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ANNIHILATOR CONCEPT AND ITS APPLICATION TO BEST
APPROXIMATION THEORY

FERHAD HÜSEYÍNO¼GLU NASÍBOV AND AHMET KAÇAR

Abstract. In Constructive Theory of Functions , two sections that look dif-
ferent but in fact have strong relations are very important:
1) Theory of best approximation of functions and,
2) Extremal problems for linear functionals that de�ned in di¤erent function
classes.
Both of them studied independently started from the work [2] of P. L. Cheby-
shev and developed as systematic theories until the middle of 20th century.
After that the relationship between these two theories has been realized and
studied as connected theories. As a result, important �ndings for both prob-
lems obtained (S.M. Nikolskiy, M.G Kreyin, S. Ya Havinson, G.Ts.Tumarkin,
W. Rogosinsky) ([1], [4], [5], [11-13]). �Duality� term coined for the relations
between two problems such as these. In such duality relations, annihilator
concept took place and played an important role. But no one studied or in-
terested with the annihilator and its structure. F. H. Nasibov �rst one who
studied and determined the annihilators�structure, and showed how to use it
to solve the linear extremal problems ([6],[7],[8],[9],[10]). In this paper, we will
present our current �ndings about this topic.

1. Definition of Class and Determining the Structure of Annihilator

Let E be a subset of R1 = (�1;+1) and �(x) � 0 is a function (weighting
function) de�ned on E. We use the notation for the function space of f(x) as L2;�(E)
which satis�es the condition:

kfk2;� =
�Z

E

jf(x)j2 �(x)dx
�1/2

< +1: (1.1)

We could also use L2;�(E) class which satis�es

kfk2;� =
�Z

E

jf(x)j2 d�(x)
�1/2

< +1; (1.2)
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where �(x) satis�es
R
E
d� < +1. It is explicit that L2;�(E) � L2;�(E).

Now consider the system functions � = f'k(t)g
1
0 that are orthonormal to �(x)

weighting function. In this case, each function f(x) 2 L2;�(E) can be expand to
the Fourier series:

f(x) �
1X
k=0

Ck'k(x): (1.3)

This Fourier series converges to f(x) in the sense of L2;�(E) norm-metric, and
satis�es the Parvesal formula

kfk22;� =
1X
k=0

jCkj2 : (1.4)

After this point, we will use notation �n for polynomial set pn(t) =
Pn

k=0 ak'k(t)
(an 6= 0) , where ak (k = 0; 1; 2; ::: ;n) are arbitrary constants:

�n :=

(
Pn(t) =

nX
k=o

ak'k(t) (an 6= 0); ak (k = 0; 1; :::; n) are arbitrary constants
)

Problem 1. For �n � L2;�(E), de�ne the structures of annihilator �?n .
According to the de�nition �?n := fl 2 (L2;�)� : 8Pn 2 �n; l(Pn) = 0g : Now

the problem becomes the de�ning the structure of functionals l, which satis�es the
conditions mentioned above. On the other hand, we can represent each l 2 (L2;�)�
linearly bounded (or continuous) functional as

l(f) =

Z
E

f(t)�g(t)�(t)dt � (f; g) (1.5)

and
k l k = sup

f2L12;�(E)
jl(f)j = kgk2;� (1.6)

formula is correct. In fact, we need to de�ne the structure of functions g(t) 2
L2;�(E), which satis�es the condition

l(Pn) =

Z
E

Pn(t)�g(t)�(t)dt = 0 (8Pn 2 �n): (1.7)

Let ak = ak(Pn) is the arbitrary coe¢ cients of Pn(t) 2 �n polynomial, and
Ck = Ck(g) is the Fourier coe¢ cients of g(t) 2 L2;�(E) according to � = f'k(t)g

1
0

system. According to Parseval formula, we get

l(Pn) =

Z
E

Pn(t)�g(t)�(t)dt =
nX
k=0

akCk: (1.8)

From that we see Ck= 0 (k = 0; 1; 2; :::; n) so each fakgn0 (8Pn 2 �n) satis�es the
equation (1.7). This is the result we needed. (For example, if we have c1 6= 0, then
from a1c1 = 0 we have a1 = 0 . Since a1 is arbitrary and if we choose a1 = 1 then
c1 = 0).
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Hence we proved the theorem below which de�ne the �?n annihilator.

