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CHARACTERIZATIONS OF INCLINED CURVES WHICH IS
CONCERNED WITH OSCULATING SPHERE IN L™ FOR
SPACE-LIKE CURVES

A. FUNDA YALINIZ AND H.HILMI HACISALIHOGLU

ABSTRACT. In this study, we first calculate the higher ordered curvatures in
terms of higher ordered harmonic curvatures for the space-like curves in L™ .
Thus, we give characterizations of inclined curves in L™ for space-like curves.
Furthermore, we obtain the coordinates of the central point of the space-like
curve’s osculating sphere. Then we calculate the higher ordered curvatures
of the space-like curves in terms of the coordinates of the central point of its
osculating sphere. At the end, we give another characterization for inclined
curves in L™, in terms of these coordinates.

1. INTRODUCTION

The characterizations of inclined curves in E™ is given in [3] and [4] that
n—2
1) 7 is an inclined curve in E" < Y H? =constant and
i=1

2) « is an inclined curve in E"~! & det (Vll, VQI, . VT;) =0.

In Section 3 and Section 5, we show that inclined curves which is space-like in
L™ have the following characterizations:
n—2
1) «is an inclined curve in L" < Y ;41 H? =constant and
i=1

2) 7 is an inclined curve in 1" det (V, V.., V) = 0.

In Section 4, we obtain the relation between the higher ordered curvatures and
the higher ordered harmonic curvatures.

In addition, characterizations of inclined curves which is concerned with oscu-
lating sphere in E™ are given in [7]. In Section 6, we show that if M is a space-like
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curve in " then the coordinates of the central point of the osculating sphere of M
are

m; 1 — R
0 i=1
— £l =2
m; = , k1 (S) ) ) ?
{mi_1(s) + kia(s)mi—2(8)} 5750 - 2<i<n.

In Section 7, we give the relation between the functions of m; and k;. In Section
8, we write the relationship between m, and m; values in the matrix form. Let M
be a space-like curve in L™t!, n > 4, and let n be an even number. If we denote
the coefficient matrix as B,,, we get the following characterizations:
n
1) det B, =0 < Y &;_1m? =constant
i=2
2) det B, = 0 & M C L™ is an inclined curve in ", where m; = % and s
denotes the arc length parameter of M.

2. PRELIMINARIES

2.1. Symmetric bilinear forms. Let V be a real vector space. A bilinear form
on V is an r-bilinear function:

(,):VzV >R

We also consider only the symmetric case. A symmetric bilinear form ( , ) on V is :
(a) positive [negative| definite providing that v # 0 implies (v,v) >0 [ <0],
(b) positive [negative] semidefinite providing that (v,v) > 0] < 0] for all ve V.
(¢) nondegenerate providing that (v, w) = 0 for all w € V implies v # 0.

If (,) is a symmetric bilinear form on V, then, for any subspace W of V, the
restriction ( , ) |wxwdenoted merely by ( , ) |w is also symmetric and bilinear.

The index q of a symmetric bilinear form ( , ) on V is the largest integer that is
the dimension of a subspace W C V on which ( , ) |w is negative definite.

Thus, 0 < ¢ < dim V and ¢ =0 if and only if ( , ) is positive semidefinite [5].

2.2. Scalar product. A scalar product (, ) on a vector space V is a nondegenerate
symmetric bilinear form on V [5].

Lemma 2.1. A scalar product space V £0 has an orthonormal basis. The matrix
of (,) relative to an orthonormal basis eq, ea, ...,e, for V is diagonal. In fact,

< ej, €5 >= & j€j where g =< ¢, >= +1 [5]

Lemma 2.2. Let ey, e, ...,e, be an orthonormal basis for V, with
e;j = < ej,ej >. Then, each v €V has a unique expression
n
v = Zsi <w,e; >e; [5]

i=1
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Lemma 2.3. For any orthonormal basis ey, ea, ...,e, forV, the number of negative
signs in the signature (€1,€2,...,&,) 18 the index q of V [5].

Lemma 2.4. For any orthonormal basis ey, ea,...,e, for V, the number of an
integer q with 0 < q < n , changing the first q plus signs above the minus, gives

tensor
q n
<wv,w >:—Zviwi+ Z viw!
i=1 J= q+1
of index q.

The resulting semi-Euclidean space R} reduces to R™ if ¢ = 0. Forn > 2, R}
is called Minkowski n-space; if n = 4, it is the simplest example of a relativistic
spacetime.

