ONE-PARAMETER PLANAR MOTION ON THE GALILEAN PLANE

MUTLU AKAR, SALİM YÜCE, AND NURİ KURUOĞLU
(Communicated by Erdal ÖZÜSAǦLAM)

Abstract

Müller [2], on the Euclidean plane \mathbb{E}^{2}, introduced the one-parameter planar motions and obtained the relation between absolute, relative, sliding velocities and accelerations. Ergin [3] considered the Lorentzian plane \mathbb{L}^{2}, instead of the Euclidean plane \mathbb{E}^{2}, and introduced the one-parameter planar motions on the Lorentzian plane and also gave the relations between both the velocities and accelerations.

In this paper, one-parameter motions on the Galilean plane \mathbb{G}^{2} are defined. Also the relations between absolute, relative, sliding velocities and accelerations and pole curves are discussed.

1. INTRODUCTION

We consider \mathbb{R}^{2} with the bilinear form

$$
\begin{equation*}
\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} x_{2}+\epsilon y_{1} y_{2} \tag{1.1}
\end{equation*}
$$

where ϵ may be 1,0 or -1 and $\mathbf{x}=\left(x_{1}, y_{1}\right), \mathbf{y}=\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. The distance between two points X and Y is defined by

$$
\begin{equation*}
\|\mathbf{x}-\mathbf{y}\|=|\langle\mathbf{x}-\mathbf{y}, \mathbf{x}-\mathbf{y}\rangle|^{\frac{1}{2}} \tag{1.2}
\end{equation*}
$$

where \mathbf{x} and \mathbf{y} are the coordinate vectors of the points X and Y with respect to the coordinate systems in \mathbb{R}^{2}. For $\epsilon=1$ we have the Euclidean plane \mathbb{E}^{2}, for $\epsilon=0$ we have the Galilean plane \mathbb{G}^{2}, and for $\epsilon=-1$ we have the Minkowskian (or Lorentzian) plane \mathbb{L}^{2}, (for Lorentzian Plane, see [1]). These are the three CayleyKlein plane geometries with a parabolic measure of distance. Denote \mathbb{R}^{2} with the bilinear form (1.1) by \mathbb{P}_{ϵ}, [4].

[^0]Vectors \mathbf{x} and \mathbf{y} in \mathbb{P}_{ϵ} are orthogonal, written $\mathbf{x} \perp \mathbf{y}$, if $\langle\mathbf{x}, \mathbf{y}\rangle=0$. Self-orthogonal vectors are called isotropic. For $\epsilon=1$, only the zero vector is isotropic. For $\epsilon=0$, zero and vertical vectors are isotropic and, for $\epsilon=-1$, zero vectors and vectors parallel to $(\pm 1,1)$ are isotropic, [4].

The linear transformation $J: \mathbb{P}_{\epsilon} \longrightarrow \mathbb{P}_{\epsilon}$ with matrix, also denoted by J,

$$
J=\left[\begin{array}{cc}
0 & -\epsilon \tag{1.3}\\
1 & 0
\end{array}\right]
$$

takes any vector \mathbf{x} to an orthogonal vector $J \mathbf{x}$. It is straight forward to check that, if \mathbf{x} is not isotropic and \mathbf{y} is orthogonal to \mathbf{x}, then $\mathbf{y}=k J \mathbf{x}$ for some real number k. A circle is the set of points a given distance from a fixed point, the center. The unit circle in \mathbb{P}_{ϵ} is the set of points with $\|\mathbf{p}\|=1$. The unit circles on Euclidean, Galilean and Minkowskian planes are shown in Figure 1, [4].

