INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 6 NO.1 PP. 147-150 (2013) ©IEJG

ON THE SMOOTHABLE SCHEME RANK WITH RESPECT TO NON-DEGENERATE VARIETIES

EDOARDO BALLICO

(Communicated by H. Hilmi HACISALIHOĞLU)

ABSTRACT. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate variety. Set $m := \dim(X)$ and assume $n \geq m+2$. Here we prove that for each $P \in \mathbb{P}^n$ there is a zero-dimensional smooth scheme $Z \subset \mathbb{P}^n$ such that $\deg(Z) \leq n-m$ and the linear span of Z contains P. We may find Z with the additional condition that either Z is reduced or it has only two unreduced connected components, both with degree 2 or that it has a unique unreduced connected component, Z_1 , and $\deg(Z_1) \in \{2, 3\}$.

1. INTRODUCTION

Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate subvariety. For each $P \in \mathbb{P}^n$ the X-rank $r_X(P)$ (resp. scheme-rank $z_X(P)$, resp. smoothable scheme rank $sm_X(P)$) of P is the minimal cardinality of a finite subset (resp. zero-dimensional scheme, resp. zero-dimensional smoothable scheme inside X) Z of \mathbb{P}^n such that $P \in \langle Z \rangle$, where $\langle \rangle$ denote the linear span. We recall that a zero-dimensional scheme $Z \subset X$ is said to be *smoothable inside* X if it is a flat limit of a flat family of finite subsets of X. The key concept is the notion of X-rank, because it is the one used in the applications to tensors and symmetric tensors. If X is a Segre embedding of a multiprojective space $\mathbb{P}^{m_1} \times \cdots \times \mathbb{P}^{m_1}$, then P corresponds to a tensor of format n_1, \ldots, n_s and $r_X(P)$ is the tensor rank of the tensor P (here n + 1 = $(m_1+1) \cdots (m_s+1)$. If X is a order d Veronese embedding of \mathbb{P}^m (here $n = \binom{n+d}{n} - 1$) , then P corresponds to a degree d homogeneous polynomial $f \in \mathbb{K}[x_0, \ldots, n]$ and $r_X(P)$ is the minimal integer t such that $f = \sum_{i=1}^t L_i^d$, where each L_i is a linear form ([5]). In this note we first improve (just by 1) an upper bound for the X-rank given in [6] ([6], Proposition 5.1) and prove the following result.

Theorem 1.1. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate variety. Set $m := \dim(X)$ and assume $m \leq n-1$. Then $sm_X(P) \leq n-m$ for all $P \in \mathbb{P}^n$.

Date: October 27, 2012 and Accepted: March 19, 2013.

¹⁹⁹¹ Mathematics Subject Classification. 14N05.

Key words and phrases. X-rank; symmetric tensor rank; zero-dimensional scheme; smoothable zero-dimensional scheme.

Partially supported by MIUR and GSAGA of INDAM (Italy).

EDOARDO BALLICO

We recall that [6], Proposition 5.1, fails by 1 in a few well-described cases if $char(\mathbb{K}) > 0$ ([2]).

Remark 1.1. Take X as in Theorem 1.1 and $P \in \mathbb{P}^n$. The proof of Theorem 1.1 gives the existence of a zero-dimensional smoothable scheme $Z \subset X$ such that $P \in \langle Z \rangle$, $\deg(Z) = n - m$ and either Z is reduced or it has two unreduced connected components, both of them with degree 2, or it has a unique unreduced connected component Z_1 and $\deg(Z_1) \in \{2, 3\}$.

2. The proof

Remark 2.1. The scheme $Z \subset X$ is smoothable if and only if each connected component of Z is smoothable. If $Z \subset X_{reg}$, then Z is smoothable inside X if and only if it is smoothable inside \mathbb{P}^n . If $Z \subset X_{reg}$, then it is smoothable inside X if and only if it is smoothable inside \mathbb{P}^n ([4], Proposition 2.1.5). Hence if X is smooth, then a zero-dimensional scheme $Z \subset X$ is smoothable inside X if and only if it is smoothable inside \mathbb{P}^n . This is the reasons why for smooth varieties X one usually write smoothable without specifying the ambient smooth variety allowed to do the smoothing. Notice that each degree 2 subscheme of X_{reg} is smoothable.

