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WEIERSTRASS REPRESENTATION FOR MINIMAL
IMMERSIONS INTO DAMEK-RICCI SPACES

M. KOIVOGUI AND L. TODJIHOUNDE

(Communicated by Ramesh SHARMA)

ABSTRACT. We give a setting for constructing Weierstrass representation for-
mulas for simply connected minimal surfaces into four-dimensional Damek-
Ricci spaces S4. We derive Weierstrass representations, and establish the gen-
erating equations for minmal surfaces into Sy.

1. INTRODUCTION

The Weierstrass representation of minimal surfaces is a very important notion in
mathematics and physics for its applications. They are for instance, surface waves,
propagation of flame fronts, growth of crystals, deformation of menbranes, dynam-
ics of vortex sheets, many problems of hydrodynamics connected with motion of
boundaries between region of differing densities and viscosities (see[6]). The clas-
sical Weierstrass representation for minimal surfaces in R? with its generalizations
to R™ has been also proved to be an extremely useful tool for the study of the mini-
mal surfaces in those spaces (see for exemple [1, 2]). Weierstrass representation for
minimal surfaces into Hyperbolic space have been obtained by Kokubu [4].

In [5], Mercuri, Montaldo and Piu described a method to obtain Weierstrass rep-
resentation type formulas for simply connected immersed minimal surfaces into
three-dimensional Heisenberg groups Hsz and into the product space H? x R of
the hyperbolic plane with the real line. Later, Turhan and Kdépinar gave in [§]
Weierstrass-type representation formulas for minimal surfaces into Hs x S'.
Damek-Ricci spaces are Lie groups ( connected and simply connected) whose Lie
algebras are semi-direct sums of Heisenberg algebras with one dimensional vec-
tors spaces, endowed with left invariant metrics defined by scalar products [3].
In fact, Damek-Ricci spaces are semi-direct products of Heisenberg groups and
one-dimensional Lie groups, and can be considered as certain solvable Lie groups
equipped with left-invariant metrics.

In this paper, we applied the general setting on Damek-Ricci spaces and described
a method to derive Weierstrass-type representation formulas for simply connected
minimal surfaces into four-dimensional Damek-Ricci spaces.
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2. PRELIMINARIES

Let (M™, g) be an n-dimensional Riemannian manifold, ¥ C M be a Riemannian
surface and f : > — M be a minimal conformal immersion. The pull-back bundle
f*(TM) is endowed with a metric and compatible connection V, the pull-back
connection induced by the Riemannian metric, and with the Levi-Civita connection
of M.

Let us consider the complexified bundle E = f*(TM)® C .

Let (u,v) be a local coordinates on ¥, z = u + iv the local conformal complex
parameter and (z1,...,2,) be a system of local coordinates in a neighborhood U
of M such that U N f(X) # 0. The pull-back connection extends to a complex
connection on E, Hermitian with respect to (.,.) and it is well known that E has
a unique holomorphic structure such that a section Y : ¥ — E is holomorphic if
and only if

(2.1) VaT=0.

In the sequel we will consider the section

of 1,0f .Of
T =J,====—\== —1=).
4 0z 2 ( Ju ! v )
The induced metric on X is
ds* = \2(du® + dv®) = \?|dz|*.
The Beltrami-Laplace operator on M, with respect to the induced metric is given
by
32 82
A=)\ + =)
(8u2 + 81}2)
We recall that f: ¥ — M is harmonic if and only if

T(f) = traceVdf = 0,

where 7(f) is the tension field of f.
Let us consider the local decomposition of T :
= 0
T — T,

Z J 3xj

Jj=1
for complex-valued function T; defined on €. Then tension field of f can be written
as:

o= OTi D
T(f) = 4A 22{ 9z +ijTka}%

where T are the Christoffel symbol of M. We have
T(f) =43V T).

Thus f is harmonic if and if only if Y is a holomorphic section on E. Or equivalently,
T is a holomorphic section on E if and only if

Y, — .
(2.2) =+ ;rgkrjrk =0, i=1,2...,n.
3J

0
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By considering (2.2) as a system of integral differential equations in the T;, where
I’s are computed in f; = 2Re f; Y;dz, it can be written as:
a7
0z

+2) T Re(T; k) + Y T4 P=0, i=1,..n

j>k J

This implies that 2Xi € R, and ensures that (locally) the 1-forms Y;dz don’t have

z
real periods as it has been mentioned in [5]. Therefore we have the following:
Proposition 2.1. [7] Let (M,g) be a riemannian manifold and (21, ..., 2,) local
coordinates. Let Y;, j =1,...n, be complex-valued functions in an open simply
connected domain Q@ C C which are solutions of (2.2). Then the map

(2.3) fi(u,v) = 2%6(/2 T;dz)

20

is well defined and defines a minimal conformal immersion if and only if the fol-
lowing conditions are satisfied:

(1) Z?,k:1 9k LT, #0
(2) sz:1 gjijTk =0.

