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VISUAL DISTINGUISHABILITY OF SEGMENTS

ÁRPÁD KURUSA

(Communicated by Levent KULA)

Abstract. By considering the equioptics of segments in a plane we find some

answers to the question that “if the measures of the visual angles of two seg-

ments are equal at some points in the plane do they coincide?”.

1. Introduction

The shadow picture [4] of a compact convex set B is defined at each point P ∈
R2 \ B as the angle measure νB(P ) of the so called visual angle that B subtends
at P . The point P and the set B are usually called the source and the object of
shadow picture νB(P ). The shadow picture is often called visual angle (sometimes
this makes some confusion) or point projection [2]. The function νB is usually called
visual angle function.

The central problem in this subject is to show such set S of sources and set O
of objects that O 3 B 7→ νB S is injective. There are a number of such results in
the literature [3], [4], [5], [6], [7], [10] etc.

In this article we consider the distinguishability of segments by investigating first
their equioptics in detail.

2. Equioptics of segments

The equioptic of two compact convex sets is the set of those points, where their
shadow pictures are equal.1 The compoptic of two compact convex sets is the set of
those points, where the sum of their shadow pictures is π (these shadow pictures
are said to be supplementary).

Lemma 2.1. The equioptic of two different segments is a union of subarcs of two
cubic algebraic curves. The remaining subarcs of these two cubic algebraic curves
constitute the compoptic of those segments.
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1As the shadow picture of a segment is not well defined at the endpoints of the segment, we

think of it as equal to any angle in [0, π].
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Proof. Denote the different segments by AB and CD. Let m be a unit normal
vector of the plane. If the segment AB subtends the same angle ϕ at X as CD
does, then

(
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−1, otherwise.

Obviously, ε(X) is constant ±1 in every quadrants of the straight lines AB and
CD, and it changes sign if and only if X moves over one of the straight lines AB
and CD.

Fix an origin O and let x =
−−→
OX, a =

−→
OA, b =

−−→
OB, c =

−−→
OC and d =

−−→
OD. Then

−−→
XA×

−−→
XB = (a− x)× (b− x) = x× (a− b) + a× b,

〈
−−→
XA,

−−→
XB〉 = 〈a− x,b− x〉 = |x|2 − 〈x,a + b〉+ 〈a,b〉,

and

−−→
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XD = (c− x)× (d− x) = x× (c− d) + c× d,

〈
−−→
XC,

−−→
XD〉 = 〈c− x,d− x〉 = |x|2 − 〈x, c + d〉+ 〈c,d〉,

therefore

|x|2〈x, (a−b)×m〉+ 〈a× b,m〉|x|2 − 〈x, (a−b)×m〉〈x, c + d〉+
+ 〈x, 〈c,d〉((a−b)×m)−〈a× b,m〉(c + d)〉+ 〈a× b,m〉〈c,d〉

= ε̄(x)(|x|2〈x, (c−d)×m〉+ 〈c× d,m〉|x|2 −〈x, (c− d)×m〉〈x,a + b〉+(2.1)

+ 〈x, 〈a,b〉((c−d)×m)−〈c× d,m〉(a + b)〉+ 〈c× d,m〉〈a,b〉),

where ε̄(x) = ε̄(
−−→
OX) := ε(X). This proves that the equioptic is a union of arcs

of two cubic algebraic curves. Since the equation for the compoptic is the same as
(2.1), but with −ε̄, the second statement of the theorem is also proven. �

As x = 0 is a solution of equation (2.1) if and only if 〈a × b,m〉〈c,d〉 = 〈c ×
d,m〉〈a,b〉, we infer that the endpoints A, B, C and D, and, if they exist, the
intersection points M0 := AB ∩ CD, M+ := AC ∩ BD and M− := AD ∩ BC are
on the equioptic.