For each integer $k \geq 1$ let $\sigma_k(X) \subseteq \mathbb{P}^n$ denote the closure in \mathbb{P}^n of the union of all linear subspaces spanned by k points of X. Each $\sigma_k(X)$ is an integral variety and $\dim(\sigma_k(X)) \leq \min\{n, k \cdot (\dim(X)+1)-1\}$. If $\dim(X) = 1$, then $\dim(\sigma_k(X)) =$ $\min\{n, 2k - 1\}$ for all $k \geq 1$ ([1], Remark 1.6). In particular $\sigma_2(X) = \mathbb{P}^3$ for each non-degenerate curve $X \subset \mathbb{P}^3$.

Remark 2.2. Fix a zero-dimensional smoothable scheme $Z \subset X$. Since Z is a flat limit of a set of deg(Z) points and $\sigma_{\text{deg}(Z)}(X)$ is defined as a closure of all linear spans of deg(Z) distinct points, we have $\langle Z \rangle \subseteq \sigma_{\text{deg}(Z)}(X)$.

We need the following lemma (proof of [3], Proposition 11).

Lemma 2.1. Let $\beta'(X)$ denote the maximal integer such that $\dim(\langle Z \rangle) = \deg(Z) - 1$ for each zero-dimensional and smoothable scheme of degree $\leq \beta'(X)$. Fix an integer k such that $1 \leq k \leq \beta'(X)$. Then $\sigma_k(X)$ is the union of all $\langle Z \rangle$, where Z is a smoothable subscheme of Z of degree k.

Proof of Theorem 1.1 Fix $P \in \mathbb{P}^n$. If $P \in X$, then $r_X(P) = sm_X(P) = 1$. Hence we may assume $P \notin X$. In steps (a) and (b) we assume char(\mathbb{K}) = 0.

(a) Assume m = 1. First assume n = 3. Since any degree 2 subscheme of X spans a line, Remark 2.1 and Lemma 2.1 give that for each $P \in \mathbb{P}^3$ there is a zero-dimensional smoothable degree 2 scheme $Z \subset X$ such that $P \in \langle Z \rangle$. Hence Theorem 1.1 is true in this case. Now assume $n \geq 4$. Fix a general $S \subset X_{reg}$ such that $\sharp(S) = n - 3$. If $P \in \langle S \rangle$, then $sr_X(P) \leq r_X(P) \leq n - 3$. Hence we may assume $P \notin \langle S \rangle$. For general S we may also assume that each point of $\langle S \rangle$ is a smooth point of S (in characteristic zero we may even get $\langle S \rangle \cap X = S$ as schemes). Let $\ell : \mathbb{P}^n \setminus \langle S \rangle \to \mathbb{P}^3$ denote the linear projection from $\langle S \rangle$. Since each point of $\langle S \rangle \cap X$ is a smooth point of X, $\ell \mid (X \setminus \langle X \rangle \cap X)$ extends to a morphism $f : X \to \mathbb{P}^3$. Notice that f(X) is an integral and non-degenerate curve (in characteristic zero we may even assume that f is birational onto its image). The case n = 3 gives the existence of a degree two smoothable scheme $W \subset \mathbb{P}^3$ such that $\ell(P) \in \langle W \rangle$. Since $f : X \to f(D)$ is a proper and surjective morphism, there is a zero-dimensional

scheme $W' \subset X$ such that $\deg(W') = 2$ and f(W') = W. However, in general such a scheme W' may be non-smoothable if X is singular. To find W' as above and with the additional property that W' is smoothable we use the following path. Fix an affine integral curve Δ , $o \in \Delta$ and a flat family $\{W_{\lambda}\}_{\lambda \in \Delta}$ of degree two schemes with $W_o = W$ and W_{λ} reduced for all $\lambda \neq o$. Taking a finite covering Δ' of $\Delta \setminus \{o\}$ we lift this family to a family \mathcal{F} of distinct points of X. We call W' a flat limit of \mathcal{F}) (a flat limit exists, because X is projective and hence each connected component of Hilb(X) is projective). We have $\deg(W') = 2$ and f(W') = W. By construction W' is smoothable. First assume $W' \cap S = \emptyset$. Since $\ell(P) \in \langle W \rangle$, we get $P \in \langle S \cup W' \rangle$. Now assume $W' \cap S \neq \emptyset$. Let Z be the only scheme such that $Z_{red} = W_{red} \cup S$, it coincide with W at the points of $W'_{red} \setminus S \cap W'_{red}$ (there is at most one point, and there is such a point if W' is reduced and $\sharp(S \cap W') = 1$) and at each $Q \in S$ it has multiplicity $1 + \epsilon_Q \in \{1, 2, 3\}$, where ϵ_Q is the multiplicity of W' at Q. Since each unreduced connected component of Z is contained in $S \subset X_{reg}$, Z is smoothable. We have $P \in \langle Z \rangle$ and $\deg(Z) = n - 1$.

