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Abstract. Müller [2], on the Euclidean plane E2, introduced the one-parameter

planar motions and obtained the relation between absolute, relative, sliding

velocities and accelerations. Ergin [3] considered the Lorentzian plane L2,
instead of the Euclidean plane E2, and introduced the one-parameter planar

motions on the Lorentzian plane and also gave the relations between both the

velocities and accelerations.
In this paper, one-parameter motions on the Galilean plane G2 are defined.

Also the relations between absolute, relative, sliding velocities and accelera-

tions and pole curves are discussed.

1. INTRODUCTION

We consider R2 with the bilinear form

(1.1) 〈x,y〉 = x1x2 + εy1y2

where ε may be 1,0 or −1 and x = (x1, y1) , y = (x2, y2) ∈ R2. The distance
between two points X and Y is defined by

(1.2) ‖x− y‖ = |〈x− y,x− y〉|
1
2

where x and y are the coordinate vectors of the points X and Y with respect
to the coordinate systems in R2 . For ε = 1 we have the Euclidean plane E2, for
ε = 0 we have the Galilean plane G2, and for ε = −1 we have the Minkowskian (or
Lorentzian) plane L2, (for Lorentzian Plane, see [1]). These are the three Cayley-
Klein plane geometries with a parabolic measure of distance. Denote R2 with the
bilinear form (1.1) by Pε, [4].
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Vectors x and y in Pε are orthogonal, written x ⊥ y, if 〈x,y〉 = 0. Self-orthogonal
vectors are called isotropic. For ε = 1, only the zero vector is isotropic. For ε = 0,
zero and vertical vectors are isotropic and, for ε = −1, zero vectors and vectors
parallel to (±1, 1) are isotropic, [4].

The linear transformation J : Pε −→ Pε with matrix, also denoted by J ,

(1.3) J =

[
0 −ε
1 0

]
takes any vector x to an orthogonal vector Jx. It is straight forward to check that,
if x is not isotropic and y is orthogonal to x, then y = kJx for some real number
k. A circle is the set of points a given distance from a fixed point, the center. The
unit circle in Pε is the set of points with ‖p‖ = 1. The unit circles on Euclidean,
Galilean and Minkowskian planes are shown in Figure 1, [4].

Figure 1. The unit circles for ε = 1, 0,−1, respectively.

The Galilean unit circle has two branches, the vertical lines x = ±1, and any
point on the y−axis is a center. The Minkowskian unit circle has four branches, con-
sisting of a pair of conjugate rectangular hyperbolas with equations x2 − y2 = ±1.
Hence, the equation of general unit circle in Pε is x2 + εy2 = ±1. It is not difficult
to verify directly from the definition of the matrix exponential as eA =

∑
An

n! that

(1.4) J =

[
cosε φ −ε sinε φ
sinε φ cosε φ

]
where

(1.5) cosε φ =

∞∑
n=0

(−ε)n φ2n

(2n)!
, sinε φ =

∞∑
n=0

(−ε)n φ2n+1

(2n+ 1)!
.

For ε = 1 these are the usual cosine and sine functions, for ε = −1 they are hyper-
bolic cosine and sine and for ε = 0 they are just

(1.6)
cos0 φ = 1
sin0 φ = φ

, for all φ.

In all case, we obtain

(1.7) cos2
ε φ+ ε sin2

ε φ = 1
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and

(1.8) ∂φ cosε φ = −ε sinε φ, ∂φ sinε φ = cosε φ.

Equating corresponding entries of matrix equation

(1.9) eJ(φ+ψ) = eJφeJψ

gives the sum formulae

(1.10)
cosε (φ+ ψ) = cosε φ cosε ψ − ε sinε φ sinε ψ
sinε (φ+ ψ) = sinε φ cosε ψ+ cosε φ sinε ψ ,

[4].

1.1. Galilean Metric and Galilean Transformation. The Galilean norm of
x = (x, y) ∈ G2 is defined by ‖x‖g =

√
〈x,x〉g = |x|. Furthermore, if ‖x‖g = 1, x

is called a unit vector, where 〈, 〉g is called the Galilean inner product for ε = 0 in

the equation (1.1).
On the Galilean Plane, the distance d (X,Y ) between two points X = (x1, y1)

and Y = (x2, y2) is defined by the formula

(1.11) d (X,Y ) = ‖YX‖g = ‖x− y‖g =
√
〈x− y,x− y〉g = |x1 − x2|

and it equals the signed length of the projection PQ of the segment XY
on the x−axis (Fig. 2), [5].

Figure 2. The distance on Galilean plane.

