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CENTERS OF CURVATURE FOR UNWRAPPINGS OF PLANE

INTERSECTIONS OF TAME DEVELOPABLE SURFACES

DIMITRIOS KODOKOSTAS

(Communicated by Kazım İLARSLAN)

Abstract. We call tame all those developable surfaces that split into parts
recognizable as generalized cones, generalized cylinders, planes and tangent
surfaces of curves. For them we prove that there exist only two isometries of
any small region U around any regular point A, which map U on the tangent
plane fixing the ruling ℓ through A (rulings exist since developable surfaces are
also ruled). We choose the most natural one among these isometries to call as
the unwrapping of U on the tangent plane along ℓ.

Let γ be the section curve of a tame developable surface F by a plane ρ, and
K the center of curvature of γ at some point A. Let also γ be the unwrapping
of γ on an unwrapping on the tangent plane of a neighborhood of A in F along
the ruling through A. Call K the center of curvature of γ at A. Our main
result is that K projects orthogonally on ρ onto K.

1. The meaning of unwrappings. Statements of the results.

We shall call tame the most natural among developable surfaces (Definition
1.1), and we shall define their unwrappings as the most natural among their de-
velopements (Definition 1.2). In Proposition 1.1 we shall show that for any tame
developable surface there exists a unique unwrapping along any fixed ruling. The
main result of the paper, given in Proposition 1.2, says that under reasonable as-
sumptions the center of curvature K of a plane-section curve of a tame developable
surface, and the center of curvature K of the curve’s image under an unwrapping
are nicely related when considered at a common point: K is just the orthogonal
projection of K on the plane of the section curve (Figure 1). First we make clear
our definitions and assumptions.
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Figure 1. F=tame developable surface, ρ= a plane, c = F ∩ ρ,
A ∈ c, ℓ= ruling of F through A, T= tangent plane of F along ℓ,
c= unwrapping of c on T . If K,K = centers of curvature of c, c at
A, then K = orthogonal projection of K on ρ (Proposition 1.2).

A developable surface is a C2 regular ruled surface with a constant tangent plane
along any ruling, and a ruled surface is a C1 parametrized surface F : x(u, v) =
α(u) + vw(u), u ∈ (a, b), v ∈ R with a(u) regular, |w(u)| = 1, ∀u, generated by a
one parameter family of lines ℓu : y(v) = α(u)+ vw(u) called the rulings of F . The
C1 curve α(u) is called the directrix of F .

The given definitions allow surfaces to have self intersections and ruled surfaces
to admit singularities (this means xu × xv = 0 at some points called singular or
non-regular) so that cones and tangent surfaces of curves are not excluded from
ruled surfaces. The tangent surface of a regular parametrized curve y(s) with
no inflection points and s an arc length parameter, is the ruled surface by F :
x(s, v) = y(s) + vy′(s). A (generalized) cone is a ruled surface with all its rulings
passing through a common point p called the vertex of F . Then the cone can
be parametrized as F : x(u, v) = p + vα(u), u ∈ (a, b), v ∈ R. Tangent surfaces
and cones are developable away from their singular points, as are also planes and
(generalized) cylinders defined as ruled surfaces F : x(u, v) = y(u) + vg, |g| = 1
with rulings of a fixed direction g.

Our Proposition 1.2 deals with surfaces composed by pieces of planes, cylinders,
cones and tangent surfaces of curves, which we conveniently call tame:

Definition 1.1. We call tame a developable surface F : x(u, v) = α(u)+vw(u), u ∈
I, v ∈ R, w′(u) 6= 0, ∀u whenever there exists a partition of I so that the part of F
corresponding to each subinterval of the partition is just a plane, a (generalized)
cylinder, a (generalized) cone or the tangent surface of a curve.

As explained at the end of this section, all developable surfaces are tame provided
some mild assumptions hold.

Now, tame developable surfaces have zero Gaussian curvature at all regular
points ([2],[4]), so by Mindings Theorem ([2],[4]) for any C3 tame developable sur-
face there exists a neighborhood U of every regular point that can be mapped iso-
metrically by an isometry f onto an appropriate open neighborhood of any point
of a plane. Actually, one can guarante the above result for C2 tame developable
surfaces ([3] provides specific such isometries and our proof of Proposition 1.2 pro-
vides more). The name development is usually reserved for those isometries that
fix some ruling inside U . Such isometries exist: For a chosen ruling ℓ intersecting
U and a chosen point M of ℓ consider first an arbitrary isometry of U upon the
tangent plane T of F along ℓ. Compose with a translation so that M is mapped



114 DIMITRIOS KODOKOSTAS

onto itself. The ruling ℓ is a usual line, thus a geodesic of F , maped by the develop-
ment onto a geodesic of T , in other words again to a line. Any point on ℓ has to be
mapped on an equally distant point from M on the image line on T . So composing,
if necessary, with a rotation of T the resulting isometry f fixes pointwise the ruling
ℓ, implying that f is a development.

Notice that for any such development f , its composition fsym with the reflection
with respect to ℓ is another development of U into T fixing ℓ, but clearly only one
of f, fsym looks like a real life unwrapping of F on the plane. It is the one that
maps all nearby points of U on the two sides of ℓ on the correct side of T with
respect to ℓ. Technically this can be captured by demanding the extra property of
our second definition below be satisfied for all points on the ruling:

Definition 1.2. For an open, connected subset U of a developable surface F we
call unwrapping of U on the tangent plane T of the surface along a ruling ℓ, any
development f , i.e. isometry (or isometric image if we wish) of U on T which fixes
all points of ℓ inside U , and for which the tangent vector of any curve y(t) on
U coincides with that of its image curve f(y(t)) at their common points y(t0) =
f(y(t0)) on ℓ. For a curve γ on U we call f(γ) as the unwrapping of γ by f .

The following Proposition concerns the existence and uniqueness of unwrappings
and deals with the local properties of the unwrappings needed in the sequel.

Proposition 1.1. (a) For any regular point A on a C2 tame developable surface
F there exists a neighborhood UA around A for which there exist exactly two de-
velopments of UA on the tangent plane T of F fixing the ruling ℓ through A. The
images of the two developments are symmetric with respect to ℓ and exactly one
of them is the unique unwrapping f of UA on T along the ruling ℓ. (b) If V is
another neighborhood around A then any unwrapping of V on T along the ruling ℓ

coincides with that of UA in a neighborhood of A common to both UA and V . (c)
An isometry f from UA to T which fixes ℓ pointwise is an unwrapping of UA if and
only the tangent vector of either parameter curve of F : x(u, v) = α(u) + vw(u)
coincides with that of its image curve at their common points on ℓ.