The cubic algebraic curves

|x|2〈x, (a−b)×m〉+ 〈a× b,m〉|x|2 − 〈x, (a−b)×m〉〈x, c + d〉+
+ 〈x, 〈c,d〉((a−b)×m)−〈a× b,m〉(c + d)〉+ 〈a× b,m〉〈c,d〉

= ±(|x|2〈x, (c−d)×m〉+ 〈c× d,m〉|x|2 −〈x, (c− d)×m〉〈x,a + b〉+(2.2)

+ 〈x, 〈a,b〉((c−d)×m)−〈c× d,m〉(a + b)〉+ 〈c× d,m〉〈a,b〉),

are called Apollonian curves [11] and are denoted by A± according to the sign of
the right side of (2.2). The equioptic and the compoptic are assembled from the
arcs of these Apollonian curves. Both Apollonian curves pass through the points
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A,B,C,D and M0, but, in general, each one passes only the point M± with its
index2.

A

B

C

D

Observations 2.2. The equioptic and compoptic subarcs of an Apollonian curve
follow each other alternately and one takes over at those points, where the Apol-
lonian curve intersects one of the straight lines of the segments. Each Apollonian
curve has a straight line asymptotic to it at its both “ends”.

If an Apollonian curve intersects a straight line in more than three points, then
by Bézout’s theorem3 it contains that straight line as a component, and therefore
it is reducible.

Theorem 2.3. If an Apollonian curve is reducible, then
(a) it is a nondegenerate circle and a straight line through its centre, or
(b) it is a degenerate circle and a straight line, or
(c) it is a nondegenerate equilateral hyperbola and the line at infinity, or
(d) it is two perpendicular straight lines and the line at infinity.

Theorem 2.3 is clearly stated in [11, p. 358. l. -7] without proof, but it has a
transparent proof in [12, Section 6] and a more detailed proof in [9, Section 2].

Theorem 2.4. Let A be an Apollonian curve of the different nondegenerate seg-
ments AB and CD. Then the followings hold.

(1) If A contains an open arc Ĥ of a nondegenerate equilateral hyperbola H,
then the segments are opposite sides of a parallelogram and are separated
by the branches of H if and only if they are the shorter edges in the paral-
lelogram.

(2) If A contains an open arc Ĉ of a circle C, then it also contains a straight
line ` passing through the centre of C.

(3) If A contains an open segment ˆ̀ of a straight line `, then the segments are
(3.1) the reflections of each other with respect to `, or
(3.2) opposite sides of a kite symmetric with respect to `, or
(3.3) adjoining sides of a kite symmetric with respect to `, or
(3.4) placed on `.

Proof. In this proof we regard the common ideal point of two parallel straight lines
as their intersection at the infinity.

(1) As A contains an arc Ĥ of the nondegenerate equilateral hyperbola H, by
Bézout’s theorem it also contains H, hence it is reducible. Then by Theorem 2.3

2Only the coincidence of the indices of A± and M± is invariant, because changing the order

of the endpoints of one of the segment changes both indices.
3Roughly speaking Bézout’s theorem [1] states that if two algebraic curves have more common

points than the product of their degrees, then they have a common component.
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the Apollonian cubic is the equilateral hyperbola H and the straight line `∞ at the
infinity.

As the straight line `∞ is contained by A, the straight lines AB and CD are the
opposite sides of a parallelogram, say it is ABCD. Further, the pairs {A,B} and
{C,D} are on the same branch of the hyperbola H if and only if the segments AB
or CD subtend acute visual angle at the centre of the parallelogram ABCD.

(2) As A contains an arc Ĉ of the circle C, by Bézout’s theorem it also contains
C, hence it is reducible. Then by Theorem 2.3 A is the circle C and a straight line
` through its centre.

(3) As A contains the open segment ˆ̀ of the straight line `, by Bézout’s theorem
it also contains `, hence it is reducible. Then by Theorem 2.3 the Apollonian cubic
can be of four types, that we are considering one-by-one.

Observe first that A contains the points A,B,C,D,M0 and one of the points M+

and M−, and second that the segments subtend angles close to zero at the points
of ` near infinity, therefore they subtend the same angle at those points, hence they
have projections of equal length onto any straight line `⊥ perpendicular to `.

(a) In this case A is the union of the straight line ` and a nondegenerate circle
C centred on `. We consider subcases.