Theorem 1. For subspace �n of L2;�(E) annihilator �?n consists of functions
g(t) 2 L2;�(E) if and only if �rst n + 1 Fourier coe¢ cients of g(t) (according to
�system) satis�es the conditions

Ck = Ck(g) =

Z
E

g(t)'k(t)�(t)dt = 0; k = 0; 1; 2; :::; n: (1.9)

2. Application to Best Approximation Problem

De�nition 1. Best approximation to element of f 2 L2;�(E) by Pn(t) 2 �n
polynomials is the

En(f ;L2;�) = inf
Pn2�n

kf � Pnk2;� : (2.1)

There is an element on the �n subspace which satis�es the equality

En(f ;L2;�) =


f � P0n

2;� (2.2)

(�n is �nite dimensional). On the other hand, since L2;�(E) is strictly normed
space, there is only one P 0n(t).
In the approximation theory, it is one of the di¢ cult problems to �nd an element
that gives the best approximation to a given element. That why it is important to
learn the characteristics of given element (P. L. Chebyshev, S. N. Bernstein, A. N.
Kolmogorov Theorems and others, [1], [3], [10-13]). For that purpose we want to
remind the theorem below.

Theorem 2. (Zinger, [13]) P 0n(t) 2 �n is the best approximation polynomial to
f(t) 2 L2;� if and only if for every Pn(t) 2 �n holds the conditions:Z

E

Pn(t) [f(t)� P 0n(t)] �(t)dt = 0: (2.3)

It is apparent that Theorem 1 is equivalent to Theorem 2: T1, T2.
When we compare (1.7) and (2.3), we see g(t) =

�
f(t)� P 0n(t)

�
2 �?n .

Then, by Theorem 1, Ck(f � P 0n) = 0 (k = 0; 1; 2; :::; n) or

Ck(P
0
n) = Ck(f) (k = 0; 1; 2; :::; n): (2.4)

According to this, coe¢ cients of polynomial which gives best approximation to
f(t) 2 L2;� on L2;� metric are the �rst n+ 1 coe¢ cient of Fourier Series of function
f on the � = f'kg system. So we proved the A. Teopler Theorem which is below
in the other method.
Theorem 3. (A. TEOPLER). Polinom of the best approximation to

f 2 L2;�n�n on the L2;� metric (between Pn 2 �n polynomials) is

P 0n(t) = Sn(f; t) =
nX
k=0

Ck(f)'k(t);
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which is the Fourier series partial sum order n of f(t) function according to
� = f'kg system. Other than that one, best approximation value to f(t) function
with Pn 2 �n polynomials is de�ned by equality

En(f) = min
Pn2�n

kf � PnkL2;� =
( 1X
k=n+1

jCk(f)j2
)1/2

: (2.5)

To validate what we said before, su¢ ciently to add investigation the following
equalities: Z

E

jf(t)� Pn(t)j2 �(t)dt =
1X
k=0

jCk(f)� ak(Pn)j2

=
nX
k=0

jCk(f)� ak(Pn)j2 +
1X

k=n+1

jCk(f)� ak(Pn)j2

=
nX
k=0

jCk(f)� ak(Pn)j2 +
1X

k=n+1

jCk(f)j2 :

3. Application to Solution to an Extremal Problem

Let g0(t) 2 L2;� be given. It de�nes a functional

l0(f) =

Z
E

f(t)g0(t)�(t) dt (3.1)

since �n � L2;�
l0(Pn) =

Z
E

Pn(t)g0(t)�(t) dt: (3.2)

If we let d�(t) = �(t)dt, we get

l0(Pn) =

Z
E

Pn(t)g0(t) d�(t): (3.3)

Problem 2. Let�s write �n;1 �
�
Pn 2 �n : kPnk2;� =

�R
E
jPn(t)j2 d�(t)

�1/2
� 1
�
.

