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NATURAL METRICS ON T 2M AND HARMONICITY.

DJAA MUSTAPHA, NOUR ELHOUDA DJAA, AND RAFIK NASRI

(Communicated by Angel FERRANDEZ)

Abstract. In this paper, we define a natural metric on the tangent bundle
of order two T 2M , and we investigate the geometry and the harmonicity of
sections as maps from a Riemannian manifold (M, g) onto its tangent bundle
T 2M .

1. Introduction

The sections on tangent bundle of order two T 2M (bundle of accelerations on
a smooth manifold M), locally, described in detail the second order ordinary dif-
ferential equations on M (Dodson and Galanis [11] and [2] ). These equations
have received renewed geometric attention in recent years from interactions with
jet fields, linear and nonlinear connections, Lagrangians, Finsler structures and the
theory of timedependent Lagrangian particle systems (see [3] ,[4],[17], [18], [19] ).
As a natural generalization of the works of Ishihara [13], Konderak [14], Oniciuc
[15], Boeckx and Vanhecke [5] and Abbassi, Calvaruso and Perrone [1], [6]; In this
note, we define a natural metric on the tangent bundle of order two T 2M , and we in-
vestigate the geometry and the harmonicity of sections as maps from a Riemannian
manifold (M, g) onto its tangent bundle T 2M .

1.1. Harmonic maps. Consider a smooth map φ : (Mm, g) → (Nn, h) between
two Riemannian manifolds, then the energy functional is defined by

(1.1) E(φ) =
1
2

∫

M

|dφ|2dvg.

(or over any compact subset K ⊂ M).
A map is called harmonic if it is a critical point of the energy functional E (or

E(K) for all compact subsets K ⊂ M). For any smooth variation {φ}t∈I of φ with

φ0 = φ and V = dφt

dt

∣∣∣
t=0

, we have

(1.2)
d

dt
E (φt)

∣∣∣∣
t=0

= −
∫

M

h (τ (φ) , V ) dvg,
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where

(1.3) τ(φ) = traceg∇dφ.

is the tension field of φ. Then we have

Theorem 1.1. A smooth map φ : (Mm, g) → (Nn, h) is harmonic if and only if

(1.4) τ(φ) = 0.

If (xi)1≤i≤m and (yα)1≤α≤n denote local coordinates on M and N respectively,
then equation (1.4) takes the form

(1.5) τ(φ)α =
(

∆φα + gijNΓα
βγ

∂φβ

∂xi

∂φγ

∂xj

)
= 0, 1 ≤ α ≤ n,

where ∆φα = 1√
|g|

∂
∂xi

(√
|g|gij ∂φα

∂xj

)
is the Laplace operator on (Mm, g) and NΓα

βγ

are the Christoffel symbols on N . One can refer to [12], [13], [15] and [16] for
background on harmonic maps.

2. Some results on TM .

2.1. Horizontal and vertical lifts on TM . Let (M, g) be an m-dimensional Rie-
mannian manifold and (TM, π, M) be its tangent bundle. A local chart (U, xi)i=1...n

on M induces a local chart (π−1(U), xi, yi)i=1...n on TM . Denote by Γk
ij the

Christoffel symbols of g and by ∇ the Levi-Civita connection of g.
We have two complementary distributions on TM , the vertical distribution V and
the horizontal distribution H, defined by :

V(x,u) = Ker(dπ(x,u)) = {ai ∂

∂yi
|(x,u); ai ∈ R}

H(x,u) = {ai ∂

∂xi
|(x,u) − aiujΓk

ij

∂

∂yk
|(x,u); ai ∈ R},

where (x, u) ∈ TM , such that T(x,u)TM = H(x,u) ⊕ V(x,u).
Let X = Xi ∂

∂xi be a local vector field on M . The vertical and the horizontal lifts
of X are defined by

XV = Xi ∂

∂yi
(2.1)

XH = Xi δ

δxi
= Xi{ ∂

∂xi
− yjΓk

ij

∂

∂yk
}(2.2)

For consequences, we have ( ∂
∂xi )H = δ

δxi and ( ∂
∂xi )V = ∂

∂yi , then ( δ
δxi ,

∂
∂yi )i=1...n

is a local adapted frame in TTM .