In this paper all neighborhoods are considered open and connected. Our second
Proposition relates the centers of curvature of any plane section of F to those of its
unwrapping at their common points on the ruling used for the unwrapping.

Proposition 1.2. Let γ be the intersection curve of a C2 tame developable surface
F by a plane ρ, and let γ be the unwrapping of γ in the unique unwrapping of
a neighborhood UA of F around its regular point A of γ on the tangent plane T

along the ruling ℓ through A. If A is a non-singular and non-inflection point of
either curve, then the center of curvature K of γ at A is the point of the orthogonal
projection on ρ of the center of curvature K of the unwrapping γ at A.

Notice that if ρ is perpendicular to T and the center of curvature K of γ exists,
then it has to be projected on ρ onto A which of course cannot be the center of
curvature K of γ. We immediately get

Corollary 1.1. With the assumptions of Proposition 1.2, whenever ρ and T are
perpendicular and A a non-singular point for both γ, γ, then at least one of γ, γ has
an inflection point at A. Actually if UA is part of a cylinder, then the development
γ is part of a line.



CURVATURE CENTERS OF PLANE CURVES ON DEVELOPABLE SURFACES 115

The proof of the last statement is a triviality.
For the completeness of presentation, let us note that as proved in [2], the build-

ing blocks of all developable surfaces are planes, cones, cylinders and tangent sur-
faces of curves, provided some mild assumptions hold:

Theorem 1.1. ([2]) For a developable surface F : x(u, v) = a(u) + vw(u), u ∈
I, v ∈ R there exists a partition of I so that the part of F corresponding to each
subinterval of the partition is just a plane, a cylinder, a cone or the tangent surface
of a curve, provided the tangent vectors of w(s) and of its striction line (if any)
do not have a clustering of their zeros on their domain of definition. The striction
line (if any) of F form the locus of all singular points of F .

The striction line mentioned in the Theorem is defined on those parts of F

corresponding to the subintervals of I for which w′(u) 6= 0 throughout, as the

unique curve β(u) of F so that β′ · w′ = 0, ∀u ([2], [3]). It is β = α − α′·w′

|w′|2 w.

In general, the striction line of F is the union of the striction lines defined in
I − {zeros of w′} which is a union of intervals. This line is not defined for planes
and cylinders, it coincides with the directrix for tangent surfaces of curves, and it
degenerates to the vertex for cones.

The partition of I in the Theorem is a collection of intervals Ii (indices in a
subset of Z) with disjoint interiors and union I, so that each Ii is closed in I

and anyone of its endpoints other than that of I (if any) is also the endpoint of
another interval of the partition. The partition can either be finite or infinite. A
clustering of zeros at u0 means that no left or right neighborhood of u0 contains
only zeros, but all neighborhoods of u0 contain at least one more zero other than
u0; then u0 is necessary a zero because of the continuity of the functions involved.
The Theorem gives a necessary and sufficient condition for a developable surface to
have the property that there exists some small connected neighborhood UA around
any point A of the surface such that each side of UA with respect to the ruling ℓ

through A, is part of one of the four named types of developable surfaces; the same
surface on both sides whenever u0 is not a zero of the functions of the Theorem.

Closing this section let us note that many beautiful results about unwrappings
of curves on right circular cylinders and right circular cones can be found in the
very interesting paper [1] by Apostol and Mnatsakanian.

2. Proof of Proposition 1.1

For part (a): Recall that prior to Definition 1.2 we proved that for any regular
point A on a tame developable surface F : x(u, v) = α(u) + vw(u) there exist
developments around A. These are isometries which map some neighborhood U of
A on the tangent plane T at A, and which fix all points of ℓ∩U where ℓ is the ruling
through A; all neighborhoods here are considered open and connected. Let f be
such an isometry and fsym be its composition with the reflection with respect to ℓ.
fsym is another development of U on T fixing ℓ. First we are going to show that one
of f, fsym is an unwrapping of U , and then that there exists a unique unwrapping
of U shrank appropriately. This immediately implies that f, fsym are the only two
developments of U on the plane T fixing the ruling ℓ through A, settling all claims
in part (a) of the Proposition.

Let us parametrize U by the restriction of the ruled structure x(u, v) = α(u) +
vw(u) of the surface F to it. For an arbitrary point M = x(u0, v0) in the ruling
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ℓ through A, let c1, c2 be the u- and v-parameter curves respectively through M ;
c2 : α(u0) + vw(u0), v ∈ R is of course the ruling ℓ. Since f and fsym fix ℓ = c2
pointwise, f(c2) and fsym(c2) share with c2 at M the same tangent vector xv. Also,
the tangent vector xu of c1 at M is parallel to T as are the tangent vectors u1, u2 of
f(c1), fsym(c1) at M . Since f, fsym are isometries we have ∠(u1, xv) = ∠(u2, xv) =
∠(xu, xv) 6= 0. So the nonzero vectors u1, u2 of T are carried by two lines through
M symmetric with respect to ℓ and exactly one of u1, u2 forms an angle 0 with
xu whereas the other forms an angle equal to 2∠(xu, xv) 6= 0. Let ∠(u1, xu) = 0,
and ∠(u2, xu) = 2∠(xu, xv) 6= 0. The second relation says that fsym cannot be an
unwrapping of U . Now, since f is continuous and U is path-connected, the angle
∠(u1, xu) changes continuously with v as M moves along ℓ, always taking on one
of the two values 0 or 2∠(xu, xv) 6= 0, thus it always has to remain 0. But since f

is an isometry, the length of u1 is that of xu. So u1 = xu for all M on ℓ.
So f fixes the tangent vectors for the parameter curves for points on ℓ. This suf-

fices to show that it also fixes the tangent vectors of any curve c : y(t) = x(u(t), v(t))
in UA at points M = y(t0) = y(t0) on the ruling ℓ, common to c and to its image
f(c) : y(t) = f(y(t)) on T :

dy

dt
(t0) =

d(f ◦ y)

dt
(t0) =

d(f ◦ x)

du
(u(t0), v(t0))

du

dt
(t0)+

d(f ◦ x)

dv
(u(t0), v(t0))

dv

dt
(t0).