Fix the notation as follows:

gi=—1 for 0<i<q-—-1
gg=1 for q<i<n-—1.

A Lorentz vector space is a scalar product space of index 1 and dimension > 2
[5].

2.3. Lorentzian space. Let M be a smooth connected paracompact Hausdorff
manifold, and let 7 : TM — M denote the tangent bundle of M. A Lorentzian
metric <, > for M is a smooth symmetric tensor field of type (0,2) on M such that,
for each p € M, the tensor

<, >pt TpMzxzTpM — R
is a nondegenerate inner product of signature (-, +, . . . ,+). In other words, a
matrix representation of <, > at p will have one negative eigenvalue, and all other
eigenvalues will be positive.

A Lorentzian manifold (M, <,>) is a manifold M together with a Lorentzian
metric <, > for M. All noncompact manifolds admit Lorentzian metrics. However,
a compact manifold admits a Lorentzian metric if its Euler characteristic vanishes
[6].

Lorentzian space is the manifold M =R" together with the metric

ds* = —da? + de?
i=2

This space-time is time oriented by the vector field 9 / 0z, [6].
Definition 2.5. A tangent vector v € L" is

(i) space-like if (v,v) > 0 or v =0,
(ii) null if (v,v) =0 and v # 0,
(ili) time-like if (v,v) < 0 [6].
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2.4. Curves and curvatures. A curve in a Lorentzian space, L™, is a smooth
mapping:
a: I —L"

where [ is open interval in the real line R. The interval I has a coordinate system
consisting of the identity map u of I. The velocity vector of « at t € I is

o - da(u)|
d(u) '

A curve « is said to be regular if o () does not vanish for all t in I. a € L™ is
space-like if its velocity vectors o are space-like for all ¢ € I, similar to time-like
and null.

If o is a space-like or time-like curve, we can reparametrize it such that

< ' (t),a (t) >= go (where g9 = +1 if a is a space-like and gy =-1 if « is
time-like, respectively ). In this case, « is said to be unit speed, or it has arc
length parameterization. Here and in the sequel, we assume that « has arc length
parametrization [5].

Definition 2.6. Let M C L™ be the curve with coordinate neighborhood (I &),
and let{V7, V4, ..., V;.}be the Frenet r-frame at a(s) with s€ I. Then, the function

ki: I —-R, 1<i<r
s = ki(s) = <V (s),Viga(s) >

is called i.th curvature function of the curve M, and for s€ I, k;(s) is called i.th
curvature of M at a(s).

Definition 2.7. Let M be curve in L.” | parametrized by its own arc length. Let
us denote the Frenet vector fields of this curve {V1, V5, ..., V,.}. Then, the equality

ki=¢; < V;/(S), VL’JFI(S) >
is called the higher ordered curvatures of the curve M [2].

Theorem 2.8. Let M C L™be a regular curve with coordinate neighborhood (I, «),
and let {V1, Va, ..., V;. } be the Frenet r-frame at a(s) with s€ I. Then,

a) V) (s) =ka(s)Va(s)
b) Vi(s) = —ei_a.ci1-ki_1(5).Vie1(8)+ki(5).Viga(s), i = 1,2, .., 7
) Vi.(s) = —er—2.er—1.kr—1(5).V1(s) [2]-



CHARACTERIZATIONS OF INCLINED CURVES 15

3. A NEw CHARACTERIZATION FOR INCLINED CURVES IN LORENTZIAN SPACES
FOR SACE-LIKE CURVES

Definition 3.1. Let v be a space-like curve in L™, and let V; be the first Frenet
vector field of 7. X € x(IL™) is a constant unit vector field. If

< Vi,X >=cosh ¢ (constant)

then ~ is called a general helix (inclined curve) in L™. ¢ is called slope angle, and
the space Sp{X} is called slope axis [1].

Definition 3.2. Assume that - is space-like or time-like curve in L.”. If the higher
ordered curvatures of v are k, , 1 < r < mn — 1, then the higher ordered harmonic
curvatures H,., 1 <r <n — 2, are

H,:I—- R

ky
Hy =¢coe1—
1= ¢€o0-€1 ks
, 1 ,
Hi = {Hifl + Eifl-gi-ki-Hi72} — 2 <:1<n-— 2
ki+1

.