Remark 2.1. .

(1) if w = wi ∂
∂xi + wj ∂

∂yj ∈ T(x,u)TM , then its horizontal and vertical parts
are defined by

wh = wi ∂

∂xi
− wiujΓk

ij

∂

∂yk
∈ H(x,u)
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wv = {wk + wiujΓk
ij}

∂

∂yk
∈ V(x,u)

(2) if u = ui ∂
∂xi ∈ TxM then its vertical and horizontal lifts are defined by

uV = ui ∂

∂yi
∈ V(x,u) ∈ H(x,u)

uH = ui{ ∂

∂xi
− yjΓk

ij

∂

∂yk
}.

2.2. β-metric on TM .

Definition 2.1. Let (M,g) be a Riemannian manifold and β ∈ R+. On the tangent
bundle TM , we define a β-metric noted g̃ by

(1) g̃(XH , Y H) = ε
2g(X, Y ) ◦ π

(2) g̃(XH , Y V ) = 0
(3) g̃(x,u)(XV , Y V ) = 1

α (gx(X, Y ) + βgx(X, u)gx(X, u))
where X, Y ∈ Γ(TM), (x, u) ∈ TM , r = g(u, u), α = 1 + βgx(u, u) and ε ∈ {1, 2}.

Note that, if β = 0 (resp β = 1) and ε = 2, then g̃ is the Sasaki metric [20] (resp
the Cheeger-Gromoll metric [7]).

In the sequel we take ε = 1.

Lemma 2.1. Let (M,g) be a Riemannian manifold, then for all x ∈ M and u =
ui ∂

∂xi ∈ TxM , we have the following
(1) XH(g(u, u))(x,u) = 0
(2) XH(g(Y, u))(x,u) = g(∇XY, u)x

(3) XV (g(u, u)(x,u) = 2g(X, u)x

(4) XV (g(Y, u)(x,u) = g(X,Y )x

Proof. Localy, if U : x ∈ M → Ux = ui ∂
∂xi ∈ TM be a local vector field constant

on each fiber TxM , then from formulas (2.1) and (2.2) we obtain :

1. XH(g(u, u))(x,u) = [Xi ∂

∂xi
gsty

syt − Γk
ijX

iyj ∂

∂yk
gsty

syt](x,u)

= X(g(U,U)x − 2(Γk
ijX

iyjgskys)(x,u)

= (X(g(U,U)x − 2g(U,∇XU))x

= 0.

2. XH(g(u, u))(x,u) = [Xi ∂

∂xi
gstY

syt − Γk
ijX

iyj ∂

∂yk
gstY

syt](x,u)

= X(g(Y, U)x − (Γk
ijX

iyjgskY s)(x,u)

= (X(g(Y, U)x − g(Y,∇XU))x

= g(∇XY, U))x.

3. XV (g(u, u))(x,u) = [Xi ∂

∂yi
gsty

syt](x,u) = 2Xigitu
t = 2g(X, u)x

4. XV (g(Y, u))(x,u) = [Xi ∂

∂yi
gstY

syt](x,u) = XigsiY
s = g(X, Y )x
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Theorem 2.1. Let (M, g) be a Riemannian manifold and g̃ be a β-metric relative
to g on TM . If ∇ (resp ∇̃) denote the Levi-Civita connection of (M, g) (resp
(TM, g̃), then we have:

1. (∇̃XH Y H)p = (∇XY )H − 1
2
(R(X, Y )u)V ,

2. (∇̃XH Y V )p = (∇XY )V +
1
2α

(R(u, Y )X)H

3. (∇̃XV Y H)p =
1
2α

(Rx(u,X)Y ))H

4. (∇̃XV Y V )p = −β

α

[
g̃(XV , UV )Y V + g̃(Y V , UV )XV + βg̃(XV , UV )g̃(Y V , UV )UV

−(1 + α)g̃(XV , Y V )UV
]

p

= − β

α2

[
α(g(X, U)Y V + g(Y, U)XV )− βg(X,U)g(Y, U)UV

−(1 + α)g(X, Y )UV
]

p

for all vector fields X, Y ∈ Γ(TM) and p = (x, u) ∈ TM , where R denote the
curvature tensor of (M,g),.