Is to be found the norm

kl0k = sup
Pn2�n;1

jl0(Pn)j = sup
Pn2�n;1

����Z
E

Pn(t)g0(t) d�(t)

���� : (3.4)

The solution of this problem is based on the following duality principle:

Theorem 4 ([5]). For every linear functional l0 that de�ned on an subspace of
F of any normed linear space X,

sup
x2F1

jl0(x)j = inf
l2F?

jl0 � lj (3.5)

where l0 2 F �, F1 is a unit sphere on F.
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Since X = L2;�, F = �n, F1 = �n;1 and l0 $ g0(t) 2 L2;�, instead of (3.5) we get

sup
Pn2�n;1

����Z
E

Pn(t)g0(t) d�(t)

���� = inf
g2�?

jjg0 � gjj2;� : (3.6)

By Parseval formula, we can rearrange (3.6) as

sup
ak(Pn)

�����
nX
k=0

ak(Pn) Ck(g0)

����� = inf
Ck(g)

 1X
k=0

jCk(g0)� Ck(g)j2
!1/2

= inf
Ck(g)

(
nX
k=0

jCk(g0)j2 +
1X

k=n+1

jCk(g0)� Ck(g)j2
)1/2

=

(
nX
k=0

jCk(g0)j2 + inf
Ck(g)

1X
k=n+1

jCk(g0)� Ck(g)j2
)1/2

=

(
nX
k=0

jCk(g0)j2
)1/2

: (3.7)

For k � n + 1, requirement Ck(g�) = Ck(g)must hold. At this point, g� is the
extremal element for the right side of (3.6). On the other hand, �n is �nite di-
mensional. According to this, there is a P 0n(t) 2 �n;1 polynomial that gives sup
(extremal) to the left side of the (3.6). Hence the theorem below is true.

Theorem 5. There is a unique P 0n(t) 2 �n;1 polynomial that supplies condition
kl0k =

��l0(P 0n)�� of problem (3.6) and of left hand side of (3.4). As well as

max
Pn2�n;1

����Z
E

Pn(t)g0(t)d�(t)

���� = max
ak

�����
nX
k=0

ak(Pn)Ck(g0)

�����
= inf

g2�?n

 1X
k=0

jCk(g0)� Ck(g)j2
!1/2

=

 
nX
k=0

jCk(g0)j2
!1/2

(3.8)

duality relations are true. We get max for such a P 0n(t) 2 �n;1 polynomial that its
coe¢ cients can be computed if and only if

a0k =
ei�

�
jCk(g0)j2
Ck(g0)

= ei�Ck(g0) (k = 0; 1; 2; :::; n)

� =
�Pn

k=0 jCk(g0)j
2
�1/2

9=; (3.9)

where Ck(g0) s are the Fourier coe¢ cients of g0(t) function according to � = f'kg
system.
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Validity of (3.8) can be seen from the operations below. Let P 0n(t) =
Pn

k=0 a
0
k'k(t)

be an extremal polynomial. Then
R
E
Pn(t)g0(t) d�(t) =

Pn
k=0 a

0
k[Ck(g0)� Ck(g�)]

, where g�(t) 2 �n;1 function gives inf to the right side of (3.6). Because of, we
have ����Z

E

Pn(t)g0(t) d�(t)

���� =
�����
nX
k=0

a0k[Ck(g0)� Ck(g�)]
�����

�
 

nX
k=0

��a0k��2
! 1

2
 

nX
k=0

jCk(g0)� Ck(g�)j2
!1/2

:

Consequently,

����Z
E

Pn(t)g0(t) d�(t)

���� �
 

nX
k=0

jCk(g0)� Ck(g�)j2
!1/2

:

Since P 0n(t) and g
�(t) are extremal elements, inequalities here must be converted

to equalities. This is true if and only if formulas of (3.9) true. Because Ck(g�) = 0
(k = 0; 1; 2; :::; n):

4. Application to Solution to Another Extremal Problem

Duality relations, which we will consider in this section is: If an element
!(t) 2 XnF is given, then

max
l2F?