Figure 1. The unit circles for $\epsilon=1,0,-1$, respectively.
The Galilean unit circle has two branches, the vertical lines $x= \pm 1$, and any point on the y-axis is a center. The Minkowskian unit circle has four branches, consisting of a pair of conjugate rectangular hyperbolas with equations $x^{2}-y^{2}= \pm 1$. Hence, the equation of general unit circle in \mathbb{P}_{ϵ} is $x^{2}+\epsilon y^{2}= \pm 1$. It is not difficult to verify directly from the definition of the matrix exponential as $e^{A}=\sum \frac{A^{n}}{n!}$ that

$$
J=\left[\begin{array}{cc}
\cos _{\epsilon} \phi & -\epsilon \sin _{\epsilon} \phi \tag{1.4}\\
\sin _{\epsilon} \phi & \cos _{\epsilon} \phi
\end{array}\right]
$$

where

$$
\begin{equation*}
\cos _{\epsilon} \phi=\sum_{n=0}^{\infty} \frac{(-\epsilon)^{n} \phi^{2 n}}{(2 n)!}, \quad \sin _{\epsilon} \phi=\sum_{n=0}^{\infty} \frac{(-\epsilon)^{n} \phi^{2 n+1}}{(2 n+1)!} \tag{1.5}
\end{equation*}
$$

For $\epsilon=1$ these are the usual cosine and sine functions, for $\epsilon=-1$ they are hyperbolic cosine and sine and for $\epsilon=0$ they are just

$$
\begin{align*}
& \cos _{0} \phi=1 \tag{1.6}\\
& \sin _{0} \phi=\phi
\end{align*}, \quad \text { for all } \phi
$$

In all case, we obtain

$$
\begin{equation*}
\cos _{\epsilon}^{2} \phi+\epsilon \sin _{\epsilon}^{2} \phi=1 \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{\phi} \cos _{\epsilon} \phi=-\epsilon \sin _{\epsilon} \phi, \quad \partial_{\phi} \sin _{\epsilon} \phi=\cos _{\epsilon} \phi \tag{1.8}
\end{equation*}
$$

Equating corresponding entries of matrix equation

$$
\begin{equation*}
e^{J(\phi+\psi)}=e^{J \phi} e^{J \psi} \tag{1.9}
\end{equation*}
$$

gives the sum formulae

$$
\begin{align*}
\cos _{\epsilon}(\phi+\psi) & =\cos _{\epsilon} \phi \cos _{\epsilon} \psi-\epsilon \sin _{\epsilon} \phi \sin _{\epsilon} \psi \tag{1.10}\\
\sin _{\epsilon}(\phi+\psi) & =\sin _{\epsilon} \phi \cos _{\epsilon} \psi+\cos _{\epsilon} \phi \sin _{\epsilon} \psi, \tag{4}
\end{align*}
$$

1.1. Galilean Metric and Galilean Transformation. The Galilean norm of $\mathbf{x}=(x, y) \in \mathbb{G}^{2}$ is defined by $\|\mathbf{x}\|_{g}=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle_{g}}=|x|$. Furthermore, if $\|\mathbf{x}\|_{g}=1, \mathbf{x}$ is called a unit vector, where \langle,\rangle_{g} is called the Galilean inner product for $\epsilon=0$ in the equation (1.1).

On the Galilean Plane, the distance $d(X, Y)$ between two points $X=\left(x_{1}, y_{1}\right)$ and $Y=\left(x_{2}, y_{2}\right)$ is defined by the formula

$$
\begin{equation*}
d(X, Y)=\|\mathbf{Y X}\|_{g}=\|\mathbf{x}-\mathbf{y}\|_{g}=\sqrt{\langle\mathbf{x}-\mathbf{y}, \mathbf{x}-\mathbf{y}\rangle_{g}}=\left|x_{1}-x_{2}\right| \tag{1.11}
\end{equation*}
$$

and it equals the signed length of the projection $\mathbf{P Q}$ of the segment $\mathbf{X Y}$ on the x-axis (Fig. 2), [5].

Figure 2. The distance on Galilean plane.

If the distance $d(X, Y)$ between the points X and Y is zero, i.e., $x_{1}=x_{2}$, then X and Y belong to the same special line (parallel to the y-axis; Fig. 3). For such
points it makes sense to define the special distance

$$
\begin{equation*}
\delta(X, Y)=\left|y_{1}-y_{2}\right| \tag{1.12}
\end{equation*}
$$

[5].

Figure 3. The special distance on Galilean plane.
Taking φ as the rotation angle between $\mathbf{x}=(x, y)$ and $\mathbf{x}^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ (Fig. 4), we can write

$$
\begin{aligned}
x & =r \cos g \theta & \quad x^{\prime} & =r \cos g(\theta+\varphi) \\
y & =r \sin g \theta & \text { and } \quad y^{\prime} & =r \sin g(\theta+\varphi)
\end{aligned}
$$

where $\cos g$ and $\sin g$ are $\cos _{0}$ and $\sin _{0}$ (for $\epsilon=0$, in the equations (1.4-1.10)), respectively.