Theorem 3.3. Let vy : 1 — L™ be a general heliz (inclined curve), parametrized by
its arc length. Let X be a unit and constant vector field of L™, and let {V1, Vs, ..., V;.}
be Frenet r-frame at the point of y(s) of 7. If we consider the angle between ’yl and
X as v, we have

H;:I—R, <Vji2, X >=Hjcosh .
Then, the value of the H; function at the point of (s) is called as the j-th harmonic
curvature according to X at the point of v(s) of v [1].

Theorem 3.4. Let v be space-like curve in L™. Let the Frenet frame of v be
F ={V,Va,..,V,}, and the higher ordered harmonic curvatures be Hy, H, ..., H,,_5.
Then,

n—2
v is an inclined curve in L" < Z ej41H; = constant. (1)
j=1
Proof. (=) Let v be inclined curve in L™. We denote slope angle of v with ¢,
and we also denote slope axis of v with Sp{X}. From Definition3.1 we can write
< V1, X >=cosh ¢; and from Theorem 3.1, we can write
< Vijo, X >= H; < V1, X >. If we take derivative of the equation

<V1,X >=cosh ¢p
we will get < V,, X >=0or < V5, X >=0.
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Since X € Sp{V1,Vs,...,V,,} we can write

X:isi,l <V, X >V,

i=1

Thus, we have

X=co<Vi,X>Viter <V, X>Va+> g1 <ViX >V
=3

Since < V7, X >= cosh ¢ and < V5, X >= 0, we have

n—2
X = ggcosh (le + Z€j+1 < ‘/}'+27X > V}'+2
j=1
or
n—2
X = cosh 2] 50‘/1 + Z Ej—i-lHj‘/j-‘rQ . (2)
j=1

Since X is a space-like and unit vector field, we can write
1= X|P =< X,X >.
Thus, using the equation (2), we obtain

n—2
<X,X>:COSh2()0 <Vv1,V1>+ZHJ2<‘/j+2,Vj+2>
j=1

Since < X, X >=1 and < Vj49,Vjy2 >= ¢j41, we can write

n—2
1 =cosh?p{ g + Z H?EjJr]_
j=1
or since €9 = 1, we can write
n—2
1=cosh®p {1+ Z szst . (3)
j=1

Hence, we obtain
n—2
Z szejﬂ = — tanh? ¢ = constant.
j=1
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n—2
(<) Let us assume that Y ngeﬂ_l = — tanh? p(=constant), and let us show
j=1
that + is an inclined curve. We know that
n—2
X =cosho{ Vi+ > eji1H;Viso (4)

Jj=1
and X is a space-like vector field.

Hence, we show that X is a constant unit vector field. If we take the derivative
of (4), we will get
n—2
Dy, X =cosh ¢ { Dy,Vi+ Y ej11 (Dv, H;jVjyo + H;Dy, V)
j=1
Using the value of Dy, H; in Definition 3.2 and the value of Dy, V4o at Theorem
2.5, we obtain

n—2
k; QH' 1V‘ 2 — E‘E‘+1k“+1H‘_1V'+2
Dy X = cosh k1 Vo + € J+H2855+1 Y+ J<J J J J
" R ; g ( —&jgirikjH Vit + kjraH;Vigs
Hence, we also obtain Dy, X = 0. As a result, X is a constant vector field. Fur-
thermore, < X, X >= 41, and this means that X is a unit vector field. Finally, for

space-like curve, v and the constant unit vector field (space-like), X we can write

n—2
<V, X >=< V1,COSh () ‘/1+Zc€j+1HjVj+2 > .
j=1

Hence, we obtain
< Vi,X >=cosh ¢.
This completes the proof of theorem. ([l

4. HIGHER ORDERED CURVATURES IN TERMS OF HIGHER ORDERED HARMONIC
CURVATURES

Theorem 4.1. Let v be an inclined curve (space-like) in L™. The relation between
the higher ordered curvatures k, , 2 <r < n — 2, and the higher ordered harmonic
curvatures H., 1 <r <n—2, is
r—2 ,
'21 ei+1(H?)
i=
! 2Hr71Hr72 . (5)

Proof. We will prove the theorem by induction method. From Definition 3.2, we
have

k. =¢,

H ., +ei e;kiH;_
fopyg = i }{1 T2l ci<n—2. (6)
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For i = 2, (6) gives us
B H, + e1e2ko Hy

ky = ————. 7

3 T, (7)

Since we assume that Hy = 0, (5) is satisfied for ¢ = 2. If we extend (7) by 2H;,
1 ’
> (H)

!
2H H & . .
then we have k3 = 3 Hi 7 or kg = 211117}12 This proves that theorem is true for

r=3.