The proof of Theorem 2.1 follows directly from Kozul formula, Lemma 2.1 and
the following formulas:

1. g̃(XV , U) =
1
α

[g(X,u) + βg(X, u)g(u, u)] = g(X,u)

2. XV (g̃(Y V , ZV ) = −2β

α2
g(X,U)[g(Y,Z) + βg(Y, U)g(Z,U)]

+
β

α
[g(X, Y )g(Z, U) + g(X, Z)g(Y,U)]

3. Natural Metric on T 2M .

3.1. Some results on T 2M . Let (M, g) be a Riemannian manifold and ∇ its
Levi-Civita connection. The tangent bundle of order 2 is the natural bundle of
2-jets of differentiable curves, defined by:

T 2M = {j2
0γ ; γ : R0 → M, is a smooth curve at 0 ∈ R}

Theorem 3.1 ([11]). If TM ⊕ TM denotes the Whitney sum, then

S : T 2M → TM ⊕ TM

j2
0γ 7→ (γ̇(0), (∇γ̇(0)γ̇)(0))(3.1)

is a diffeomorphism of natural bundles.

In the induced coordinate, we have

(3.2) S : (xi, yi, zi) 7→ (xi, yi, zi + yjykΓi
jk)
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Definition 3.1 ([9]). Let T 2M be a tangent bundle of order 2 endowed with the
vectorial structure induced by the diffeomorphism S. For any section σ ∈ Γ(T 2M),
we define two vector fields on M by:

Xσ = P1 ◦ S ◦ σ

Yσ = P2 ◦ S ◦ σ(3.3)
(3.4)

where P1 and P2 denotes the first and the second projection from TM ⊕ TM onto
TM .

3.2. λ-lifts on T 2M .

Definition 3.2 ([11]). Let (M, g) be a Riemannian manifold and X ∈ Γ(TM) be
a vector field on M . For λ = 0, 1, 2, the λ-lift of X to T 2M is defined by

X0 = S−1
∗ (XH , XH)

X1 = S−1
∗ (XV , 0)

X2 = S−1
∗ (0, XV )(3.5)

From Definition 3.2 we obtain:

Theorem 3.2. Let (M, g) be a Riemannian manifold. If R denote the tensor
curvature of (M, g) , then for all vector fields X, Y ∈ Γ(TM) and p ∈ T 2M we
have

(1) [X0, Y 0]p = [X, Y ]0p − (Rx(X, Y )u)1 − (Rx(X, Y )w)2

(2) [X0, Y i] = (∇XY )i

(3) [Xi, Y j ] = 0.

where (x, u, w) = S(p) and i, j = 1, 2.

3.3. Natural-metric on T 2M .

Definition 3.3. Let (M, g) be a Riemannian manifold and β1, β2 ∈ R+. We define
a natural metric G on the tangent bundle of order two T 2M by

(3.6) G = S−1
∗ (g̃1 ⊕ g̃2)

where g̃1 (resp g̃2) denote the β1-metric ( resp β2-metric ) on TM .