(a1) Assume that A,B,C,D ∈ C and all these points are different. Then M0 ∈ `
and M+ ∈ ` or M− ∈ `. Suppose that M0 is exterior to C. As ABCD is a cyclic
quadrilateral in C, M0AD4 is similar to M0CB4. Also the segments AB and
CD are equal length chords of C, hence by letting x := d(A,B), b := d(M0, B) and
c := d(M0, C) we get (b+x)b = (c+x)c, that is (b−c)(b+c+x) = 0. Thus b = c. If
M0 is interior to C, then both M± are exterior to C. Assume M+ ∈ `. As ABCD is
a cyclic quadrilateral in C, M+CD4 is similar to M+BA4. Also the segments AC
and BD are equal length chords of C, hence by letting y := d(A,C), a := d(M+, A)
and d := d(M+, D) we get (a+ y)a = (d+ y)d, that is (a− d)(a+ d+ y) = 0. Thus
a = d. (⇒(3.1))

(a2) Assume that A,B,C,D ∈ C and B = C. The segments AB and CD are
equal length chords of C, and they also have equal length projection on `⊥, hence
they have also equal length projection on `, and therefore BA and CD close the
same (undirected) angle to `. Thus, the point B = C is on the bisector of AD,
which passes through the centre O of C, hence OBA∠ = OCD∠. This implies
OB = `, hence the chord AD of C is perpendicular to `, thus B = C ∈ ` and A is
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the reflection of D onto `. (⇒(3.3))

(a3) Assume A,B ∈ `. Then also C,D ∈ `, and an easy calculation with (2.1)
shows that C is the Apollonian circle of such different length segments AB and CD
that neither one contains the other. (⇒(3.4))

(a4) Assume A,D ∈ `, A = D and B ∈ C \ `. Then also C ∈ C \ `. The segments
AB and CD subtend equal or supplementary angles at the projection B⊥ of B to
`, which is π/2, so BC is perpendicular to `. Since the projections of the segments
are also of equal length, ` is the bisector of BC. (⇒(3.3))

(a5) Assume A,D ∈ `, A 6= D and B ∈ C \ `. Then also C ∈ C \ `. The segments
AB and CD have equal length projection on any straight line `⊥ perpendicular to `,
therefore B and C are in the same distance from `. If B = C, an easy calculation
with (2.1) shows that the other component of the Apollonian that contains the
straight line is a degenerate circle with centre in B = C, therefore B 6= C, and the
same reasoning as in (a4) implies that ` is the bisector of BC. (⇒(3.2))

(a6) Assume A,C ∈ ` and B ∈ C\`. Then also D ∈ C\`, and a simple exchanging
of the name of C and D leads us to (a4) or (a5) according to whether A = C or
A 6= C.

(b) In this case A is the union of the straight line ` and a degenerate circle
C = {P} 6⊂ `.

(b1) If no points of A,B,C,D are in C, then an easy calculation with (2.1) shows
that the other component of the Apollonian that contains ` is nondegenerate circle
or a straight line, therefore this case can not happen.

(b2) If A,D ∈ ` and B ∈ C then also C ∈ C, and therefore A 6= D. (⇒(3.3))
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(b3) If A,C ∈ ` and B ∈ C then also D ∈ C, therefore this is just a renaming of
(b2). (⇒(3.3))

A

BC

D A

BC

D

(c) This case can not occur, because the straight line ` is not at the infinity.
(d) In this case A is the union of the straight line ` and straight line `⊥ that is

perpendicular to `.
Observe that the segments subtend angles close to zero at the points of ` and `⊥

near infinity, therefore the segments subtend the same angle at those points, hence
they have projections of equal length onto any of the straight lines ` or `⊥, and
hence they have the same length.