If the distance d (X,Y ) between the points X and Y is zero, i.e., x1 = x2, then
X and Y belong to the same special line (parallel to the y−axis; Fig. 3). For such
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points it makes sense to define the special distance

(1.12) δ (X,Y ) = |y1 − y2| ,

[5].

Figure 3. The special distance on Galilean plane.

Taking ϕ as the rotation angle between x = (x, y) and x′ = (x′, y′) (Fig. 4), we
can write

x = r cos gθ x′ = r cos g (θ + ϕ)

y = r sin gθ and y′ = r sin g (θ + ϕ) ,

where cos g and sin g are cos0 and sin0 (for ε = 0, in the equations (1.4-1.10)),
respectively.

Figure 4. The rotation on Galilean plane.
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Then, using the equation (1.10), for ε = 0, we obtain

x′ = x cos gϕ+ y0

y′ = x sin gϕ+ y cos gϕ.

From the equation (1.6) (since for all ϕ, cos gϕ = 1 and sin gϕ = ϕ ), we get[
x′

y′

]
=

[
1 0
ϕ 1

] [
x
y

]
or

(1.13)
x′ = x
y′ = ϕx+ y.

Then, from composed of the transformation (or the shear)

x1 = x

y1 = ϕx+ y

and the transformation (or translation)

x′ = x1 + a

y′ = y1 + b ,

we arrive at the formulae

(1.14)
x′ = x+ a
y′ = ϕx+ y + b .

The equation (1.14) is called Galilean transformation and we remark that the trans-
formation (1.14) map
a) lines onto lines,
b) parallel lines onto parallel lines,
c) collinear segments onto collinear segments,
d) a figure onto a figure of the same area.
This Galilean transformation belong to the kinematics on G2. Under the Galilean
Transformation examining the motion of points of G2 and establishing the invariants
are the kinematic geometry of G2. These are called, in other words, the Galilean
geometry, [5].

2. KINEMATICS ON THE GALILEAN PLANE

In kinematics, the one-parameter planar motions on the Euclidean plane were
given by Müller [2]. Then, the one-parameter planar motions on the Lorentzian
plane were given by Ergin [3].
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In this section, the one-parameter planar motions on the Galilean plane G2 are
defined. Then, the relations between both velocities and accelerations of a point
under the one-parameter planar Galilean motions are obtained.

I

Let G and G′ be moving and fixed Galilean planes and {O;g1,g2} and {O′;g′
1,g

′
2}

be their coordinate systems, respectively. By taking

(2.1) OO′ = u =u1g1 + u2g2 , for u1, u2 ∈ R

the motion defined by the transformation

(2.2) x′ = x− u

is called a one-parameter planar Galilean motion and denoted by B= G/G′, where
x,x′ are the coordinate vectors with respect to the moving and fixed rectangular
coordinate systems of a point X = (x1, x2) ∈ G, respectively (Fig. 5). Also the
rotation angle ϕ and the vectors x,x′ and u are continuously differentiable func-
tions of a time parameter t. Furthermore, at the initial time t = 0 the coordinate
systems coincide. Taking ϕ = ϕ (t) as the rotation angle between g1 and g′

1 (Fig.
5), we can write

(2.3)
g1 = g′

1 + ϕg′
2

g2 = g′
2 .

In this study we assume that

(2.4) ϕ̇ (t) =
dϕ

dt
6= 0 ,

where ” . ” denotes the derivation with respect to ” t ” and ϕ̇ (t) is called the
angular velocity of the motion B= G/G′.

Differentiating the equations (2.1) and (2.3) with respect to t, the derivative
formulae of the motion B= G/G′ are obtained as follows

(2.5)
ġ1 = ϕ̇g2

ġ2 = 0

and

(2.6) u̇ = u̇1g1 + (u̇2 + u1ϕ̇)g2 .

Now, we will define velocities of a point X ∈ G using the derivative formulae of the
motion B= G/G′:
The velocity of the point X with respect to G is known as the relative velocity Vr
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and it is defined by dx
dt = ẋ. Also, for the relative velocity Vr, we can write

(2.7) Vr = ẋ1g1 + ẋ2g2 .

Moreover, if we differentiate the equation (2.2) with respect to t, the absolute ve-
locity of the point X ∈ G is found as

(2.8) Va = −u̇1g1 + (−u̇2 − u1ϕ̇+ x1ϕ̇)g2 + Vr .

From the equation (2.8), we get the sliding velocity

(2.9) Vf = −u̇1g1 + (−u̇2 − u1ϕ̇+ x1ϕ̇)g2 .

So we can give the following theorem using the equation (2.7), (2.8) and (2.9).