From Definitions 3.3 and formulae (3.5), we have

Proposition 3.1. If p ∈ T 2M , then for all vector fields X,Y ∈ Γ(TM) and
i, j ∈ {0, 1, 2} (i 6= j), we obtain

(1) Gp(X0, Y 0) = g(X, Y )x

(2) Gp(Xi, Y j) = 0
(3) Gp(X1, Y 1) = 1

α1
(g(X, Y ) + β1g(X, u)g(Y, u))x

(4) Gp(X2, Y 2) = 1
α2

(g(X, Y ) + β2g(X, w)g(Y, w))x

where S(p) = (x, u, w) ∈ TxM ⊕ TxM , α1 = 1 + β1g(u, u) and α2 = 1 + β2g(w, w)

Note that, if β1 = β2 = 0 then G is the Diagonal metric on T 2M .

Theorem 3.3. Let (M, g) be a Riemannian manifold and β1, β2 ∈ R+. If ∇̃ denote
the Levi-Civita connection of (T 2M,G), then for p ∈ T 2M , X, Y ∈ Γ(TM) and
i, j = 1, 2 (i 6= j) we have:
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1. (∇̃X0Y 0)p = (∇XY )0 − 1
2
(R(X, Y )u)1 − 1

2
(R(X,Y )w)2,

2. (∇̃X0Y 1)p = (∇XY )1 +
1

2α1
(R(u, Y )X)0

3. (∇̃X0Y 2)p = (∇XY )2 +
1

2α2
(R(w, Y )X)0

4. (∇̃X1Y 0)p =
1

2α1
(R(u,X)Y ))0

5. (∇̃X2Y 0)p =
1

2α2
(R(w, X)Y ))0

6. (∇̃X1Y 1)p = −β1

α2
1

[
α1

(
g(Xx, u)Y 1 + g(Yx, u)X1

)
− β1g(Xx, u)g(Yx, u)u1

−(1 + α1)g(Xx, Yx)u1
]

7. (∇̃X2Y 2)p = −β2

α2
2

[
α2

(
g(Xx, w)Y 2 + g(Yx, w)X2

)
− β2g(Xx, w)g(Yx, w)w2

−(1 + α2)g(Xx, Yx)w2
]

8. (∇̃XiY j)p = 0.

where ∇ and R denotes the Levi-Civita connection and the curvature tensor respec-
tively of (M, g).

Using Proposition 3.1 and Kozul formula the Theorem 3.3 follows.

Lemma 3.1. Let (M, g) be a Riemannian manifold . If X, Y ∈ Γ(TM) are a
vector fields and (x, u) ∈ TM such that Xx = u, then we have

dxX(Yx) = Y H
(x,u) + (∇Y X)V

(x,u).

Proof. : Let (U, xi) be a local chart on M in x ∈ M and (π−1(U), xi, yj) be the
induced chart on TM , if Xx = Xi(x) ∂

∂xi |x and Yx = Y i(x) ∂
∂xi |x, then

dxX(Yx) = Y i(x)
∂

∂xi
|(x,Xx) + Y i(x)

∂Xk

∂xi
(x)

∂

∂yk
|(x,Xx),

thus the horizontal part is given by

(dxX(Yx))h = Y i(x)
∂

∂xi
|(x,Xx) − Y i(x)Xj(x)Γk

ij(x)
∂

∂yk
|(x,Xx)

= Y H
(x,Xx)

and the vertical part is given by

(dxX(Yx))v = {Y i(x)
∂Xk

∂xi
(x) + Y i(x)Xj(x)Γk

ij(x)} ∂

∂yk
|(x,Xx)

= (∇Y X)V
(x,Xx).

Lemma 3.2. Let (M, g) be a Riemannian manifold . If Z ∈ Γ(TM) and σ ∈
Γ(T 2M) , then we have

(3.7) dxσ(Zx) = Z0
p + (∇ZXσ)1p + (∇ZYσ)2p.
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where p = σ(x).