For more details see [8] or [5].

It has been proved in [5] that if M is a Lie group then the system of partial
differential equations (2.2) is reduced to a system of partial differential equations
with constant coefficients.

3. MINIMAL SURFACES INTO 4-DIMENSIONAL DAMEK-RICCI SPACES

Let b,, and 3, be real inner product vector spaces of dimensions m and n,
respectively, and 3 : b, X b, — 3, a skew-symetric bilinear map. We endow the
direct sum b4, = by @ 3, With an inner product (.,.)y,, ., such that b,, and 3,
are perpendicular and define an R-algebra homomorphism

J t3n — End(b,), Z— Jz

by
<JZUa V> = <ﬂ(Ua V)aZ>bm+n ) VUaV S bm P Z e dn-

h77L+n
We define a lie algebra structure on b,,, by

U+X,V+Yly,..:=6UV), VUV b, , XY €j,.
The Lie algebra b, 4, is said to be a generalized Heisenberg algebra if

J2 =—(2,7) idy,, ,VZ € 3n.

bmtn

m)

The associated simply connected Lie group H,,,, endowed with the induced left-
invariant Riemannian metric g, is called a generalized Heisenberg group. We define
a new vector space

Sm4n+1 ‘= bern ©a
as the direct sum of b,,,+,, and a. A vector in §,,4,41 can be writtten in a unique
way as V +Y + sA for some V € b,,, Y € 3,,, s € R and A a non-zero vector in a.
We define an inner product (.,.) and a Lie bracket [,.,] on $,,1n+1 by

U+X+1AV+Y +54)=(U+X,V+Y)y,  +71s
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and
1 1
U+X+rAV+Y +sA] = [UVl]y,., +§7"V— §SU+TY—SX.

In this way $,,4+n+1 becomes a Lie algebra with an inner product. The associated
simply connected Lie group S, 4n+1, equiped with the induced left-invariant metric,
is called Damek-Ricci space.

The Levi-Civita connection V of the Damek-Ricci space S, 1,41 is given by:

1 1 1 1
VV+Y+SA(U+X+TA) = —§JYU—§JXV—§TV—§[U,V]
1
(3.1) — Y4 S(UV)AH (X Y)A

We have:

Sm4nt1 = 0mB3nPa, by, has dimension m , 3, has dimension n and a has dimension
1.

[0 bm] = 3m, [bm;a] = L4, [3,;a] = a and others are zeros.

The Lie group S,,+n+1 is a semi-direct product H,,,4,, X r R, with

F:R— Aut(H,,1p)
s+— F
defined by
Fy(expy, ., (V+Y)) =expy, . (e2V+e’Y),V V+Y € spinii,

where expy,, ., is the Lie exponential of Hy, 1, (see [3]).

Since the Lie exponential map exps,,, .1 : Smint1 — Smint1 Of Spyny1 is a
diffeomorphism, it induces global coordinates on S, 1 ,+1-

Let S4 be a four-dimensinal Damek-Ricci space and z,y, z,t global coordinates on
S4. The left invariant Riemannian metric g on Sy is given by

g=c tda? + e tdy® + e (dz + %ydw - g:::dy)2 + dt?

where ¢ € R. The Lie algebra s4 of S4 has an orthonormal basis

., 0 ¢ 0 ., d ¢ 0 0 0
3.2 =e2(— — —y— =e2(—+ -—z— == = —.
B2 a=erg —gvg) =G Targ) asdy asy
The corresponding Lie brackets are
1 1
[61762] = ces; [61764] = _561; [62564] = _5627
[e3, e4] = —e3;[e1, e3] = [ea, e3] = 0.

From (3.1) the Levi-Civita connection w,r,t this orthonormal basis is given by:

C C C
Ve, e1 =0; Ve e = 23 Ve, €3 = —562 Ve 4 = —5e1 Ve,e1 = —53;

c 1 c c
Ve,e2 =0; Ve,e3 = €1 Ve,e4 = —5€2 Ve,e1 = —52 Ve,e2 = €13

Vese3 =0; Veea = —e3; Ve,er =0; Ve,ea=0; Vees=0; Vgeq =0.