Theorem 2.1. Let X be a moving point on the plane G and Vr,Va and Vf be the
relative, absolute and sliding velocities of X, respectively, under the one-parameter
planar motion B= G/G′. Then

(2.10) Va = Vf + Vr .

The proof is obvious by using the definitions of velocities above. �
For a general planar motions, there is a point that does not move, which means

that its coordinates are the same in both reference coordinate systems {O;g1,g2}
and {O′;g′

1,g
′
2}. This point is called the pole point or the instantaneous rotation

pole center, (Fig. 5). In this case, we obtain

Vf = 0

or {
−u̇1 = 0

−u̇2 − u1ϕ̇+ x1ϕ̇ = 0.

Then for the pole point P = (p1, p2) ∈ G of the motion B= G/G′, we have

(2.11) P...

{
p1 =

.
u2(t)
.
ϕ(t)

p2 = p2 (λ (t))
, for λ ∈ R.

Result 2.1. Invariant points on both planes at any instant t of B= G/G′ lie
on line parallel to y−axis on the plane G. That is, there is only pole line on the
plane G at any instant t. For all t ∈ I, this pole lines are parallel to y−axis and
each other and they constitute bundles of parallel lines.
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Figure 5. The motion B= G/G′ .

Using equations (2.9) and (2.11), for the sliding velocity, we can rewrite

(2.12) Vf = {0g1 + (x1 − p1)g2} ϕ̇ .

Now, we can give the following results by the equation (2.12):

Corollary 2.1. During the one-parameter plane motion B= G/G′, the pole ray
PX = (x1 − p1)g1+(x2 − p2)g2 and the sliding velocity Vf = {0g1 + (x1 − p1)g2} ϕ̇
are perpendicular vectors in the sense of Galilean geometry. That is, 〈Vf ,PX〉g =

0. Then under the motion B= G/G′, the focus of the points X ∈ G is an orbit
curve that it’s normal pass through the rotation pole P .

Corollary 2.2. Under the motion B= G/G′, the Galilean norm of the sliding
velocity Vf is

‖Vf‖δ = ‖PX‖g |ϕ̇| .

That is, during the motion B= G/G′, all of the orbits of the points X ∈ G are such
curves whose normal lines pass thoroughly the pole P . At any instant t, the motion
B= G/G′ is a Galilean instantaneous rotation with the angular velocity ϕ̇ about the
pole point P .

II

In this section, we will define relative, absolute, sliding and Coriolis acceleration
vectors, during the one-parameter planar motion B= G/G′.

Let X be a moving point of G. Then the acceleration of the point X with respect

to G is known as the relative acceleration and it is defined by d2x
dt2 = ẍ = V̇r. Also,

for the relative acceleration br , we can write

(2.13) br = ẍ1g1 + ẍ2g2 .

The acceleration of the point X with respect to G′ is known as the absolute accel-
eration and it is defined by
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(2.14) ba = V̇a = ẍ1g1 + {(x1 − p1) ϕ̈− ṗ1ϕ̇+ 2ẋ1ϕ̇+ ẍ2}g2

In the equation (2.14), the expression

(2.15) bf = 0g1 + {(x1 − p1) ϕ̈− ṗ1ϕ̇}g2

is called the sliding acceleration and

(2.16) bc = 0g1 + (2ẋ1ϕ̇)g2

is called the Coriolis acceleration of the one-parameter planar motion B= G/G′.
So, we can give the following theorem and corollary using the equations (2.7), (2.14),
(2.15) and (2.16):

Theorem 2.2. Let X be a moving point on the plane G. Then,

(2.17) ba = bf + bc + br ,

during the one-parameter planar motion B= G/G′. �

Corollary 2.3. During the motion B= G/G′, the Coriolis acceleration vector bc
and the relative velocity vector Vr are perpendicular to each other in the sense of
Galilean geometry, i.e. 〈Vr,bc〉g = 0.

Under the one-parameter planar motion B= G/G′, the acceleration pole is char-
acterized by vanishing the sliding acceleration. Therefore, if we take bf = 0, the
acceleration pole point Q = (q1, q2) ∈ G of the motion B= G/G′, we get

(2.18) Q...

{
q1 = p1 (t) + ṗ1 (t) ϕ̇(t)

ϕ̈(t)

q2 = q2 (µ (t))
, for µ ∈ R .

Result 2.2. Invariant points on both planes at any instant t of B= G/G′ lie on
line parallel to y−axis on the plane G. That is, there is only acceleration pole line
on the plane G at any instant t.For all t ∈ I, this acceleration pole lines are parallel
to y−axis and each other and they constitute bundles of parallel lines.
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