Now,let us assume that the theorem is true for » = p — 1, and then let us prove
that the theorem is also true for r = p.

As our assumption, we have that

p—3 ,
'21 eit1(H?)
p— 1=
p—1 — Ep*2 2Hp—2Hp—3 . (8)

In the equation (6) for ¢ = p — 1, we have

k

’

H, 5 +ep—oep-1kp-1Hp—3

P
kp = T, ,

and if we replace here the value of k,_1, from (8), we will obtain

p—2

Y eipa(HP)

hymey i

2Hp,_1Hp_

Thus, the theorem is also true for » = p. This completes the proof of the theorem.

O

5. ANOTHER CHARACTERIZATION FOR INCLINED CURVATURES IN LORENTZIAN
SPACES FOR SPACE-LIKE CURVES

Theorem 5.1. Let v be space-like curve in L™, n = 2k > 4. Let us assume that
the Frenet frame of v be F = {V1,Va,...,V,,}. Then,

7 is an inclined curve in L™ ! < det (Vll, VQ/, s V,;) =0.

Proof. In this proof, we use the induction method.
(=) Let « be an inclined curve in L"~!. Then, we show that

’

det (Vll, V2l, . Vn> = 0. From Theorem 2.5, we know that

Vi =kVa

‘/2/ = —goe1k1V1 + k2V3
Vs = —e160ka Vo + ksVy
V, = —ese3ksVs.
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Then, we can write

0 k1 0 0
’ ’ ’ ’ _ —goglk‘l O kg O
det(vlaVQvV&V;L) - 0 —5152]€2 0 k3
0 0 782831433 0
or
det(V{,Vé,Vé,VQ = 50515253]{3%]?%. (9)

From the Theorem 4.1, we may write

1 ’
> (H?)
kg = —.
2H{Hy
If we replace here the value of k3, from (9), we will obtain

S (H2)

det V/,V/,V/,V/ Nl [ —
(V1, V2, V5, Vy) 0S18283M |\ S,

1
According to hypothesis, if v is an inclined curve in L3, then " H? =const. Thus,
i=1
1 ! !’ ’ ’ ’
we have Y (H?) =0 or det(Vy,V,, V5, V) =0.
i=1

As a result, the theorem is true for n = 4. Now, let us assume that the theorem
is true for n = p.We show that the theorem is also true for n = p + 2.

As our assumption, we have

det (Vy,.., V)

0 k1 0o - 0 0 0

*6061]{31 0 kz e 0 0 0
0 —5152]€2 0 e 0 0 0
0 0 0 0 ko 0
0 0 0 e *Ep_géfp_zkp_z 0 kp_l
0 0 0 e 0 —€p72€p71]€p71 0

or
det(Vy, ..., V) = eoe160ep1hik3.. k2. (10)

Now, we show that the theorem is true for n = p + 2.
We have
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’

det (Vi,...,Vi0)

0 k1 0 0 0 0
—5081]{31 0 ]{12 0 0 0
0 *6162]{12 0 e 0 0 0
0 0 0 - 0 k, 0
0 0 0 - —egp_i1pky 0 kpt1
0 0 0 - 0 —€p€p+1]€p+1 0

.Calculation of this determinant gives us that

det(Vy, ., Voyo) = det(Vy, ..., V,).epepirkyy

= £0€162...Ep16pEpr1 kTRS . KD k2L

If we replace the value of k1 of Theorem 4.1, we will have
p—1 ,
eiv1(H7)

' / 212 1.2 i=1
det(Vy, ..., V1 g) = €0e1.Epr1ki k3. k) spﬁ
oH,

According to the hypothesis, we may write

p—1 L
Z&'ﬂﬂf = constant = Zf‘:i+1(Hi2)/ =0.
i=1 =1

Thus, the last equation becomes
det(Vy .V, pa) = 0,

and it proves the necessity of the theorem.
(<)Let us assume that det(V;,...,V,) = 0. Then, we will show that v is an
inclined curve. For the case of n = 4, we can write

/2

1
(£)
det(V1=%7V37V;1) == kl%

According to the hypothesis, det(Vll, Vgl, Vg/, V4/) =0.