Figure 4. The rotation on Galilean plane.

Then, using the equation (1.10), for $\epsilon=0$, we obtain

$$
\begin{aligned}
x^{\prime} & =x \cos g \varphi+y 0 \\
y^{\prime} & =x \sin g \varphi+y \cos g \varphi
\end{aligned}
$$

From the equation (1.6) (since for all $\varphi, \cos g \varphi=1$ and $\sin g \varphi=\varphi$), we get

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
\varphi & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

or

$$
\begin{align*}
& x^{\prime}=x \\
& y^{\prime}=\varphi x+y . \tag{1.13}
\end{align*}
$$

Then, from composed of the transformation (or the shear)

$$
\begin{aligned}
x_{1} & =x \\
y_{1} & =\varphi x+y
\end{aligned}
$$

and the transformation (or translation)

$$
\begin{aligned}
x^{\prime} & =x_{1}+a \\
y^{\prime} & =y_{1}+b
\end{aligned}
$$

we arrive at the formulae

$$
\begin{align*}
& x^{\prime}=x+a \\
& y^{\prime}=\varphi x+y+b . \tag{1.14}
\end{align*}
$$

The equation (1.14) is called Galilean transformation and we remark that the transformation (1.14) map
a) lines onto lines,
b) parallel lines onto parallel lines,
c) collinear segments onto collinear segments,
d) a figure onto a figure of the same area.

This Galilean transformation belong to the kinematics on \mathbb{G}^{2}. Under the Galilean Transformation examining the motion of points of \mathbb{G}^{2} and establishing the invariants are the kinematic geometry of \mathbb{G}^{2}. These are called, in other words, the Galilean geometry, [5].

2. KINEMATICS ON THE GALILEAN PLANE

In kinematics, the one-parameter planar motions on the Euclidean plane were given by Müller [2]. Then, the one-parameter planar motions on the Lorentzian plane were given by Ergin [3].

In this section, the one-parameter planar motions on the Galilean plane \mathbb{G}^{2} are defined. Then, the relations between both velocities and accelerations of a point under the one-parameter planar Galilean motions are obtained.

I

Let \mathbb{G} and \mathbb{G}^{\prime} be moving and fixed Galilean planes and $\left\{O ; \mathbf{g}_{1}, \mathbf{g}_{2}\right\}$ and $\left\{O^{\prime} ; \mathbf{g}_{1}^{\prime}, \mathbf{g}_{2}^{\prime}\right\}$ be their coordinate systems, respectively. By taking

$$
\begin{equation*}
\mathbf{O O}^{\prime}=\mathbf{u}=u_{1} \mathbf{g}_{1}+u_{2} \mathbf{g}_{2}, \text { for } u_{1}, u_{2} \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

the motion defined by the transformation

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{x}-\mathbf{u} \tag{2.2}
\end{equation*}
$$

is called a one-parameter planar Galilean motion and denoted by $B=\mathbb{G} / \mathbb{G}^{\prime}$, where $\mathbf{x}, \mathbf{x}^{\prime}$ are the coordinate vectors with respect to the moving and fixed rectangular coordinate systems of a point $X=\left(x_{1}, x_{2}\right) \in \mathbb{G}$, respectively (Fig. 5). Also the rotation angle φ and the vectors $\mathbf{x}, \mathbf{x}^{\prime}$ and \mathbf{u} are continuously differentiable functions of a time parameter t. Furthermore, at the initial time $t=0$ the coordinate systems coincide. Taking $\varphi=\varphi(t)$ as the rotation angle between \mathbf{g}_{1} and \mathbf{g}_{1}^{\prime} (Fig. 5), we can write

$$
\begin{align*}
& \mathbf{g}_{1}=\mathbf{g}_{1}^{\prime}+\varphi \mathbf{g}_{2}^{\prime} \\
& \mathbf{g}_{2}=\quad \mathbf{g}_{2}^{\prime} . \tag{2.3}
\end{align*}
$$

In this study we assume that

$$
\begin{equation*}
\dot{\varphi}(t)=\frac{d \varphi}{d t} \neq 0 \tag{2.4}
\end{equation*}
$$

where". "denotes the derivation with respect to " t " and $\dot{\varphi}(t)$ is called the angular velocity of the motion $B=\mathbb{G} / \mathbb{G}^{\prime}$.