(d1) Assume AB ⊂ `. Then also CD ⊂ `, and considering the angles the
segments subtend at points of `⊥ near ` ∩ `⊥ shows that the segments are the
reflection of each other with respect to `⊥. (⇒(3.4))

(d2) Assume AB ⊂ `⊥. Then also CD ⊂ `⊥, and by following the reasoning in
(d1), we get that the segments are the reflection of each other with respect to `.
(⇒(3.1))

(d3) Assume A,D ∈ `, A = D and B ∈ `⊥ \ `. Then also C ∈ `⊥ \ `, and since
B 6= C the point C is the reflection of B with respect to `. Then, as we saw earlier,
A is `⊥ and the circle through the points A,B,C that contradicts the assumption,
therefore this case can not happen.

(d4) Assume A,D ∈ `, A 6= D and B ∈ `⊥ \ `. Then also C ∈ `⊥ \ `, and as in
(d3) we conclude that B 6= C. Since the segments have equal length corresponding
projections, B and C can not be on the same side of `, thus B and C are the
reflections of each other with respect to `, and in the same way we deduce that A
and D are the reflections of each other with respect to `⊥. This proves that ABDC
is a square. (⇒(3.2))

The proof is now completed. �

3. Distinguishability of segments

A set P of points in the plane is called set of injectivity if the coincidence of any
two segments follows from the equality of the measures of their respective visual
angles at every point of P. Obviously, if a set is covered by an Apollonian curve,
then it is not a set of injectivity. In this section we show sets of injectivity.

Denote the cubic polynomials on the left- and right-hand side of (2.2) by f and
g, respectively, and observe that f2 = g2 satisfied exactly by the points of the two
Apollonian curve. Since the degree of the polynomial equation f2 = g2 is 6, it has
at most

(
6+2

2

)
= 28 independent coefficients, hence there can be chosen 29 points

so that no polynomial equation of the form f2 = g2 can have them all as solutions.
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Thus, there are sets of injectivity that contain only 29 points, and the problem
arises to

(3.1) determine the minimal cardinality of a set of injectivity.

The following theorem proves that the minimal cardinality of a set of injectivity
can not be more than 16.

Theorem 3.1. Let I be the intersection point of the straight lines `1 and `2 that are
not orthogonal to each other. Let P1, P2, P3, P4, P5, P6 ∈ `1 and
Q1, Q2, Q3, Q4, Q5, Q6 ∈ `2 be different points outside I and finally let R1, R2, R3

collinear points outside of `1 ∪ `2 ∪ `⊥1 ∪ `⊥2 , where the straight lines `⊥1 , `
⊥
2 are

perpendicular to `1 and `2, respectively, and pass through I. If the nondegenerate
segments AB and CD have equal or supplementary shadow pictures at every points
of {I, P1, . . . , P6, Q1, . . . , Q6, R1, R2, R3}, then they coincide.

Proof. Assume that AB and CD are different.
As `1 has 7 common points with the Apollonian curves of AB and CD, one of

the Apollonian curve, say A−, has at least 4 points common with `1, hence by
Bézout’s theorem `1 is a component of A+.

By Theorem 2.3 we see, that outside of `1 the Apollonian curve A− may intersect
`2 in at most 2 points, hence A+ must intersect `2 in at least 4 points. Thus by
Bézout’s theorem `2 is a component of A+.

Thus both Apollonian curves A± are of type (3) in our Theorem 2.4, and there-
fore we have to investigate the pairs of the cases (3.1)–(3.4).

If A− is of (3.1) and A+ is of (3.1), then the rotation given by the reflections with
respect to `1 and `2 is by angle 2π around I, hence `1 = `2, which is a contradiction.

If A− is of (3.1) and A+ is of (3.2), then the kite K mentioned in (3.2) is also
symmetric to `1, hence `1 is the middle line of K, hence K is a square, and therefore
A− is `1 and the circumscribed circle, A+ is `2 and the straight line of the other
diagonal of K.

If A− is of (3.1) and A+ is of (3.3), then the kite K mentioned in (3.3) is also
symmetric to `1, hence `1 and `2 are the diagonals of K, that implies `1 ⊥ `2, which
is a contradiction.