The non zero Christoffel coeﬂﬁcientstj are then given by:

3 _ 2 _ 1 _ 3 _
Liy=c¢, Liz=—c¢, Lyy=-1, Ly =-c

(3.3) Lis=c, L3, =-1, L3, =-c Li=c and L3,=-2.
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Let us put

4 4
0
4 T = § Y, — = E .
(3 ) 2 k@xk k:1Xkek

For some complex functions Tj and xi. There exists an invertible matrix
A = (A;j), with component functions A;; : f(Q)NU — R,i,5 = 1,2,3,4, such

that
4
T, = Z AijXj
i=1
where
e 0 00
A= 0 ) ef 0 0
—se2y gexx 0 0
0 0 0 1
It follows that, the section Y is holomorphic if and only if
0
(3.5) X

[ 1 - .
e +§ZijXij =0, i=1,234.
7.k

Remark 3.1. Compared to (2.2), equations (3.5) have the advantage to be partial
differential equations with constant coefficients, which allows us to have explicite
solutions.

We have:

Lemma 3.1. x satisfies the equation (3.5) if and only if

0 1

(3.6) % - 5){1){4 +cRe(xaxs) =0
0 1_ _

(3.7 % —5X2Xa — Re(xixs) =0
0 . _

(3.8) % — Xax4 +icSm(xixz2) =0

x4

3.9 — =0

(39) 0z

Proof. substitute (3.3) into (3.5) gives the result. O

Therefore:

Theorem 3.1. Let x;,i = 1,2,3,4, be complex-valued functions defined in a simply
connected domain Q) C C such that:

olx1|? + Ix2l? + [xal?[+[xal? # 0;

oXi + X3+ X3 +xi=0;

ox; are solutions of (3.6) — (3.9).

Then the map f: Q — Sy, defined by

z fa
2§Re/ e?2 y1dz,

20

z fa
2§Re/ €2 xadz,
20

fl(uav) =
fg(u,’U) =
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fa

falwo) = el [ e
fa(u,v) = 2%6/2 X4dz

Z0

(—x1f2 + X2 f1) + e x3dz),

is a conformal minimal immersion.

Proof. By substituting (3.3) in (3.4), we obtain
C t C t
Ti=x1, YTe=x2, T3= ety + 567 X2 +e'xs, Ti=xa

From 2.3, we have the result. Using proposition 2.1, f : 2 — §4 is a conformal
minimal immersion. (]

Example 3.1. If x4 = 0 then f; is constant and this implies that x% + x3 +x3 = 0.
We can give a simple geometric description of almost solutions of the equation
X3 + X3 + X3 = 0, which suggests of two complex functions

1 . 1 ,
(3.10) G = /500 —ix2) H = =500 +ix2)

By using the same arguments as in [5], we get the following Weierstrass Represen-
tations:
ekor the vertical plane:

filu,v) = 26%4%6((1 — 2@,

falu,w) = 267 Re((1+¢*)Q),

falu,v) = 2§Re(/ e? g(—(l —2NG2 fy +i(1 4 )G f1) + 2671 G2dz),
fa(u,v) = constazﬁzt

filu,v) = —4dau
fa(u,v) = 4Q(v),
f3(u,v) = —8acuQ(v),
fa(u,v) = constant,
eFor the Helicoids:
filu,v) = p(u)cos(v)
fa(u,v) = p(u)sin(v)
f3(u,v) = (av+b),a,b€R
falu,v) = constant,

Example 3.2. Let f: C — S4 be a minimal immersion into Syfor which y; and
X2 are purely imaginary functions, and x3 is a real function. Then equations (3.6),
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7), (3.8) and (3.9) become

11) % + %xw@ =0 ;

12) % + %X2X4 =0 ;

13) ggg'—’X3X4 =0 ;
0

14) % —0

The solutions of these equations are:

X1 =iae” 297 yp = iBem 307y = 4eQ)7 5y, = Q(2),

with «, 8,7 € R and Q(z) a holomorphic function. Since x; and xo are purely
imaginary functions, and x3 is a real function, and x% + x3 + x3 + x5 = 0 imply
that Q(z) =0

Then a Weierstrass representation of f : ) — S, is given by

filu,v) = —2akv,

fa(u,v) = —20kv,

fa(u,v) = 2ykKu,

fa(u,v) = K, k=e7, K €R.

It’s a particular case of the saddle-type surface.
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