Differentiating the equations (2.1) and (2.3) with respect to t, the derivative formulae of the motion $B=\mathbb{G} / \mathbb{G}^{\prime}$ are obtained as follows

$$
\begin{align*}
& \dot{\mathbf{g}}_{1}=\dot{\varphi} \mathbf{g}_{2} \tag{2.5}\\
& \dot{\mathbf{g}}_{2}=\mathbf{0}
\end{align*}
$$

and

$$
\begin{equation*}
\dot{\mathbf{u}}=\dot{u}_{1} \mathbf{g}_{1}+\left(\dot{u}_{2}+u_{1} \dot{\varphi}\right) \mathbf{g}_{2} \tag{2.6}
\end{equation*}
$$

Now, we will define velocities of a point $X \in \mathbb{G}$ using the derivative formulae of the motion $B=\mathbb{G} / \mathbb{G}^{\prime}$:
The velocity of the point X with respect to \mathbb{G} is known as the relative velocity \mathbf{V}_{r}
and it is defined by $\frac{d \mathbf{x}}{d t}=\dot{x}$. Also, for the relative velocity \mathbf{V}_{r}, we can write

$$
\begin{equation*}
\mathbf{V}_{r}=\dot{x}_{1} \mathbf{g}_{1}+\dot{x}_{2} \mathbf{g}_{2} . \tag{2.7}
\end{equation*}
$$

Moreover, if we differentiate the equation (2.2) with respect to t, the absolute velocity of the point $X \in \mathbb{G}$ is found as

$$
\begin{equation*}
\mathbf{V}_{a}=-\dot{u}_{1} \mathbf{g}_{1}+\left(-\dot{u}_{2}-u_{1} \dot{\varphi}+x_{1} \dot{\varphi}\right) \mathbf{g}_{2}+\mathbf{V}_{r} \tag{2.8}
\end{equation*}
$$

From the equation (2.8), we get the sliding velocity

$$
\begin{equation*}
\mathbf{V}_{f}=-\dot{u}_{1} \mathbf{g}_{1}+\left(-\dot{u}_{2}-u_{1} \dot{\varphi}+x_{1} \dot{\varphi}\right) \mathbf{g}_{2} \tag{2.9}
\end{equation*}
$$

So we can give the following theorem using the equation (2.7), (2.8) and (2.9).
Theorem 2.1. Let X be a moving point on the plane \mathbb{G} and $\mathbf{V}_{r}, \mathbf{V}_{a}$ and \mathbf{V}_{f} be the relative, absolute and sliding velocities of X, respectively, under the one-parameter planar motion $B=\mathbb{G} / \mathbb{G}^{\prime}$. Then

$$
\begin{equation*}
\mathbf{V}_{a}=\mathbf{V}_{f}+\mathbf{V}_{r} \tag{2.10}
\end{equation*}
$$

The proof is obvious by using the definitions of velocities above.
For a general planar motions, there is a point that does not move, which means that its coordinates are the same in both reference coordinate systems $\left\{O ; \mathbf{g}_{1}, \mathbf{g}_{2}\right\}$ and $\left\{O^{\prime} ; \mathbf{g}_{1}^{\prime}, \mathbf{g}_{2}^{\prime}\right\}$. This point is called the pole point or the instantaneous rotation pole center, (Fig. 5). In this case, we obtain

$$
\mathbf{V}_{f}=\mathbf{0}
$$

or

$$
\left\{\begin{aligned}
-\dot{u}_{1} & =0 \\
-\dot{u}_{2}-u_{1} \dot{\varphi}+x_{1} \dot{\varphi} & =0
\end{aligned}\right.
$$