If A− is of (3.1) and A+ is of (3.4), then `1 ⊥ `2, which is a contradiction.
If A− is of (3.2) and A+ is of (3.2), then `1 and `2 are the diagonals of the kite

K mentioned in (3.2), that implies `1 ⊥ `2, which is a contradiction.
If A− is of (3.2) and A+ is of (3.3), we have a contradiction, as the segments

can not be opposite and adjoining sides of a kite at once.
If A− is of (3.2) and A+ is of (3.4), then `1 intersects `2 in two points, hence

`1 = `2, which is a contradiction.
If A− is of (3.3) and A+ is of (3.3), then the kite K mentioned in (3.3) is

symmetric to `1 and `2, hence `1 and `2 are the diagonals of K, that implies `1 ⊥ `2,
which is a contradiction.

If A− is of (3.3) and A+ is of (3.4), then `1 intersects `2 in two points, hence
`1 = `2, which is a contradiction.

If A− is of (3.4) and A+ is of (3.4), then `1 = `2, which is a contradiction.
In sum, the only case with no contradiction to the conditions is the case that

A− is of (3.1) and A+ is of (3.2), in which case A− is `1 and a circle C, and A+ is
`2 and a straight line `⊥2 orthogonal to `2 passing through the centre of C.
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But the points R1, R2, R3 are collinear and they are outside of `1 ∪ `2 ∪ `⊥1 ∪ `⊥2 ,
hence they can not be covered by `1, C,`2 and `⊥2 . This proves the theorem. �

To describe the sets of injectivity is a very different task. A first step to have
such decsription is the following improvement of [4, Lemma 2.1, Lemma 3.2].

Theorem 3.2. Assume that two closed segments subtend equal angles at the points
of the border ∂D of an open domain D.

(1) If the straight lines of the segments do not intersect D, they coincide.
(2) If the segments do not end on ∂D, then one of the followings is valid:

(2a) the segments are collinear with two-two endpoints inside and outside
of D, and ∂D is a circle or a straight line;

(2b) D is a half plane and the segments are the reflections of each other
with respect to ∂D;

(2c) D is an equilateral quadrant and the segments are the reflections of
each other with respect to the straight lines of the border of ∂D.

Proof. Denote the segments by AB and CD. Let νAB and νCD be the visual angle
functions of them, respectively, and let ν = νAB−νCD. By the conditions ν vanishes
on the border ∂D of D.

(1) Since the straight lines of the segments do not intersect ∂D, νAB and νCD

are harmonic functions on D (see Lemma A.1 in the Appendix), hence ν is also
harmonic on D. As ν vanishes on ∂D, the maximum principle of harmonic functions
implies that ν vanishes on the whole domain D. Now Theorem 3.1 implies the
coincidence of the segments by choosing suitable points in D.

(2) We have {A,B,C,D} ∩ ∂D = ∅.
IfAB = CD, then (2a) follows from Theorem 2.4, therefore we assumeAB 6≡ CD

from now on.
Knowing (1) we conclude that one of the straight lines AB and CD, say AB,

intersects ∂D in at least one point P . Then the straight line CD also passes
through P , because νCD(P ) = νAB(P ) = 0. As AB 6≡ CD we infer P = M0.

Since AB 6≡ CD, the equioptic E is the union of subarcs of the Apollonian curves
A+ and A− of the segments AB and CD, and therefore

(AB∪CD)∩∂D ⊆ (AB∪CD)∩E ⊆ (AB∪CD)∩ (A+∪A−) ⊆ {A,B,C,D,M0}.

As also ∂D ∩ {A,B,C,D} = ∅, we obtain (AB ∪ CD) ∩ ∂D = {M0}.
The straight lines AB and CD divides the plane into four open quadrants Q−2,

Q−1, Q1 and Q2, where the quadrants are indexed so that ∂Qi ∩ ∂Q−i = {M0}
(i = 1, 2). It clearly follows then that ∂D ⊂ {M0}∪Q, where Q is the union of two
quadrants. These two quadrants are adjacent, if there is a neighbourhood of M0 in
which ∂D is covered by only one Apollonian curve, and they are opposite, if in any
neighbourhood of M0 both Apollonian curves are necessary to cover ∂D.