But d(f◦x)
du

(u(t0), v(t0)) is the tangent vector at M of the image via f of the

u- parameter line v = v(t0) through M , so it equals dx
du
(u(t0), v(t0)). Similarly,

d(f◦x)
dv

(u(t0), v(t0)) =
dx
dv
(u(t0), v(t0)) and we get

dy

dt
(t0) =

dx

du
(u(t0), v(t0))

du

dt
(t0) +

dx

dv
(u(t0), v(t0))

dv

dt
(t0) =

dy

dt
(t0)

So f is an unwrapping.
We now restrict U appropriately to get an almost pictorial proof for the unique-

ness of the unwrapping. So let UA be an open neighborhood of A in U small
enough for A to be joined within it with any other point by a unique geodesic.
Such a neighborhood UA always exists ([4]), and of course it is path connected.
Then the restriction of f in UA is clearly an unwrapping of UA. If g is some de-
velopment of UA on the tangent plane T along ℓ, we are going to prove f = g or
fsym = g in UA:

ℓ
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C

f(B)

c1

c1
f(UA)

c2

c2

A = f(A) = g(A)

C = f(C) = g(C)

f(B) = g(B) or
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b

b

b

b

Figure 2. Two developments f, g of UA on the tangent plane T

along ℓ either coincide or are symmetric with respect to ℓ.

Of course f and g agree on all points of ℓ ∩ UA by their definition. Now let B

be a point in UA − ℓ (Figure 2) and let c1 be a geodesic arc form A to B inside
UA. Since f is an isometry, the arcs c1 = f(c1) and f(ℓ ∩ UA) = ℓ ∩ UA on plane
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T are also geodesic arcs, thus line segments (a fact we already know for ℓ ∩ UA).
Now c1 as a compact subset of T is covered by finitely many open disks centered
at points on c1 and so that each disk is contained inside the open set f(UA)).
Since there exist only finitely many such disks, clearly there exists a point C on ℓ

such that the line segment Cf(B) lies within the union of the disks, thus within
f(UA): indeed, discard disks among the given so that no one of the disks Di left
is contained in the interior of any other. Call d the minimum among the lengths
of the common chords of intersecting disks and the chords of them through A or
f(B) that are perpendicular to Af(B). Call Ax the half line of ℓ which forms
with the half line Af(B) (vertex at A) angle xAf(B) ≤ π

2 . Construct on T the

rectangle P = Af(B)B′A′ with AA′ = d
4 and AA′, Ax on the same half plane with

respect to the line Af(B), and call C = f(B)A′ ∩ Ax′ = f(B)A′ ∩ ℓ. Trivially
P ⊂ ∪iDi ⊂ f(UA) and so Cf(B) ⊂ f(UA) as required for point C.

So there exists an inverse image c2 = f−1(Cf(B)) which is an arc connecting C

with the point B = f−1(f(B)) within UA. Denote the line segment Cf(B) = f(c2)
by c2. Since Cf(B) is a geodesic arc, so is also then c2. Of course g(A) = f(A) = A

and g(C) = f(C) = C as the points A,C lie on ℓ. Let c1 = g(c1), c2 = g(c2) be the
geodesic arcs on T , images by g of the geodesic arcs c1, c2. So c1, c2 are line segments
of T connecting A to g(B). Since the isometries f, g don’t change lengths, and
denoting by L(·) the lengths of segments, we conclude that L(c1) = L(c1) = L(c1),
L(c2) = L(c2) = L(c2) thus the triangles ACf(B), ACg(B) are congruent, which
in turn means that either f(B) and g(B) coincide or else they are symmetric with
respect to the line AC = ℓ. Whichever is the case, it will hold for all points
B ∈ UA − ℓ. The reason is purely topological:

Recall that UA is open and path-connected and that the part of ℓ in UA is closed.
Thus UA − ℓ consists of two disjoint path-connected open sets U1, U2 which are
mapped under the homeomorphism f onto two disjoint path-connected open subsets
f(U1), f(U2) of T one on each half plane with respect to ℓ. If the point M is on the
same Ui as B, then f(B), f(M) are on the same f(Ui) and similarly g(B), g(M)
are on the same f(Ui), and since f(B) = g(B) it follows that f(M), g(M) are on
the same f(Ui). So f(M), g(M) should always coincide. The same holds similarly
in the remaining case when M and B are not on the same Ui.

The above prove that either f = g or else fsym = g where fsym is the composition
of f with the reflection on T with respect to ℓ. But although fsym is an isometry it
is not an unwrapping of U . So in case g is an unwrapping of UA it must be f = g

in UA as wanted.
For part (b) of the Proposition: Let g be some unwrapping of V along ℓ. Of

course the restrictions of f, g on the connected component of UA ∩ V containing
A are both unwrappings of it. If we restrict this component enough so that A is
joined within it with any other point by a unique geodesic, then the proof of the
uniqueness for the unwrappings in part (a) of the Proposition applies to it implying
that f = g as wanted.

For part (c) of the Proposition: If f is an unwrapping, then by definition it fixes
the tangent vectors of the parameter curves at points on ℓ. Conversely, if it fixes
the tangent vectors of the parameter curves, then as was proved in part (a) of the
Proposition it fixes the tangent vectors of all curves in U at points on ℓ. This means
that f is an unwrapping.
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3. Proof of Proposition 1.2

Since we are interested in the curvature of the section curve γ at A we only need
to restrict our attention locally to a connected arc of γ containing A and contained
in the given neighborhood U . As mentioned in §1 we can restrict, if necessary,
the neighborhood U to have it as part of a plane, generalized cylinder, generalized
cone or the tangent surface of a curve. To be precise, as observed in §1 the two
sides of UA with respect to the ruling ℓ through A can be of a different kind of
these surfaces. Nevertheless the arguments to be presented remain valid even if we
restrict them to a single side of UA with respect to ℓ. So there will be no harm if we
consider below that the whole neighborhood UA of A belongs entirely to a plane,
cylinder, cone or the tangent surface of a curve.

If ρ is going through the ruling ℓ then γ is just the ruling itself which is a line
with only inflection points and there is nothing to prove.

Similarly there is nothing to prove in case UA is part of a plane because the
intersection γ of the plane ρ with UA is again just a line.

So from now on we consider UA as part of a cylinder, cone or the tangent plane
of a curve and ρ : a1x1 + a2x2 + a3x3 = a0 as a plane intersecting T in a line ǫ with
a unique common point A with ℓ. For later use denote e = (a1, a2, a3) which is a
non-zero and normal vector to ρ.