Proof. : Using Lemma 3.1, we obtain

dxσ(Z) = dS−1(dXσ(Z), dYσ(Z))S(p)

= dS−1(ZH , ZH)S(p) + dS−1((∇ZXσ)V , (∇ZYσ)V )S(p)

= Z0
p + (∇ZXσ)1p + (∇ZYσ)2p

Lemma 3.3. Let (M, g) be a Riemannian n-dimensional manifold and (T 2M,G)
be its tangent bundle of order two equipped with the natural metric. if σ ∈ Γ(T 2M),
then the energy density associated to σ is given by

e(σ) =
n

2
+

1
2α1

tracegg(∇Xσ,∇Xσ) +
1

2α2
tracegg(∇Yσ,∇Yσ)

+
β1

2α1
traceg[g(∇Xσ, Xσ)]2 +

β2

2α2
traceg[g(∇Yσ, Yσ)]2.

Proof. Let p = S−1(x, u, w) ∈ T 2M and (e1, ..., en) be a local orthonormal frame
on M at x, then

2e(σ)p =
n∑

i=1

Gp(dσ(ei), dσ(ei))

Using formula 3.7 , we obtain

2e(σ)p =
n∑

i=1

Gp(e0
i , e

0
i ) +

n∑

i=1

Gp(∇eiXσ)1, (∇eiXσ)1)

+
n∑

i=1

Gp(∇eiYσ)1, (∇eiYσ)1)

Taking account that (Xσ)x = u and (Yσ)x = w, then from Proposition 3.1, we
deduce :

2e(σ) = n +
1
α1

tracegg(∇Xσ,∇Xσ) +
1
α2

tracegg(∇Yσ,∇Yσ)

+
β1

α1
traceg[g(∇Xσ, Xσ)]2 +

β2

α2
traceg[g(∇Yσ, Yσ)]2.

Theorem 3.4. Let (M, g) be a Riemannian manifold and (T 2M, G) be its tan-
gent bundle of order two equipped with the natural metric. Then the tension field
associated with σ ∈ Γ(T 2M) is given by:

τ(σ) = (tracegA(Xσ))1 + (tracegB(Yσ))2

+ (traceg{R(Xσ,∇∗Xσ) ∗+R(Yσ,∇∗Yσ)∗})0.(3.8)

where A(Xσ) and B(Yσ)) are a bilinear forms defined by:

A(Xσ) = ∇2Xσ +
(1 + α1)β1

α2
1

g(∇Xσ,∇Xσ)Xσ +
β2

1

α2
1

g(∇Xσ, Xσ)2Xσ

−2
β1

α1
g(∇Xσ, Xσ)∇Xσ
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B(Yσ) = ∇2Yσ +
(1 + α2)β2

α2
2

g(∇Yσ,∇Yσ)Yσ +
β2

2

α2
2

g(∇Yσ, Yσ)2Yσ

−2
β2

α2
g(∇Yσ, Yσ)∇Yσ

Proof. Let x ∈ M and {ei}n
i=1 be a local orthonormal frame on M such that

∇ei
ej = 0, then by summing over i, we have

τ(σ)x =
[
∇̃dσ(ei)dσ(ei)

]
σ(x)

=
[
∇̃e0

i +(∇ei
Xσ)1+(∇ei

Yσ)2

(
e0
i + (∇ei

Xσ)1 + (∇ei
Yσ)2

)]
σ(x)

=
[
∇̃e0

i
e0
i + ∇̃e0

i
(∇ei

Xσ)1 + ∇̃e0
i
(∇ei

Yσ)2 + ∇̃(∇ei
Xσ)1e

0
i

+∇̃(∇ei
Yσ)2e

0
i + ∇̃(∇ei

Xσ)1(∇ei
Xσ)1 + ∇̃(∇ei

Yσ)2(∇ei
Yσ)2

]
σ(x)

and using Theorem 3.3 the formula (3.8) follows.

Theorem 3.5. Let (M, g) be a Riemannian manifold and (T 2M, G) be its tangent
bundle of order two equipped with the natural metric. A section σ : M → T 2M is
harmonic if and only the following conditions are verified

traceg(tracegA(Xσ)) = 0,
traceg(tracegB(Yσ)) = 0,
traceg{R(Xσ,∇∗Xσ) ∗+R(Yσ,∇∗Yσ)∗} = 0.