The point M0 is simultaneously inner or external for both segments AB and CD,
because otherwise the arcs of A+ and A− near M0 ∈ E would be on the compoptic



64 ÁRPÁD KURUSA

and therefore ∂D could not pass M0.

According to Observation 2.2 the intersection of an Apollonian curve wit a quadrant
Qi (i = ±1,±2) is the intersection of the quadrant Qi with either the equioptic
or the compoptic, hence the curves ∂D ∩ Qi are covered by exactly one of the
Apollonian curves for each i = ±1,±2.

One of the quadrants that covers “half” of ∂D, say Q1, has in its border (two
rays `+ and `− of the straight lines CD and AB, respectively, both starting at M0)
one of the points A,B,C,D, say it is D.

In the quadrant Q1 the Apollonian curve A (one of A±) that covers ∂D passes
through the points M0 and D and it has an asymptotic ray `+. As ∂D is the
border of the open domain D, the curve ∂D∩Q1 is connected. Denoting the point
of A1 := A ∩ Q1 at the infinity by A∞ we conclude that M0 and A∞ is in one
component of Ā1 := A ∩ (Q1 ∪ ∂Q1) and also C ∈ Ā1.

We proceed by considering different cases.
(2.1) Assume A is reducible. Then by Theorem 2.3 the Apollonian curve A is

the straight line ` := M0A∞ and a circle C centred at a point on `. As M0 /∈
{A,B,C,D} Theorem 2.4 proves that AB is the reflection of CD with respect to `
(we may assume that ` is the bisector of AD and BC).

Then the asymptotic straight line `⊥ of the other Apollonian curve A± of the
segments is perpendicular to `, and it goes through M0 if and only if AB is the
reflection of CD with respect to `⊥, and we get the configurations described in (2b)
and (2c).

If `⊥ does not pass M0, then it can not intersect A±, because otherwise by
symmetry it would have two intersections with A± that counted together with its
second order intersection B∞ with A± at infinity would imply A± ≡ `⊥ by Bézout’s
theorem.
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If `⊥ does not intersect the segments, then the strip between AD and BC sep-
arates B∞ from M0 in Q±2, because AD and BC intersect A± in exactly three
points A,D,B∞ and B,C,B∞, respectively. If `⊥ intersects the segments, then
it separates B∞ from M0. By this disconnectedness in both cases, the arc of A±
starting from B∞ can not be in the border ∂D of D, hence we get the configuration
described in (2b).

(2.2) Assume A is irreducible and has a double point, i.e. it is singular [12]. Then
by [12, 5.7. Theorem] the straight lines AB, CD and either AC and BD or AD
and BC are tangent to the same circle C centred to the double point S. Without
loss of generality we may assume that the straight lines AB, CD, AC and BD are
tangent to the circle C.

Let ` be the asymptotic straight line of A and let `‖ be the straight line through S
that is parallel to `. The straight line `‖ intersects A exactly in S, but the other
straight lines through S intersect A in exactly one more point. This means that the
connected part of A1 = A ∩Q1 that contains A∞ is in the domain F of the angle
DS`‖∠. This domain does not contains M0 and A intersects its border exactly in
the point D. This proves that M0 and A cannot be in one component of A1, hence
this case can not happen.

(2.3) Assume that A is irreducible, has no double point and has only one com-
ponent. As A intersects the straight line CD in three points, it has a bounded
and an unbounded (asymptotic) component (arc) on both sides of CD, and these
components are separated, because A does not have double point.

Either M0 separates D and C, or C separates M0 and D, or D separates M0 and C.
If M0 separates the points C and D, then it is on the bounded arc of A between

C and D, and A∞ is on the unbounded components of A1, hence M0 and A∞ can
not be in a common component of A1.

If C (or D) separates the points M0 and D (C, respectively), then it is on the
bounded arc of A between M0 and D (C, respectively), and therefore M0 and A∞ is
in a common component of A1 if the border of the quadrant Q1 contains neither C
nor D. This contradicts the assumption that D ∈ ∂Q1, hence M0 and A∞ can not
be in a common component of A1.