We examine each case separately, but the idea in all of them is to construct explic-
itly the unwrapping f of UA taking advantage of the special geometric information
each time. According to Proposition 1.1 we can shrink UA as necessary. In each
case we consider UA parametrized by the restriction to UA of an s, v parametriza-
tion of the corresponding developable surface, where the rulings (ℓ among them)
are the v-parameter curves. We use the parameter s instead of u because we intend
it to be an arc length parameter of a specific curve on UA. The details follow.

We start with a Lemma which provides equivalent statements to the conclusion
of Proposition 1.2.

Lemma 3.1. Under the assumptions of Proposition 1.2 the following are equivalent:

(1) the center of curvature K of γ at A is the point of the orthogonal projection
on ρ of the center of curvature K of the unwrapping γ at A.

(2) kγA
· kγA

= kγA
· kγA

.
(3) κγA

(nγA
· nγA

) = κγA
.

Here kγ , kγ are the curvature vectors, nγ , nγ are choices for the unit normal vectors
of γ, γ, and finally κγ , κγ are the corresponding signed curvatures.

Proof. Recall that by Proposition 1.1 the curves γ and γ share a common tangent
vector t at A which is parallel to both planes ρ, T since γ lies on ρ and γ lies on T .
This makes t parallel to ǫ. Since the lines AK,AK carry the normal vectors of the
two curves at A, both lines are perpendicular to ǫ. This implies that AK projects
on ρ onto the line AK (or just onto the point A of it), thus K projects on some

point of AK. So this projection coincides with K if and only if
−−→
AK ⊥

−−→
KK, that is

if and only if
−−→
AK ·

−−→
KK = 0. But

−−→
AK =

nγA

κγA

=
kγA

κ2
γA

and
−−→
KK =

−−→
AK−

−−→
AK =

nγA

κγA

−
nγA

κγA

=
kγA

κ2
γA

−
kγA

κ2
γA

=
kγA

k2γA

−
kγA

k2γA



CURVATURE CENTERS OF PLANE CURVES ON DEVELOPABLE SURFACES 119

(κγA, κγA are non-zero as A is assumed to be a non-inflection point of γ, γ). So

−−→
AK ·

−−→
KK = 0 is equivalent to

kγA

κ2
γA

(

kγA

k2γA

−
kγA

k2γA

)

= 0 which is clearly equivalent

to kγA
· kγA

= kγA
· kγA

, which in turn is equivalent to κγA
nγA

· nγA
= κγA

, as
claimed. �

The case UA = part of the tangent surface of a curve.

Let UA be part of the tangent surface F : x(s, v) = y(s) + vy′(s) (Figure 3) of
the regular curve c : y(s) with an arc length parameter. Denote differentiation with
respect to s by primes and call respectively t(s) = y′(s), n(s), b(s), k(s), τ(s) the unit
tangent vector of c, a choice for the principal unit normal vector, the corresponding
binormal vector, the corresponding signed curvature, and the torsion of c. Notice
that s parametrizes the section curve γ = UA ∩ ρ as follows: if z is the point of
γ on the tangent line of c at y(s), then z ∈ ρ : a1x1 + a2x2 + a3x3 = a0 implies

z · e = a0 and since z = y(s) + vt(s) for some v ∈ R we get v = a0−y(s)·e
t(s)·e t(s) and

so z = z(s) = y(s) + a0−y(s)·e
t(s)·e t(s). The point A of γ and the ruling ℓ through A

correspond to a value s = s0. Summarizing:

γ : z(s) = y(s) +
a0 − y(s) · e

t(s) · e
t(s), A = z(s0), ℓ : y(s0) + vy′(s0).(3.1)

By the way the denominator in (3.1) is non-zero if we stay close enough to
A: t(s0) · e 6= 0 since otherwise t(s0) would be parallel to ρ and then the ruling
ℓ ‖ t(s0) would be parallel to ρ too, thus ℓ and ρ wouldn’t have just a single point
A in common, a contradiction. Then by continuity t(s) · e 6= 0 for a small enough
interval of values of s around s0, and if necessary, we can shrink UA so that this
relation holds for all s for which z(s) ∈ UA.

Observe also that the point M = y(s0) of c lies on the ruling ℓ on the plane
T , so the tangent vector t(s0) = y′(s0) is parallel to T . At s = s0 the vectors
xs = t(s0) + vt′(s0), xv = t(s0) are parallel to T for all v, so subtracting them
we get vt′(s0) parallel to T . But s is an arc length parameter of c, thus t′(s0) is
parallel to the normal vector n(s0) of c, so n(s0) is parallel to T . Of course moreover
n(s0) ⊥ t(s0), a fact we shall use shortly. Summarizing:

t(s0), n(s0) ‖ T, n(s0) ⊥ t(s0), |t(s0)| = 1.(3.2)

ℓ

γ

γ = f(γ)

T

A

M

n(s0) = n(s0)

t(s0) = t(s0)
t(s) = y′(s)y(s)

y(s)

e

ρ

ǫ

F

y(s0) = y(s0)

c

c

z(s)

w(s) = f(z(s))

bb
b

b

b

b

Figure 3. The case UA = part of the tangent surface F of a curve c.
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Lemma 3.2. Consider the curve c : y(s) on T with natural parameter s and cur-
vature

k(s) = k(s),(3.3)

for which

y(s0) = y(s0), t(s0) = t(s0) and n(s0) = n(s0),(3.4)

where t(s) = y′(s), n(s) are respectively the unit tangent vector and the unit normal

vector corresponding to the signed curvature k(s). Then there exists a neighborhood
of A in UA (which we still call UA) whose unique unwrapping f on T along ℓ is

f(x(s, v)) = f (y(s) + vt(s)) = y(s) + vt(s)
call it
= x(s, v).

Proof. Note first that the curve c of the Lemma exists: the Existence Theorem for
curves guaranties the existence of a curve c on T satisfying (3.3). Since |t(s0)| =
1, t(s0) ‖ T , and since by (3.2) |t(s0)| = 1, t(s0) ‖ T , we can translate and rotate, if
necessary, c on T so that relations y(s0) = y(s0), t(s0) = t(s0) of (3.4) are satisfied
too. Now the curve c lies on T , thus its unit normal vector n(s0) is necessary
parallel to T and normal to the tangent vector t(s0) = t(s0), exactly as n(s0) is by
(3.2). So n(s0), n(s0) either coincide or are opposite. We can assume they coincide,
that is we can assume c satisfies n(s0) = n(s0) of (3.4) as well, otherwise we can
replace c with its symmetric with respect to ℓ which is another curve on T and
which satisfy both relations (3.3), (3.4) as wanted.