1

jl(!)j = inf
'2F

k! � 'kE (4.1)

is true and F?1 = fl 2 F? : klk � 1g.
In our case

max
g2�?n;1

����Z
E

!(t)g(t) d�(t)

���� = inf
Pn2�n

k! � Pnk2;� : (4.2)

Now, suppose that

!(t) �
1X
k=0

Ck(!)'k(t);

Pn(t) =
nX
k=0

ak'k(t)



ANNIHILATOR CONCEPT AND ITS APPLICATION 37

and if we take g(t) �
P1

k=0 Ck(g)'k(t) , Ck(g0) = 0 (k = 0; 1; 2; :::; n), (means
g 2 �?n;1) we get

max
Ck(g)

�����
1X

k=n+1

Ck(!):Ck(g)

����� = min
ak

( 1X
k=0

jCk(!)� akj2
)1/2

= min
ak

(
nX
k=0

jCk(!)� akj2 +
1X

k=n+1

jCk(!)j2
)1/2

=

( 1X
k=n+1

jCk(!)j2
)1/2

:

Thus we proved the theorem below.

Theorem 6. Duality relations below is true

klk = max
g2�?n;1

����Z
E

!(t)g(t) d�(t)

���� =

( 1X
k=n+1

jCk(!)j2
)1/2

=

(
k!k22;� �

nX
k=0

jCk(!)j2
)1/2

(4.3)

There is a unique g 2 �?n;1 that gives maximum of the left hand side.

ÖZET: Konstrüktif fonksiyonlar teorisinde birbirinden farkl¬ gibi
görünen asl¬nda ise aralar¬nda s¬k¬bir ba¼glant¬olan iki bölüm çok
önemlidir:
1) Fonksiyonlar¬n en iyi yaklaş¬m teorisi,
2) Herhangi bir fonksiyon s¬n¬f¬nda tan¬ml¬ lineer fonksiyoneller

için ekstremal problemler.
Her ikisi de P. L. Chebyshev�in temel oluşturan [2] çal¬̧smas¬ndan

başlayarak XX. yüzy¬l¬n ortalar¬na kadar serbest olarak geli̧stirildi
ve kapsaml¬, sistemli teoriler haline yükselebildi. Bu tarihten sonra
da bu konular aras¬nda mevcut olan ili̧ski fark edildi. Bu konular
birbirleri ile irtibat halinde, paralel olarak, araşt¬r¬lmaya başland¬.
Sonuçta her iki problemde önemli sonuçlar elde edildi (S.M. Nikol-
skiy, M.G Kreyin, S. Ya Havinson, G.Ts.Tumarkin, W. Rogosin-
sky) ([1], [4], [5], [11-13]). Böyle iki türden problemler aras¬nda
oluşturulan ba¼glant¬lara ikili (duality) ili̧ski ad¬ verildi. Bu tür
ikili ili̧skilerde de s¬f¬rlayan kavram¬ yer ald¬ve önemli rol oynad¬.
Fakat bu tip ba¼glant¬larda s¬f¬rlayanlar¬lar incelenmedi, yap¬s¬yla
fazla ilgilenilmedi.
Bu konuyda ilk olarak F. H. Nasibov i baz¬ fonksiyon s¬n¬�ar¬

için s¬f¬rlayanlar¬n yap¬s¬n¬belirledi ve lineer problemlerin çözümünde
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uygulanabilece¼gini gösterdi ([6],[7],[8],[9],[10]). Bu makalede bu
konuda elde etti¼gimiz neticelerden baz¬lar¬ sunulacakt¬r.
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