(2.4) Assume that A is irreducible, has no double point and consists of two com-
ponents. As A intersects the straight line CD in three points, two of these points
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are on the bounded component, and the third one is on the unbounded. As M0

and A∞ are in the same component of A1, they are also in a common component
of A, hence M0 is in the unbounded component of A. Using the above reasoning,
we get that the bounded component of A contains the points A,B,C,D which is
clearly a contradiction4. This contradiction shows that M0 and A∞ can not be in
a common component of A1.

The theorem is now completely proven. �

Note that Theorem 3.2 fails without the condition {A,B,C,D} ∩ ∂D = ∅ as
shown5 by the figures in Lemma 2.1. Nevertheless we obtain the following as a
corollary.

Theorem 3.3. If the centres of three circles of equal radius % form a triangle so
that every heights of that triangle is bigger than 2%, then the union of the circles
constitute a set of injectivity.

For the proof we only have to observe, that a segment can intersect only two of
the circles.

Appendix A

Let B be a convex body with the boundary ∂B, and let g : [−1, 1]→ R2 be a C2

curve outside B, that is parametrized by arc length and has no tangents meeting B.
Denote the tangent line, the tangent vector and the curvature of the curve g at
g(s), by `(s), t(s) and κ(s), respectively. Let T a(s) and T b(s) be the tangents of B
through the point g(s) so that their respective unit directional vectors ta(s), tb(s)
pointing toward B are such that ta(s) is a positive linear combination of tb(s) and
t(s). Let α(s) and β(s) be the respective angles of ta(s) and tb(s) to t(s). Then
0 < α(s) < β(s) < π and ν(s) = β(s)− α(s) is the shadow picture of B at g(s).

Let A(s) = B ∩ T a(s) and B(s) = B ∩ T b(s) and define the points A±(s) :=
limx↘0A(s ± x), B±(s) := limx↘0 B(s ± x). Their respective distances from g(s)
are a±(s) = |A±(s)− g(s)| and b±(s) = |B±(s)− g(s)|.

If A+(s) = A−(s) and B+(s) = B−(s), then let A(s) = A−(s), B(s) = B−(s),
a(s) = a−(s), b(s) = b−(s) and let κa(s), κb(s) be the (maybe infinite) curvatures
of ∂B at A(s) and B(s), respectively.

If more curves occur, then they and their objects are indexed consequently. A
function without argument is understood at the appropriate parameter s ∈ [−1, 1].

Lemma A.1. Let B be a convex body and let ΣB denote the union of the straight
lines of the segments in ∂B.

(1) The visual angle function of B is subharmonic in R2 \ B \ ΣB.
(2) The visual angle function of B is harmonic at a point P ∈ R2 \ B \ ΣB if

and only if every tangent of B through P touches B in a singular point.

Proof. Let P ∈ R2\B\ΣB and take two orthogonal straight lines g1 and g2 through
P so that g1(0) = g2(0) = P . Then A+

i (0) = A−i (0) and B+
i (0) = B−i (0) (i = 1, 2),

4Using the main involution [12, 4.6.] and [12, 4.3. Theorem] one sees {A,B}∗ = {CD} (and
{A,B} = {CD}∗), and by [12, 4.19.] this implies that the points A,B,C,D can not be in the
same component.

5Look for the points near A and C on the first and second figures, or the points near the
segment AB on the third figure.
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and therefore the second equation in [6, Lemma 1] implies

∆ν(P ) = ν̈1(0) + ν̈2(0)

=
sin 2β1

b2
− sin 2α1

a2
+

sin2 β1

b3κb
+

sin2 α1

a3κa
+

+
sin(2β1 + π)

b2
− sin(2α1 + π)

a2
+

sin2(β1 + π/2)

b3κb
+

sin2(α1 + π/2)

a3κa

=
1

b3κb
+

1

a3κa
.

This proves statement (1), because b, a, κb and κa are nonnegative functions.
Statement (2) is justified because κb = κa = +∞ if and only if the tangents goes
through singular points of B. �
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