1 1
Since k1 # 0, we have (Z Hf) =0or Y, H? =constant.Thus, the theorem is
i=1 i=1
true for n = 4.

Now, let us assume that the theorem is true for n = p.We show that the theorem
is also true for n = p 4 2.
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In the case of n = p, we can write

det(Vll, ...,Vp') = 5051...5p_1k%k§...k§_1
=0.

Thus, for n = p + 2, we have
det(Vy, ..., Vo) = det(Vy, ..., V) Jepepiikin
= €0€1---Ep+1 [klkg...kp+1]2
=0.

Since we assume that k; # 0,k3 # 0,...,kp—1 # 0, then we obtain that k,;1 = 0.
This means that .
p—
> e (HP)
kpi1 = spi’—; Ay 0
or
p—1
Z&'HHE = constant.
i=1
Thus, 7 is an inclined curve in LP*!. As a result, the theorem is also true for
n = p + 2. This means that the theorem is true. ([l

6. FINDING THE COORDINATES OF THE CENTRAL POINT OF THE SPACE-LIKE

CURVES OSCULATING SPHERE

Let M C L™ be a space-like curve with coordinate neighborhood (I,7), and let
{V1(s),...Va(s)} be the Frenet n-frame at v(s) with s € I. Let b be the center of
osculating sphere. Then, we can write

b="(s) +mi(s)Vi(s) + ... + mp(s)Vi(9).
Thus, we have

b—(s) =mi(s)Vi(s) 4 ... + mn(s)Va(s), (12)
where m; denotes the coordinate functions of the centers of osculating spheres of

M.
Let r be the radius of osculating sphere of M. Then, we can write

[<b—7(s),b—(s) > =2, (13)
If we take the derivative of (13) with respect to Vi, we will obtain
< Vl(s)abfﬁ)/(s) >= Oa (14)

and from equation (12), we have

< Vi(8),b—~(s) >=my(s). (15)
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From (14 ) and (15), we get my(s) = 0. If we take the derivative of the equation
(14) with respect to Vy,

<Vi(s):b=5(s) > = < Va(s),Va(s) >=0
is obtained, and using the value of V; (s) from (13), we get
< k1(s)Va(s),b—(s) > —eo =0,

where g = 1 since M C L™ is a space-like curve. Therefore, we can write

< Va(s),b—(s) >=

ka(s)’
Also from (12), we know that

< Va(s),b —v(s) >= e1ma(s). (17)
Thus, from (16) and (17), we obtain

&1
= . 18
mals) = 10 (18)
If we take the derivative of (17), we will get
< Va(8):b = 3(s) > = < Va(s), Vi(s) >= ermy(s).
We know that < Vi(s), Va(s) >= 0 and
V, (s) = —eoe1kr (s)Va(s) + ka(s)Va(s)
from Theorem 2.5. Thus, we obtain
—eoerki(s) < Vi(s),b—v(s) > +ka(s) < Vi(s),b— y(s) >= e1my(s).
Since < V3(s),b — v(s) >= eams(s) from (12), we can write
mg(S) = €1€2m,2(5). (19)
ka(s)
If we continue in this way for ¢ = 4,...n, we can write from (12)
< V;_l(s), b— "y(S) >= Ei_gmi_l(s). (20)

If we take the derivation of equation (20) with respect to Vi, we will obtain
<V, (8),b—7(s) > — < Viei(s), Vi(s) >=e;_am,_,(s).
Since V,_,(s) = —ei_sei_oki_o(s)Vi_a(s) + ki_1(s)Vi(s) from Theorem 2.5, the

?

result is
€i—1€i—2

mi(s) = m{m;,l(S) + ki—2(s)mi—2(s)}. (21)

Finally we can give the following.
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Definition 6.1. Let M be a space-like curve in L"*!, and let the coordinate
functions of osculating sphere of M be my, ..., m,+1.Then

m; : 1 — R
0 Li=1 9
m; = kf(ls) ,Z:2 ( )

Sl imy (s) +ma(s)} L 2<i<n

where k;, 1 < i < n, are the higher ordered curvatures of the space-like curve.

7. THE RELATIONS BETWEEN THE FUNCTIONS OF m; AND k;

Theorem 7.1. Let M be a space-like curve in L"T1. Then, the relation between
the functions of m; and k; is

P 9N/
> €im1(my)
2

ky = ep=
2mpmyp41

,2<p<n+1 (23)
where m; and k, denote the coordinate functions of the centers of osculating spheres
of M and the curvature functions of M C L+, respectively.

