nP
i=2

"i�1m
2
i =constant.

For n = 4; the theorem is true.
For n =4, we know that from (27)

detB4 =

��������
0 "1"2k2 0 0
�k2 0 "2"3k3 0
0 �k3 0 "3"4k4
0 0 �k4 0

�������� (28)

or

detB4 = "1"2"3"4k
2
2k
2
4: (29)

On the other hand, from the hypothesis, we know that
detB4 = 0. Therefore, we can write k2k4 = 0: Since we assume that k2 6= 0,
from Theorem 7.1 we have

k4 = "4

4P
i=2

"i�1(m
2
i )

0

2m4m5
= 0; (30)

that is,

4X
i=2

"i�1m
2
i = constant.

This proves the theorem for n = 4.
Now, let us assume that the theorem is true for n = p; and let us show that the

theorem is also true for n = p+ 2. Then, from (27) we can write

detBp=

�������������

0 "1"2k2 0 0 � � � 0 0 0
�k2 0 "2"3k3 0 � � � 0 0 0
0 �k3 0 "3"4k4 � � � 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 � � � �kp�1 0 "p�1"pkp
0 0 0 0 � � � 0 �kp 0

�������������
(31)

or

detBp = "1"2"3"4:::"p�1"pk
2
2k
2
4:::k

2
p: (32)
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Now, we prove that the theorem is also true for n = p+2. From (27), we can write

detBp+2=

�����������������

0 "1"2k2 0 � � � 0 0 0 0
�k2 0 "2"3k3 � � � 0 0 0 0
0 �k3 0 � � � 0 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 � � � 0 kp 0 0
0 0 0 � � � �kp 0 "p"p+1kp+1 0

0 0 0 � � � 0 �kp+1 0 "p+1"p+2kp+2
0 0 0 � � � 0 0 �kp+2 0

�����������������
(33)

or
detBp+2 = "p+1"p+2k

2
p+2 detBP (34)

or
detBp+2 = "1:::"p"p+1"p+2k

2
2k
2
4:::k

2
pk
2
p+2: (35)

Since detBp+2 = 0; we have k2k4:::kpkp+2 = 0. Here since k2 6= 0,.., kp 6= 0, we
obtain kp+2 = 0: Thus, from Theorem 7.1 we can write

kp+2 = "p+2

p+2P
i=2

"i�1(m
2
i )

0

2mp+2mp+3
= 0 (36)

or
p+2X
i=2

"i�1m
2
i = constant.

This proves the necessity of the theorem.

(() Let us assume that
nP
i=2

"i�1m
2
i =constant, and we show that

detBn = 0. For n = 4; the theorem is true.
if we replace the value of k4 in the equation (29) into the equation (30),

detB4 = "1"2"3"4[k2

4P
i=2

"i�1(m
2
i )

0

2m4m5
]2

is obtained. From the hypothesis,

4X
i=2

"i�1m
2
i = constant)

4X
i=2

"i�1(m
2
i )

0
= 0:

Thus, we get detB4 = 0. This proves that the theorem is true for n = 4.
Now, let us assume that theorem is true for n = p; and let us prove that the

theorem is true for n = p+ 2.
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We may write from (34),(35), and (36)

detBp+2 = "p+1"p+2[

p+2P
i=2

"i�1(m
2
i )

0

2mp+2mp+3
]2 detBp:

Since we know that
p+2P
i=2

"i�1m
2
i =constant, we have

p+2P
i=2

"i�1(m
2
i )

0
= 0: Thus, we

obtain detBp+2 = 0, which proves the su¢ ciency of the theorem.
2: We will use the induction method:
(() Let us assume that M is an inclined curve in Ln. Then, from (1), we know

that
n�2P
i=1

"i+1H
2
i =constant. We show that detBn = 0. Theorem is true for n = 4.

From (5), the value of k4 is

k4 = "3

2P
i=1

"i+1(H
2
i )

0

2H2H3
:

Using this value in equation (29), we get

detB4 = "1"2"3"4

0BB@k2
2664"3

2P
i=1

"i+1(H
2
i )

0

2H2H3

3775
1CCA
2

:

According to the hypothesis, since M is an inclined curve in L3;

2X
i=1

"i+1H
2
i = constant)

2X
i=1

"i+1(H
2
i )

0
= 0

can be written, and thus we have detB = 0. This proves that the theorem is true
for n = 4. Now, let us assume that the theorem is true for n = p; and let us also
prove it for n = p+ 2: From (5), (31), (34) and (35) the following equation can be
written

detBp+2 = "1"2:::"p+2k
2
2:::k

2
p:

pP
i=1

"i+1(H
2
i )

0

2HpHp+1
:

According to the hypothesis, since M is an inclined curve in Ln
pP
i=2

"i+1H
2
i =constant )

pP
i=2

"i+1(H
2
i )

0
= 0, thus, detBp+2 = 0. This proves the

su¢ ciency of the theorem.
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()) Let us assume that detBn = 0; and let us show that the curveM is an inclined
curve. Theorem is true for n = 4. Indeed, since we know that

detB4 = "1"2"3"4k
2
2k
2
4

= [k2

2P
i=1

"i+1(H
2
i )

0

2H2H3
]2;

and according to the hypothesis, we may write

detB4 = 0:

Let us assume that k2 6= 0. Thus, we obtain
2X
i=1

"i+1(H
2
i )

0
= 0)

2X
i=1

"i+1H
2
i = constant.

This means that M is an inclined curve in L3:
Now, let us assume that the theorem is true for n = p; and let us show that the

theorem is true for n = p+ 2.
Since the theorem is true for n = p, then we have

detBp = "1:::"pk
2
2:::k

2
p:

On the other hand, for n = p+ 2; we may write

detBp+2 = "p+1"p+2k
2
p+2 detBp

= "1:::"p"p+1"p+2[k2k4:::kpkp+2]
2:

If we replace kp+2 into equation (5), we obtain

detBp+2 = "1:::"p"p+1"p+2

2664k2k4:::kp
pP
i=1

"i+1(H
2
i )

0

2HpHp+1

3775
2

:

According to the hypothesis, we have

detBp+2 = 0:

Here, since k2 6= 0; k4 6= 0; :::; kp 6= 0, the result is
pX
i=1

"i+1(H
2
i )

0
= 0)

pX
i=1

"i+1H
2
i = constant.

This means that the curve M is an inclined curve in Ln, which proves the
necessity of the theorem. �
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ÖZET: Bu çal¬̧smam¬zda, önce Ln� de uzay benzeri e¼griler için
yüksek mertebeden e¼grilikleri, yüksek mertebeden harmonik e¼gri-
likler cinsinden hesapl¬yoruz. Böylece, Ln�de uzay benzeri e¼griler
için e¼gilim çizgilerinin karakterizasyonlar¬n¬ veriyoruz. Sonra da
uzay benzeri e¼grilerin oskülatör küresinin merkez koordinatlar¬n¬
buluyoruz. Uzay benzeri e¼grilerin yüksek mertebeden e¼griliklerini
oskülatör küresinin merkez koordinatlar¬ cinsinden hesapl¬yoruz.
Son olarak Ln�de e¼gilim çizgilerinin bu koordinatlar cinsinden olan
karakterizasyonlar¬n¬veriyoruz.
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