Then for the pole point $P=\left(p_{1}, p_{2}\right) \in \mathbb{G}$ of the motion $B=\mathbb{G} / \mathbb{G}^{\prime}$, we have

$$
P \ldots\left\{\begin{array}{l}
p_{1}=\frac{i_{2}(t)}{\dot{\varphi}(t)} \tag{2.11}\\
p_{2}=p_{2}(\lambda(t))
\end{array}, \quad \text { for } \lambda \in \mathbb{R}\right.
$$

Result 2.1. Invariant points on both planes at any instant t of $B=\mathbb{G} / \mathbb{G}^{\prime}$ lie on line parallel to y-axis on the plane \mathbb{G}. That is, there is only pole line on the plane \mathbb{G} at any instant t. For all $t \in I$, this pole lines are parallel to y-axis and each other and they constitute bundles of parallel lines.

Figure 5. The motion $B=\mathbb{G} / \mathbb{G}^{\prime}$.

Using equations (2.9) and (2.11), for the sliding velocity, we can rewrite

$$
\begin{equation*}
\mathbf{V}_{f}=\left\{0 \mathbf{g}_{1}+\left(x_{1}-p_{1}\right) \mathbf{g}_{2}\right\} \dot{\varphi} \tag{2.12}
\end{equation*}
$$

Now, we can give the following results by the equation (2.12):
Corollary 2.1. During the one-parameter plane motion $B=\mathbb{G} / \mathbb{G}^{\prime}$, the pole ray $\mathbf{P X}=\left(x_{1}-p_{1}\right) \mathbf{g}_{1}+\left(x_{2}-p_{2}\right) \mathbf{g}_{2}$ and the sliding velocity $\mathbf{V}_{f}=\left\{0 \mathbf{g}_{1}+\left(x_{1}-p_{1}\right) \mathbf{g}_{2}\right\} \dot{\varphi}$ are perpendicular vectors in the sense of Galilean geometry. That is, $\left\langle\mathbf{V}_{f}, \mathbf{P X}\right\rangle_{g}=$ 0 . Then under the motion $B=\mathbb{G} / \mathbb{G}^{\prime}$, the focus of the points $X \in \mathbb{G}$ is an orbit curve that it's normal pass through the rotation pole P.

Corollary 2.2. Under the motion $B=\mathbb{G} / \mathbb{G}^{\prime}$, the Galilean norm of the sliding velocity \mathbf{V}_{f} is

$$
\left\|\mathbf{V}_{f}\right\|_{\delta}=\|\mathbf{P X}\|_{g}|\dot{\varphi}|
$$

That is, during the motion $B=\mathbb{G} / \mathbb{G}^{\prime}$, all of the orbits of the points $X \in \mathbb{G}$ are such curves whose normal lines pass thoroughly the pole P. At any instant t, the motion $B=\mathbb{G} / \mathbb{G}^{\prime}$ is a Galilean instantaneous rotation with the angular velocity $\dot{\varphi}$ about the pole point P.

II

In this section, we will define relative, absolute, sliding and Coriolis acceleration vectors, during the one-parameter planar motion $B=\mathbb{G} / \mathbb{G}^{\prime}$.

Let X be a moving point of \mathbb{G}. Then the acceleration of the point X with respect to \mathbb{G} is known as the relative acceleration and it is defined by $\frac{d^{2} \mathbf{x}}{d t^{2}}=\ddot{\mathbf{x}}=\dot{\mathbf{V}}_{r}$. Also, for the relative acceleration \mathbf{b}_{r}, we can write

$$
\begin{equation*}
\mathbf{b}_{r}=\ddot{x}_{1} \mathbf{g}_{1}+\ddot{x}_{2} \mathbf{g}_{2} . \tag{2.13}
\end{equation*}
$$

The acceleration of the point X with respect to \mathbb{G}^{\prime} is known as the absolute acceleration and it is defined by

$$
\begin{equation*}
\mathbf{b}_{a}=\dot{\mathbf{V}}_{a}=\ddot{x}_{1} \mathbf{g}_{1}+\left\{\left(x_{1}-p_{1}\right) \ddot{\varphi}-\dot{p}_{1} \dot{\varphi}+2 \dot{x}_{1} \dot{\varphi}+\ddot{x}_{2}\right\} \mathbf{g}_{2} \tag{2.14}
\end{equation*}
$$