To prove that f is an unwrapping we have to show by Definition 1.2 and Propo-
sition 1.1 that (a) it fixes all points of ℓ, (b) it fixes the tangent vectors of the
parameter curves at their points on ℓ, (c) it is one-to-one in a small enough neigh-
borhood of A which we rename as UA, and (d) it preserves the first fundamental
form at corresponding points. (c) and (d) make f to an isometry and (a), (b) to
an unwrapping. The details follow. Recall that throughout the calculations s is an
arc length parameter of c and c.

For (a):

f(x(s0, v)) = f

(

y(s0) +
a0 − y(s0) · e

t(s0) · e
t(s0)

)

= y(s0) +
a0 − y(s0) · e

t(s− 0) · e
t(s0)

(3.4)
= x(s0, v).

For (b): The v-parameter curve c1 of UA is a ruling for which c1 ∩ ℓ = ∅ (for
s 6= s0; shrinking UA further if necessary) or else c1 = ℓ (for s = s0). In the second
case it is f(c1) = f(ℓ) = ℓ = c1, and clearly c1, f(c1) share a common tangent
vector at any one of their common points. The s-parameter curve c2 : x(s, v0) =
y(s) + v0t(s) has a unique common point x(s0, v0) with ℓ, and f sends it to the
curve f(c2) : y(s) + v0t(s). The tangent vectors w1, w2 of c2 and f(c2) at their
common point x(s0, v0) are the same as wanted:

w1 = t(s0) + v0t
′(s0) = t(s0) + v0k(s0)n(s0)

w2 = t(s0) + v0t
′
(s0) = t(s0) + v0k(s0)n(s0)

(3.3),(3.4)
= t(s0) + v0k(s0)n(s0).

For (c): f is one-to-one in a neighborhood of A = z(s0) = y(s0)+
a0−y(s)·e

t(s)·e t(s) =

x(s0, v0) (where v0 = a0−y(s)·e
t(s)·e 6= 0 as A does not belong to y), because f◦x is so in a

neighborhood of (s0, v0): (f ◦x)(s, v) = y(s)+vt(s)
let
= (y1(s), y2(s))+v(t1(s), t2(s))
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and for its Jacobian we compute

J =

∣

∣

∣

∣

y′1 + vt
′
1 y′2 + vt

′
2

t1 t2

∣

∣

∣

∣

y′

i=ti
= v(t

′
1t2 − t1t

′
2) = v(t1, t2) · (−t

′
2, t

′
1).

But (−t
′
2, t

′
1) is a unit vector perpendicular to (t

′
1, t

′
2) = n, therefore equal to ±t

and for s = s0 we get J(s0, v) = ±vt(s0)
2 6= 0 for v 6= 0.

For (d): for x(s, v) and its corresponding point f(x(s, v)) it is xs = y′ + vt′ =

t+ vkn, xv = t and xs = y′ + vt
′
= t+ vkn, xv = t and so

E = xs · xs = 1 + v2k2, F = xs · xv = t2 = 1, G = xv · xv = 1

E = xs · xs = 1 + v2k
2 (3.3)

= 1 + v2k2, F = xs · xv = t
2
= 1, G = xv · xv = 1

as wanted, finishing the proof of Lemma 3.2. �

Proof of Proposition 1.2 in the case UA is part of the tangent surface of a curve.
Since the unwrapping of UA is given by f of Lemma 3.2, the unwrapping γ of γ

is f(γ). In other words

γ : w(s) = f(z(s)) = f

(

y(s) +
a0 − y(s) · e

t(s) · e
t(s)

)

= y(s) +
a0 − y(s) · e

t(s) · e
t(s)

and we are now prepared to prove kγA
· kγA

= kγA
· kγA

, and so by Lemma 3.1 to
prove the Proposition in this case.

Differentiate the first equation in (3.1) with respect to s and use y′ = t, t′ = kn
to compute

z
′ =

(

y +
a0 − y · e

t · e
t
)′

= t+
(−t · e)(t · e)− (a0 − y · e)(t′ · e)

(t · e)2
t+

a0 − y · e

t · e
t
′

=
(a0 − y · e)(kn · e)

(t · e)2
t+

k(a0 − y · e)

t · e
n.

Call f1, f2 the coefficients of t, n and use t′ = kn, n′ = −kt + τb to get |z′| =

(f2
1 + f2

2 )
1

2 and

kγ =
1

|z′|

(

z′

|z′|

)′

=
1

(f2
1 + f2

2 )
1

2

(

f1t+ f2n

(f2
1 + f2

2 )
1

2

)′

=
1

(f2
1 + f2

2 )
1

2

[(

f1

(f2
1 + f2

2 )
1

2

)′

t+
f1

(f2
1 + f2

2 )
1

2

t
′ +

(

f2

(f2
1 + f2

2 )
1

2

)′

n+
f2

(f2
1 + f2

2 )
1

2

n
′

]

=
1

(f2
1 + f2

2 )
1

2

[((

f1

(f2
1 + f2

2 )
1

2

)′

−
kf2

(f2
1 + f2

2 )
1

2

)

t+

(

kf1

(f2
1 + f2

2 )
1

2

+

(

f2

(f2
1 + f2

2 )
1

2

)′)

n

+
f2τ

(f2
1 + f2

2 )
1

2

b

]

·

Use w′ = t, t
′
= kn to get

w
′ =

(

y +
a0 − y · e

t · e
t
)′

= t+
(−t · e)(t · e)− (a0 − y · e)(t′ · e)

(t · e)2
t+

a0 − y · e

t · e
t
′

=
(a0 − y · e)(kn · e)

(t · e)2
t+

k(a0 − y · e)

t · e
n = f1t+ f2n.
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It follows |w′| = (f2
1 + f2

2 )
1

2 . Use t
′
= kn = kn, n′ = −k t (since c is a plane curve)

to find

kγ =
1

|w′|

(

w′

|w′|

)′

=
1

(f2
1 + f2

2 )
1

2

(

f1t+ f2n

(f2
1 + f2

2 )
1

2

)′

=
1

(f2
1 + f2

2 )
1

2

[(

f1

(f2
1 + f2

2 )
1

2

)′

t+
f1

(f2
1 + f2

2 )
1

2

t′ +

(

f2

(f2
1 + f2

2 )
1

2

)′

n+
f2

(f2
1 + f2

2 )
1

2

n′

]

=
1

(f2
1 + f2

2 )
1

2

[((

f1

(f2
1 + f2

2 )
1

2

)′

−
kf2

(f2
1 + f2

2 )
1

2

)

t+

(

kf1

(f2
1 + f2

2 )
1

2

+

(

f2

(f2
1 + f2

2 )
1

2

)′)

n

]

.