Corollary 3.1. Let (M, g) be a Riemannian manifold and (T 2M, G) be its tangent
bundle of order two equipped with the natural metric. If σ : M → T 2M is a section
such that Xσ and Yσ are parallel, then σ is harmonic.

Theorem 3.6. Let (M, g) be a Riemannian compact manifold and (T 2M,G) be its
tangent bundle of order two equipped with the natural metric. Then σ : M → T 2M
is a harmonic section if and only if Xσ and Yσ are parallel (i.e : ∇Xσ = ∇Yσ = 0).

Proof. . If σ is parallel, from Corollary 3.1, we deduce that σ is harmonic. Inversely.
Let σt be a compactly supported variation of σ defined by σt = (1 + t)σ. From
Lemma 3.3 we have

e(σt) =
n

2
+

(t + 1)2

2

[ 1
α1

tracegg(∇Xσ,∇Xσ) +
1
α2

tracegg(∇Yσ,∇Yσ)

+
1
β1

traceg[g(∇Xσ, Xσ)]2 +
1
β2

traceg[g(∇Yσ, Yσ)]2
]
.

If σ is a critical point of the energy functional we have :

0 =
d

dt
E(σt)|t=0,

=
∫

M

[ 1
α1

tracegg(∇Xσ,∇Xσ) +
1
α2

tracegg(∇Yσ,∇Yσ)

+
β1

α1
traceg[g(∇Xσ, Xσ)]2 +

β2

α2
traceg[g(∇Yσ, Yσ)]2

]
dvgD
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then

g(∇Xσ,∇Xσ) = g(∇Yσ,∇Yσ) = g(∇Xσ, Xσ) = g(∇Yσ, Yσ) = 0

Example 3.1. Let ϕ,ψ : Rn → Rn be a smooth functions. If Rn is equipped with
the euclidean metric <,>, then TRn = R3n and the section σ = (ϕ,ψ) is harmonic
if and only ϕ and ψ are solutions of the following equations:

0 =
n∑

i=1

∂2ϕs

(∂xi)2
+

(1 + α1)β1

α2
1

ϕs
∑

k

(
∂ϕk

∂xi
)2 +

β2
1

α2
1

ϕs
( ∑

k

ϕk ∂ϕk

∂xi

)2

−2
β1

α1

∂ϕs

∂xi

( ∑

k

ϕk ∂ϕk

∂xi

)

and

0 =
n∑

i=1

∂2ψs

(∂xi)2
+

(1 + α2)β2

α2
2

ψs
∑

k

(
∂ψk

∂xi
)2 +

β2
2

α2
2

ψs
( ∑

k

ϕk ∂ψk

∂xi

)2

−2
β2

α2

∂ψs

∂xi

( ∑

k

ψk ∂ψk

∂xi

)

for all s = 1, ..., n.
in the case of β1 = β2 = 0, then σ = (ϕ,ψ) is harmonic if and only if ϕ and ψ are
harmonic functions.

Example 3.2. Let S1 = {(x, y) ∈ R2} endowed with the natural metric dx2 + dy2

and σ : (x, y) ∈ S2 → (x, y, 0, 0,−y, x) ∈ T 2S2, we have: Xσ = 0, Yσ = (−y, x) and
∇Yσ = 0. From Theorem (3.6) we deduce that σ is harmonic section.

Example 3.3. If S2 × R is endowed with the product of canonical metrics, then
the section σ = (0, ∂

∂t ) is harmonic.

Remark 3.1. In general, using Corollary (3.1) and Theorem (3.6) we can construct
many examples for harmonic sections.