In the equation (2.14), the expression

$$
\begin{equation*}
\mathbf{b}_{f}=0 \mathbf{g}_{1}+\left\{\left(x_{1}-p_{1}\right) \ddot{\varphi}-\dot{p}_{1} \dot{\varphi}\right\} \mathbf{g}_{2} \tag{2.15}
\end{equation*}
$$

is called the sliding acceleration and

$$
\begin{equation*}
\mathbf{b}_{c}=0 \mathbf{g}_{1}+\left(2 \dot{x}_{1} \dot{\varphi}\right) \mathbf{g}_{2} \tag{2.16}
\end{equation*}
$$

is called the Coriolis acceleration of the one-parameter planar motion $B=\mathbb{G} / \mathbb{G}^{\prime}$.
So, we can give the following theorem and corollary using the equations (2.7), (2.14),
(2.15) and (2.16):

Theorem 2.2. Let X be a moving point on the plane \mathbb{G}. Then,

$$
\begin{equation*}
\mathbf{b}_{a}=\mathbf{b}_{f}+\mathbf{b}_{c}+\mathbf{b}_{r} \tag{2.17}
\end{equation*}
$$

during the one-parameter planar motion $B=\mathbb{G} / \mathbb{G}^{\prime}$.
Corollary 2.3. During the motion $B=\mathbb{G} / \mathbb{G}^{\prime}$, the Coriolis acceleration vector \mathbf{b}_{c} and the relative velocity vector \mathbf{V}_{r} are perpendicular to each other in the sense of Galilean geometry, i.e. $\left\langle\mathbf{V}_{r}, \mathbf{b}_{c}\right\rangle_{g}=0$.

Under the one-parameter planar motion $B=\mathbb{G} / \mathbb{G}^{\prime}$, the acceleration pole is characterized by vanishing the sliding acceleration. Therefore, if we take $\mathbf{b}_{f}=\mathbf{0}$, the acceleration pole point $Q=\left(q_{1}, q_{2}\right) \in \mathbb{G}$ of the motion $B=\mathbb{G} / \mathbb{G}^{\prime}$, we get

$$
Q \ldots\left\{\begin{array}{l}
q_{1}=p_{1}(t)+\dot{p}_{1}(t) \frac{\dot{\varphi}(t)}{\dot{\varphi}(t)} \tag{2.18}\\
q_{2}=q_{2}(\mu(t))
\end{array} \quad \text { for } \mu \in \mathbb{R} .\right.
$$

Result 2.2. Invariant points on both planes at any instant t of $B=\mathbb{G} / \mathbb{G}^{\prime}$ lie on line parallel to y-axis on the plane \mathbb{G}. That is, there is only acceleration pole line on the plane \mathbb{G} at any instant t.For all $t \in I$, this acceleration pole lines are parallel to y-axis and each other and they constitute bundles of parallel lines.

References

[1] Birman, G.S. and Nomizu, K., Trigonometry in Lorentzian Geometry, The American Mathematical Monthly, 91(1984), no. 9, 543-549.
[2] Blaschke, W. and Müller, H.R., Ebene Kinematik, Verlag Oldenbourg, München, 1956.
[3] Ergin, A. A., On the One-Parameter Lorentzian Motion, Comm. Fac. Sci. Univ. Ankara, Series A, 40(1991), 59-66.
[4] Helzer, G., Special Relativity with Acceleration, The American Mathematical Monthly, 107(2000), no. 3, 219-237.
[5] Yaglom, I.M., A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.

Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical UniverSity, 34210, EsEnler, İstanbul-TURKEY

E-mail address: makar@yildiz.edu.tr
Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical UniverSity, 34210, EsEnler, İstanbul-TURKEY

E-mail address: sayuce@yildiz.edu.tr
Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, University of BahÇeşehİr, 34100, Beşİ́ktaş, İstanbul-TURKEY

E-mail address: kuruoglu@bahcesehir.edu.tr

[^0]: Date: Received: May 17, 2012 and Accepted: January 6, 2013.
 2000 Mathematics Subject Classification. 53A17, 53A35, 53A40.
 Key words and phrases. Kinematics, one-parameter motion, Galilean plane.