So

kγ = Pt+Qn+Rb and kγ = Pt+Qn

for some functions P,Q,R, thus

kγA
= kγ(s0) = P (s0)t(s0) +Q(s0)n(s0) +R(s0)b(s0)

kγA
= kγ(s0) = P (s0)t(s0) +Q(s0)n(s0)

(3.4)
= P (s0)t(s0) +Q(s0)n(s0)

and

kγA
· kγA

= (P (s0))
2 + (Q(s0))

2
= kγA

· kγA

as wanted, finishing the proof of Proposition 1.2 in the case UA is part of the tangent
surface of a curve. �

The case UA = part of a generalized cylinder.

Let UA be part of a (generalized) cylinder F : x(u, v) = y(u) + vg, |g| = 1. We
can assume that the section curve γ = UA ∩ ρ is given by γ : y(u). Indeed, it is

γ : z(u) = y(u)+ a0−y(u)·e
g·e g (recall ρ : a1x1+a2x2+a3x3 = a0) and UA is part of the

cylinder F0 : x(u, v) = z(u) + vg. By the way note that g · e 6= 0 for if not, g would
be parallel to ρ, thus the intersection of ρ and ℓ ‖ g would not be just a point A, a
contradiction. F0 is clearly a cylinder as defined in §1, and moreover clearly again
its image coincides with that of F . Since A is a non-singular point of γ we have
dy
du

6= 0 at A and by continuity dy
du

6= 0 in some arc of γ containing A. Restricting
attention to this arc we can consider u to be an arc length parameter s of γ. So
from now on UA will be considered part of the cylinder F : x(s, v) = y(s) + vg

(Figure 4) and

(3.5) γ : y(s), s an arc length parameter of γ, A = y(s0), |g| = 1.

Denote differentiation with respect to s by primes and call tγ = y′ the unit tangent
vector of γ.

It will be convenient to introduce a Cartesian coordinate system Ax1x2 on T with
origin A and unit vectors e1, e2 along the positive semi-axis Ax1, Ax2 respectively,
with e1 = g.

Lemma 3.3. Let φ(s) = ∠(g, tγ(s)), and c be the curve on T whose equation in
Ax1x2 is

(3.6) c : y(s) =

∫ s

s0

(cosφ(σ)e1 + sinφ(σ)e2)dσ + y(s0).

Denote the unit tangent vector of c by t and choose e2 so that

(3.7) t(s0) = tγ(s0).
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ǫ

ℓ

e

T

ρ

F

γ

c = γ = f(γ)

A
y(s0) = y(s0)

g = e1

n(s0)
n(s0)

φ(s0)
tγ(s0) = t(s0)e2

b

Figure 4. The case UA = part of a generalized cylinder F .

Then there exists a neighborhood of A in UA (which we still call UA) whose unique
unwrapping f on T along ℓ is

f(x(s, v)) = f (y(s) + vg) = y(s) + vg
call it
= x(s, v) ∈ T.

Proof. First note that e2 can indeed be chosen so that relation (3.7) is satisfied: s
is an arc length parameter of c since y′(s) = cosφ(s)e1 + sinφ(s)e2 (thus clearly
|y′(s)| = 1), and y(s0) = y(s0) = A. So the unit tangent vector t(s0) of c at A is
y′(s) = cosφ(s0)e1 + sinφ(s0)e2 and it forms with g = e1 an angle ∠(g, t(s0)) =
φ(s0) = ∠(g, tγ(s0)). Depending on the choice of e2, either t(s0) or its symmetric
with respect to the line ℓ ‖ g coincides with tγ(s0). If our original choice of e2 was
not the right one, we choose its opposite and (3.7) is satisfied as claimed.

To prove that f is an unwrapping, we have to show by Definition 1.2 and Propo-
sition 1.1 that (a) it fixes all points of ℓ, (b) it fixes the tangent vectors of the
parameter curves at their points on ℓ, (c) it is one-to-one in a small enough neigh-
borhood of A which we rename as UA, and (d) it preserves the first fundamental
form at corresponding points. (c),(d) make f to an isometry and (a), (b) to an
unwrapping. The details follow. Recall that throughout the calculations s is an arc
length parameter of c and c.

For (a): f(x(s0, v)) = f(y(s0)+vg) = y(s0)+vg
y(s0)=y(s0)

= y(s0)+vg = x(s0, v).
For (b): The v-parameter curve c1 of UA is a ruling for which c1 ∩ ℓ = ∅ (for

s 6= s0) or else c1 = ℓ (for s = s0). In the second case it is f(c1) = f(ℓ) = ℓ = c1,
and clearly c1, f(c1) share a common tangent vector at any one of their common
points. The s-parameter curve c2 : x(s, v0) = y(s) + v0g has a unique common
point x(s0, v0) with ℓ, and f sends c2 to the curve f(c2) : y(s) + v0g. The tangent
vectors w1, w2 of c2 and f(c2) at their common point x(s0, v0) are the same:

w1 = tγ(s0) + v0g

w2 = t(s0) + v0g
(3.7)
= tγ(s0) + v0g.

For (c): f is one-to-one in a neighborhood of A = y(s0) = x(s0, 0), because f ◦x

is so in a neighborhood of (s0, 0): (f ◦x)(s, v) = y(s)+vg
let
= (y1(s), y2(s))+v(g1, g2)

and for its Jacobian we compute

J =

∣

∣

∣

∣

y′1 y′2
g1 g2

∣

∣

∣

∣

y′

i=ti
= t1g2 − g1t2 = (g1, g2) · (−t2, t1).
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But (−t2, t1) is a unit vector perpendicular to (t1, t2) = t, therefore equal to ±n,
and for s = s0 we get J(s0, 0) = ±g · n(s0) 6= 0 since g, n(s0) are not perpendicular
(if they were, it would be g||t(s0), that is ℓ||ǫ which cannot be).

For (d): for x(s, v) and its corresponding point f(x(s, v)) it is xs = y′ = tγ , xv =
g and xs = y′ = t, xv = g and so

E = xs · xs = t2 = 1, F = xs · xv = tγ · g, G = xv · xv = g2

E = xs · xs = t
2
, F = xs · xv = t · g, G = xv · xv = g2.