Proof. We will use the induction method.
From Definition 6.1 we have
€i—1Ei—2

ki1 = {m;fl + ki,Qmi,Q} ,2<i<n+1
i
or for the case of i = j + 1, we have
’ EjEG_ .
kj = {m; + kj_1mj_1} 2= 1< j <n. (24)

mji1
If we get j = 2 in the equation (24), we will have
m/
kg = 616272.
m3
On the other hand, if we write p = 2 in the equation (23), we will obtain
m
k’g = 818272.
mg
Therefore, the theorem is true for p = 2. Now, we assume that the theorem is true
for p = r, and let us prove it for p =7+ 1.
For p = r, we have

T
> eim1(m3)
1=2

ky = ———mmm. 25
© 2m7'mr+1 ( )
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Now, we get 7 = r + 1 in the equation (24). Then, we obtain

’
M,y 1 + kemy
kr+1 =&r&p41— -

My42

If we replace k. from (25) into (26), we will obtain

r+1

gﬁfl(m?)

’

kr+1 = &r41

2mr+1mr+2 )
This completes the theorem.

8. CHARACTERIZATION OF INCLINED CURVES WHICH 1S CONCERNED WITH
OSCULATING SPHERE IN L"™ FOR SPACE-LIKE CURVES

Theorem 8.1. Let M be a space-like curve in L™, n > 4, and let n be an even
number. Then, the relationship between m) and m; values in the matriz form as
follows:

[ 0 5152k2
—ko 0

0 —k3
0 0
0 0
0 0

If we denote the coefficient matrix as B,,, we will get the following characteriza-
tions:

Theorem 8.2.

0 0 0 0 -
€2€3k3 0 0 0 m2
0 0 0 0 s
my
0 0 5n—25n—1kn—1 0 mmnil
0 *kn—l 0 gn—lenkn "
0 0 —kn, 0 R

n
(1) det B, =0 < Y &,_1m? =constant
i=2
(2) det B, =0 M C L™ is an inclined curve in 1", where m; =

s denotes the arc length parameter of M.

dmi

(27)

and
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n
Proof. 1.(=>)Let us assume that det B,, = 0. We show that > g;_1m? =constant.

=2
For n = 4, the theorem is true.
For n =4, we know that from (27)
0 €1€2k2 0 0
o —kz 0 5253]{,‘3 0
det By=| % 1 0 cacaka (28)
0 0 —ka 0
or
det B4 = 81628384]&‘%]@%. (29)

On  the other hand, from  the  hypothesis, we  know  that
det By = 0. Therefore, we can write koks = 0. Since we assume that ko # 0,
from Theorem 7.1 we have

4
> eii(m?)
=2

ky=e4——— =0, 30
4 4 2m4m5 ( )
that is,
4
Z 6i_1mf = constant.
i=2

This proves the theorem for n = 4.
Now, let us assume that the theorem is true for n = p, and let us show that the
theorem is also true for n = p + 2. Then, from (27) we can write

0 6162162 0 0 0 0 0
—k‘g 0 5253k3 0 0 0 0
0 —kg 0 6364k‘4 0 0 0
det B,=| . ) . . _ . . . (31)
0 0 0 0 —Rp-1 0 Ep_lEpk‘p
0 0 0 0 - 0 —k
or

det B, = 51525354...517,15]9/{%%...ki. (32)
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Now, we prove that the theorem is also true for n = p+ 2. From (27), we can write

0 e162ky 0 e 0 0 0 0
7/62 0 €2€3k3 s 0 0 0 0
0 —ks3 0 e 0 0 0 0
det Bpio= : : : : : :
T 0 0 0k 0 0
0 0 0 —kp 0 Epepr1k, g 0
0 0 0 0 _kp-i-l 0 €P+1€P+2kp+2
0 0 0 0 0 —kpt2
(33)
or
det Bpyo = epr16pt2ky o det Bp (34)
or
_ 212 1272
det Byio = €1...6p8pr16pt2kaky...kpky o (35)

Since det B, = 0, we have koky...kpky12 = 0. Here since ks # 0,.., k, # 0, we
obtain k,;2 = 0. Thus, from Theorem 7.1 we can write

p+2

> eima(m?)
2

k}p+2 = Ep+2 =0 (36)