3.4. Harmonicity conditions of inclusions.

Lemma 3.4. Let (M, g) be a Riemannian manifold. If i : (x, u) ∈ TM →
S−1(x, 0, u) ∈ T 2M denote the second inclusion, then for all X ∈ Γ(TM) and
(x, u) ∈ TM , we have

d(x,u)i(XH) = X0
p + (∇XU)1p(3.9)

d(x,u)i(XV ) = X2
p(3.10)

where S(p) = (x, 0, u) and U = ui ∂
∂xi is a local vector fields constant on each fiber.

Proof. locally we have

d(S ◦ i) = dxi ⊗ ∂

∂xi
+ dyj ⊗ ∂

∂zj
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then

1. d(x,u)(S ◦ i)(XH) = Xi ∂

∂xi
− Γj

skXsuk ∂

∂zj

= Xi ∂

∂xi
− Γj

skXsuk ∂

∂yj
− Γj

skXsuk ∂

∂zj
+ Γj

skXsuk ∂

∂yj

= (XH
(x,u), X

H
(x,u)) + ((∇XU)V

(x,u), 0).

2. d(x,u)(S ◦ i)(XV ) = Xj ∂

∂zj

= (0, XV ).

Theorem 3.7. Let (M, g) be a Riemannian manifold and g (resp G) be the Sasaki
metric on TM (rep natural metric on T 2M), then the tension field of the second
inclusion i : (TM, g) → (T 2M, G) is given by:

τ(x,u)(i) =
β2

α2

[β2

α2
g(u, u)− 2 +

n(1 + α2)
α2

]
u2

Proof. Let x ∈ M and {ei}n
i=1 be a local orthonormal frame on M such that

∇eiej = 0.
Using Lemma 3.4 and summing over i, we obtain

τ(x,u)(i) = ∇̃di(eH
i )di(eH

i ) + ∇̃di(eV
i )di(eV

i )

= ∇̃e0
i
e0
i + ∇̃e0

i
(∇eiU)1 + ∇̃(∇ei

U)1e
0
i + ∇̃(∇ei

U)1(∇eiU)1

+∇̃e2
i
e2
i

From Theorem 3.3 and taking into account that p = S−1(x, 0, u), then

τ(x,u)(i) = ∇̃e2
i
e2
i

= −β2

α2
2

[
α2

(
g(ei, u)e2

i + g(ei, u)e2
i

)
− β2g(ei, u)g(ei, u)u2

−(1 + α2)g(ei, ei)u2
]

= −β2

α2
2

[
α2

(
g(ei, u)ei + g(ei, u)ei

)
− β2g(ei, u)g(ei, u)u

−(1 + α2)g(ei, ei)u
]2

= −β2

α2
2

[
2α2 − β2g(u, u)− n(1 + α2)

]
u2

From Theorem 3.7, we have

Corollary 3.2. Let (M, g) be a Riemannian manifold and g (resp G) be the
Sasaki metric on TM (rep natural metric on T 2M), then the second inclusion
i : (TM, g) → (T 2M,G) is harmonic if and only if β2 = 0.

Similarly we have the following theorem

Theorem 3.8. Let (M, g) be a Riemannian manifold and , If J : (x, u) ∈ (TM, g) →
S−1(x, u, 0) ∈ (T 2M, G) denote the first inclusion, then for all X ∈ Γ(TM) and
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(x, u) ∈ TM , we have

d(x,u)i(XH) = X0
p + (∇XU)2p(3.11)

d(x,u)i(XV ) = X1
p(3.12)

τ(x,u)(J) =
β1

α1

[β1

α1
g(u, u)− 2 +

n(1 + α1)
α1

]
u1(3.13)

where p = S−1(x, u, 0) and g (resp G) denote the Sasaki metric on TM (resp
natural metric on T 2M).

Corollary 3.3. Let (M, g) be a Riemannian manifold . The first inclusion J :
(TM, g) → (T 2M, G) is harmonic if and only if β1 = 0.

Corollary 3.4. Let (M, g) be a Riemannian manifold . Then the first inclusion
J and the second inclusion i are harmonic if and only if the natural metric G is
diagonal.
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