Therefore for the claimed invariance of the first fundamental form it must be

tγ · g = t · g(3.8)

which is immediate as

tγ · g = |tγ ||g| cos(t, g) = cos(φ(s))

t · g = (cosφ(s)e1 + sinφ(s)e2)e1 = cos(φ(s)),

and Lemma 3.3 is proved. �

Proof of Proposition 1.2 in the case UA is part of a generalized cylinder.
Since the unwrapping of UA is given by f of Lemma 3.3, the unwrapping γ of γ

is f(γ). In other words

γ = f(γ) : f(y(s))
(3.5)
= f(x(s, 0)) = y(s) + 0g = y(s),

and because of (3.6) we have γ = c. We are now prepared to prove κγ(nγ ·nγ) = κγ

at A, and so by Lemma 3.1 to prove the Proposition in this case.

Differentiate (3.8) to get t′γ · g = t
′
· g, that is kγ · g = kγ · g from which

κγ(nγ · g) = κγ(nγ · g)(3.9)

which for s = s0 relates the normal vectors and signed curvatures of γ, γ at A. All
calculations below are done at A.

Observe that nγ · g 6= 0, otherwise nγ would be normal to g forcing g to be
parallel to t, that is ℓ to be a line of ρ, a contradiction. So then κγ

nγ ·g
nγ ·g

= κγ and

the required relation κγ(nγ · nγ) = κγ is equivalent to

κγ(nγ · nγ)(nγ · g) = κγ(nγ · g).(3.10)

To prove it write the vector nγ of T as a linear combination nγ = atγ + bg of the
linearly independent vectors tγ , g. Recall that tγ · nγ = 0 = tγ · nγ , |tγ | = |g| = 1
and consider the inner product of both sides of nγ = atγ + bg with nγ , g, tγ to get
respectively

nγ · nγ = b(nγ · g), nγ · g = a(tγ · g) + b, 0 = a+ b(tγ · g).

So (3.10) is equivalent to

κγb(nγ · g)

(

a
−a

b
+ b

)

= κγ(nγ · g),

and this will hold provided b
(

a−a
b

+ b
)

= 1. Note first that it cannot be b = 0,
since this would imply nγ = atγ making nγ and tγ = tγ dependent, a contradiction.
Now, b

(

a−a
b

+ b
)

= −a2 + b2. And observe that |nγ | = 1 gives |atγ + bg| = 1, so

a2 + b2 + 2ab(tγ · g) = 1, in other words a2 + b2 + 2ab−a
b

= 1 and equivalently

−a2 + b2 = 1, as wanted finishing the proof of Proposition 1.2 in the case UA =
part of a generalized cylinder. �
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The case UA = part of a generalized cone.

Let UA be part of a (generalized) cone F . Without any loss of generality we
work in a Cartesian coordinate system Ox1x2x3 with origin at the vertex O of
the cone, and let F : x(u, v) = vy(u), where y(u) is the directrix. Actually we
can consider that the section curve γ = UA ∩ ρ is this directrix. Indeed, it is
γ : z(u) = a0

y(u)·ey(u) (recall that ρ : a1x1 + a2x2 + a3x3 = a0) and UA is part of the

cone F0 : x(u, v) = vz(u). It must be y(u) · e 6= 0 for if not, y(u0) corresponding to
A would be parallel to ρ and then the ruling ℓ would be parallel to ρ, thus ℓ and ρ

wouldn’t have just a single point A in common, a contradiction. Then by continuity
y(u) · e 6= 0 for a small enough interval of values of u around u0, and if necessary
we shrink UA so that this relation holds for all u for which z(u) ∈ UA. F0 is clearly
a cone as defined in §1, and moreover clearly again its image coincides with that of
F . As in the case of UA being part of a cylinder, we can consider u to be an arc
length parameter s of γ. So from now on UA is part of the cone F : x(s, v) = vy(s)
(Figure 5) and

(3.11) γ : y(s), s ∈ I, s an arc length parameter of γ, A = y(s0).

Denote differentiation with respect to s by primes and call tγ = y′ the unit tangent
vector of γ.

ρ
e

e1

e2

T

O

ℓ

γ = f(γ)

γ

F
y(s)

y(s)

t(s) = y′(s)

A

θ(s)

y(s0)

S(s)b

b

b
b

Figure 5. The case UA = part of a generalized cone F .

Since the vertex O does not lie on γ, the points y(s) correspond to values of
v which are all positive or all negative, let without any loss of generality v > 0.
Consider the part Fγ of the cone corresponding to (s, v) ∈ I × (0,+∞). It is
convenient to consider as unit vectors e1, e2 along the positive semi-axis Ox1, Ox2

of the Cartesian system, two vectors of the plane T and especially to consider e1

as a vector with the direction of
−→
OA = y(s0).

Lemma 3.4. Let θ(s) = ∠(y(s), tγ(s)) and let us choose e2 so that

y′(s0) = (cos(θ(s0)), sin(θ(s0)), 0).(3.12)

Then there exists a neighborhood of A in UA (which we still call UA) whose unique
unwrapping f on T along ℓ is

f(x(s, v)) = v|y(s)|

(

cos

(
∫ s

s0

sin(θ)

|y(s)|
dσ

)

, sin

(
∫ s

s0

sin(θ)

|y(s)|
dσ

)

, 0

)

call it
= x(s, v) ∈ T.

Proof. First note that e2 can indeed be chosen so that relation (3.12) is satis-
fied: since ∠(e1, y

′(s0)) = ∠(y(s0), y
′(s0)) = ∠(y(s0), tγ(s0)) = θ(s0) and since
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y′(s0) is a vector of T of unit length, we have either y′(s0) = cos(θ(s0))e1 +
sin(θ(s0))e2 = (cos(θ(s0)), sin(θ(s0)), 0) or y′(s0) = cos(θ(s0))e1 − sin(θ(s0))e2 =
(cos(θ(s0)),− sin(θ(s0)), 0) depending on the choice of e2. So e2 can be chosen
appropriately.