(b) Assume m > 1. Let $V \subset \mathbb{P}^n$ be a general linear subspace such that $P \in V$ and dim(V) = n - m + 1. Since $P \notin X$, the linear system of all hyperplanes of \mathbb{P}^n passing through P has no base points on X. Hence Bertini's theorem gives that $X \cap V$ is an integral curve. Let $H \subset \mathbb{P}^n$ be any hyperplane. Since X is integral, we have $h^1(\mathcal{I}_X) = 0$. Since X is non-degenerate, we have $h^0(\mathcal{I}_X(1)) = 0$. Hence the exact sequence

$$0 \to \mathcal{I}_X \to \mathcal{I}_X(1) \to \mathcal{I}_{X \cap H,H}(1) \to 0$$

shows that the scheme $X \cap H$ spans H. Applying m-1 times this observation we get that the curve $X \cap V$ spans V. Since $P \in V$ and $X \cap V \subset X$ we have $sm_X(P) \leq sm_{X \cap V}(P) \leq n-m$, the last inequality being true by step (a).

(c) From now on we assume $p := \operatorname{char}(\mathbb{K}) > 0$. First assume m = 1. The proof of the case n = 3 made in step (a) works verbatim. In the case n > 3 we were careful to use only characteristic free statements. Now assume m > 1. We use induction on m. Let $\alpha : \mathbb{P}^n \setminus \{P\} \to \mathbb{P}^{n-1}$ denote the linear projection from P. Since $P \notin X$, $u := \alpha | X$ is a finite morphism. First assume that u is not separable, i.e. assume that for a general $O \in X_{reg}$ we have $P \in T_O X$, where $T_O X$ denote the Zariski tangent space to X at P. In this case the scheme $\langle \{O, P\} \rangle \cap X$ is a scheme containing O with multiplicity ≥ 2 . Hence $P \in \langle E \rangle$, where E be the degree 2 subscheme of the line $\langle \{O, P\} \rangle$ with O as its support. Since m > 0, we have $E \subset X \cap T_O X$. Since $O \in X_{reg}$, the degree 2 scheme E is smoothable inside P (Remark 2.1). Hence $sr_X(P) \leq 2$. Now assume that u is separable, i.e. that P is not a strange point of X. In this case we may repeat the proof of the corresponding part in [2] (top of page 6) to reduced to the case m = 1 just proven.

References

- [1] Ådlandsvik, B., Joins and higher secant varieties, Math. Scand. 61(1987), 213–222.
- [2] Ballico, E., An upper bound for the X-ranks of points of Pⁿ in positive characteristic, Albanian J. Math. 5 (2011), no. 1, 3–10.
- [3] Bernardi, A., Gimigliano, A. and Idà, M., Computing symmetric rank for symmetric tensors, J. Symbolic. Comput. 46 (2011), 34–55.
- [4] Buczyński, J., Ginensky, A. and Landsberg, J. M., Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture, arXiv:1007.0192v4 [math.AG], Journal of London Mathematical Society (to appear).
- [5] Landsberg, J. M., Tensors: Geometry and Applications, Graduate Studies in Mathematics, Vol. 128, Amer. Math. Soc. Providence, 2012.

EDOARDO BALLICO

[6] Landsberg, J. M. and Teitler, Z., On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10(2010) no. 3, 339–366.

Department of Mathematics, University of Trento, 38123 Povo (TN), Italy E-mail address: ballico@science.unitn.it

150