2MpyaMmpy3

or
p+2

Z si_lmf = constant.
i=2
This proves the necessity of the theorem.
n
(<) Let us assume that > &;_1m? =constant, and we show that

=2
det B,, = 0. For n = 4, the theorem is true.
if we replace the value of k4 in the equation (29) into the equation (30),

4
> eioa(m?)
=2

det B4 = 61626364[/€2 = 2

2myms
is obtained. From the hypothesis,
4 4
Z g;—1m; = constant = Z gi—1(m;) =0
=2 =2

Thus, we get det By = 0. This proves that the theorem is true for n = 4.
Now, let us assume that theorem is true for n = p, and let us prove that the
theorem is true for n = p + 2.
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We may write from (34),(35), and (36)

p+2

Zz gi—1(m?)

det B 42 = Ept1€ +2[i:7]2 det B,,.
P T 2
p+2 p+2 ,
Since we know that Y &;_1m? =constant, we have > &;_1(m?) = 0. Thus, we

=2 =2
obtain det Byy2 = 0, which proves the sufficiency of the theorem.

2. We will use the induction method:
(<) Let us assume that M is an inclined curve in L™. Then, from (1), we know

n—2
that > Ei+1Hi2 =constant. We show that det B,, = 0. Theorem is true for n = 4.
i=1
From (5), the value of k4 is

2 i
> e (HY)
=1

k =
T ST H,

Using this value in equation (29), we get

2 !
> i1 (HY)
det B4 = €1£E92E€3€&4 k‘g 63%

According to the hypothesis, since M is an inclined curve in L3,

) 2
Z&'HHE = constant = Z&‘H(Hz?)/ =0

i=1 i=1

can be written, and thus we have det B = 0. This proves that the theorem is true
for n = 4. Now, let us assume that the theorem is true for n = p, and let us also
prove it for n = p + 2. From (5), (31), (34) and (35) the following equation can be
written

p ’
Zl ei+1(HY)
det By o = 169...6p40k2. k2. ————
p2 = 12 Epakl ko
According to the hypothesis, since M is an inclined curve in L.”

p p ’
€,41H? =constant = gir1(H?) =0, thus, det B,,5 = 0. This proves the
+ 1 + 7 i ’ P+ p
i=2 i=2
sufficiency of the theorem.
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(=) Let us assume that det B,, = 0, and let us show that the curve M is an inclined
curve. Theorem is true for n = 4. Indeed, since we know that

det B4 = 81628364]6%]62
2 ’
;aiﬂ(HiQ)

2H,H;

and according to the hypothesis, we may write

= [kQ ]27

det By = 0.

Let us assume that ky # 0. Thus, we obtain

2 2
ZsHl(HZ?)I =0= Zs,;_HHf = constant.
i=1

=1

This means that M is an inclined curve in L3.

Now, let us assume that the theorem is true for n = p, and let us show that the
theorem is true for n = p + 2.

Since the theorem is true for n = p, then we have

det B, = e1...e,k5.. .k
On the other hand, for n = p + 2, we may write
det Byio = epp16p2ki o det By,
= 61...€p€p+1€p+2[k2k4.../€pkp+2]2.

If we replace kpo into equation (5), we obtain

p 2
2 ’

Zlfiﬂ(Hi)

det Bp+2 = E€1---EpEp+1Ep+2 k2k4...kp =

2H,Hp 1
According to the hypothesis, we have
det Bp+2 =0.
Here, since ky # 0,k4 # 0, ..., kp # 0, the result is

P P
ZsiH(Hf)/ =0= ZsiHHf = constant.
i=1

=1

This means that the curve M is an inclined curve in ", which proves the
necessity of the theorem. [
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OZET: Bu calismamzda, énce L™ de uzay benzeri egriler icin
yiiksek mertebeden egrilikleri, yiiksek mertebeden harmonik egri-
likler cinsinden hesapliyoruz. Boylece, L™’ de uzay benzeri egriler
igin egilim cizgilerinin karakterizasyonlarini veriyoruz. Sonra da
uzay benzeri egrilerin oskiilator kiiresinin merkez koordinatlarini
buluyoruz. Uzay benzeri egrilerin yiiksek mertebeden egriliklerini
oskiilator kiiresinin merkez koordinatlar1 cinsinden hesapliyoruz.
Son olarak L™’ de egilim ¢izgilerinin bu koordinatlar cinsinden olan
karakterizasyonlarini veriyoruz.
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