To prove that f is an unwrapping we show below that (a) it is one to one, (b)
it preserves the first fundamental form at corresponding points in a small enough
neighborhood of A which we rename as UA ((a), (b) make f to an isometry), (c)
it fixes all points of ℓ and (d) it fixes the tangent vectors of the parameter lines at
their points on ℓ ((c), (d) make f to an unwrapping). Here are the details:

For (a): First we shrink I (and UA) so that

length of I < 1, and
sin(θ(s))

|y(s)|
∈ I0 with length of I0 < π.(3.13)

Trivially, this can be achieved: Consider s close enough to s0 so that by continuity

0 6= |y(s0)|
2 < |y(s)| and restrict s further if necessary, and close to s0 so that for

the corresponding values θ(s) which are close to 0 = θ(s0) because of continuity,

it holds | sin(θ(s))| < 3π|y(s0)|
2 . Then | sin(θ(s))|

|y(s)| < π
3 , so

sin(θ(s))
|y(s)| ∈ I0 = (−π

3 ,
π
3 ) of

length less than π as wanted.
Now if f were not one to one, it would be f(s1, v1) = f(s2, v2) for some

(s1, v1) 6= (s2, v2), so |f(s1, v1)| = |f(s2, v2)| thus v1|y(s1)| = v2|y(s2)|. This imme-
diately gives s1 6= s2 for if not the equality would also imply v1 = v2, a contradiction.
But s1 6= s2 also leads to a contradiction as the equality f(s1, v1) = f(s2, v2) to-

gether with v1|y(s1)| = v2|y(s2)| imply
(

cos
(

∫ s1

s0

sin(θ)
|y(s)| dσ

)

, sin
(

∫ s1

s0

sin(θ)
|y(s)| dσ

))

=
(

cos
(

∫ s2
s0

sin(θ)
|y(s)| dσ

)

, sin
(

∫ s2
s0

sin(θ)
|y(s)| dσ

))

which gives
∫ s1
s0

sin(θ)
|y(s)| dσ =

∫ s2
s0

sin(θ)
|y(s)| dσ be-

cause relation (3.13) makes both integrals lie in [0, π). But this equality of integrals
simply cannot hold as their common integrand is a positive function and s1 6= s2,
thus the claimed contradiction.

For (b): xs = vy′, xu = y from which

E = v2(y′)2 = v2, F = vyy′, G = y2.

and calling S(s) =
∫ s

s0

sin(θ)
|y(s)| dσ we get

xs = v|y|′(cosS, sinS, 0) + v|y(s)|(− sinS, cosS, 0), xv = |y|(cosS, sinS, 0)

from which

F = xsxv = v|y||y|′ = v|y|
y · y′

|y|
= vyy′ = F

G = xvxv = |y|2 = G

and

E = xsxs = (v|y|′)2 + (v|y|)2
(

sin(θ)

|y|

)2

= v2
[

(|y|′)2 + sin2(θ)
]

= v2
(

cos2(θ)2 + sin2(θ)
)

= v2 = E

where we used the relation

|y|′ =
(

(|y|2)
1

2

)′

=
(|y|2)′

2((|y|2)
1

2

=
(y2)′

2|y|
=

2y · y′

2|y|
=

y · y′

|y|
= cos(θ).(3.14)
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For (c): Recall the notation S(s) =
∫ s

s0

sin(θ(s))
|y(s)| dσ to compute

S(s0) =

∫ s0

s0

sin(θ(s))

|y(s)|
dσ = 0(3.15)

and

f(x(s0, v)) = f(vy(s0)) = v|y(s0)| (cos(S(s0)), sin(S(s0)), 0)
(3.15)
= v|y(s0)|(cos(0, sin(0)), 0)

= v|y(s0)|(1, 0, 0) = v|y(s0)|e1 = v|y(s0)|
y(s0)

|y(s0)|
= vy(s0) = x(s0, v).

For (d): The v-parameter curve c1 of UA is a ruling for which c1 ∩ ℓ = ∅ (for
s 6= s0) or else c1 = ℓ (for s = s0). In the second case it is f(c1) = f(ℓ) = ℓ = c1,
and clearly c1, f(c1) share a common tangent vector at any one of their common
points. The s-parameter curve c2 : x(s, v0) = v0y(s) has a unique common point
x(s0, v0) with ℓ, and f sends c2 to the curve f(c2) : v0|y(s)| (cos(S(s)), sin(S(s)), 0).
The tangent vectors w1, w2 of c2 and f(c2) at their common point x(s0, v0) are the
same:

w1 = v0y
′(s0)

and

w2 = v0|y(s)|
′
|s0(cosS(s0), sinS(s0), 0) + v0|y(s0)|

sin(θ(s0))

|y(s0)|
(− sinS(s0), cosS(s0), 0)

(3.14),(3.15)
= v0 cos(θ(s0))(cos(0), sin(0), 0) + v0 sin(θ(s0))(− sin(0), cos(0), 0)

= v0 cos(θ(s0))(1, 0, 0) + v0 sin(θ(s0))(0, 1, 0) = v0(cos(θ(s0)), sin(θ(s0)), 0)

(3.12)
= v0y

′(s0) = w1,

finishing the proof of Lemma 3.4. �

Proof of Proposition 1.2 in the case UA is part of a generalized cone.
Since the unwrapping of UA is given by f of Lemma 3.4, the unwrapping γ of γ

is f(γ). In other words γ = f(γ)
(3.11)
: f(y(s)) = f(x(s, 1)), so

γ:|y(s)|

(

cos

(
∫ s

s0

sin(θ)

|y(s)|
dσ

)

, sin

(
∫ s

s0

sin(θ)

|y(s)|
dσ

)

, 0

)

call it
= y(s).

Observe that s is an arc length parameter of γ:

y′ = |y|′(cos(S), sin(S), 0) + |y|
sin(θ)

|y|
(− sin(S), cos(S), 0)

= |y|′(cos(S), sin(S), 0) + sin(θ)(− sin(S), cos(S), 0)

and

|y′|2 = (|y|′)
2
+ (sin(θ))2

(3.14)
= (cos(θ))2 + (sin(θ))2 = 1.

The above expressions for y and y′ give

y · y′ = |y||y|′ = |y|
y · y′

|y|
= y · y′

which by differentiation implies kγ · y + y′2 = kγ · y + y′2, thus k · y = kγ · y after
noting that y′2 = y′2 = 1. For s = s0 it follows trivially that y(s0) = y(s0) = A.
Call g = y(s0) = y(s0) to get kγ(s0) · g = kγ(s0) · g, also written as

κγ(s0)(nγ(s0) · g) = κγ(s0)(nγ(s0) · g)
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which is the same as relation (3.9) for s = s0 in the case of UA being part of a
cylinder. It was proved there that relation (3.9) for s = s0 implies the required
relation (3) of Lemma 3.1, i.e. κγ(nγ · nγ) = κγ at s = s0. But this proof can be
repeated word by word here and so by Lemma 3.1 we have finished with the proof
of Proposition 1.2 in the case UA = part of a generalized cone as well. �
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