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BENZ SURFACES

GROZIO STANILOV

(Communicated by Arif SALIMOV)

Abstract. We define one parametrical family of surfaces (called Benz sur-
faces) which are induced by a given surface in the Euclidean 3-dimensional
space. Some Maple programs are also used to investigate these surfaces. We
also consider some examples, visualizations and animations. Several theorems
about Benz surfaces are also proved.

1. Introduction

Walter Benz gives the following characterization for the curvature axis in the
line geometry [1]:
A ray K in the space is a curvature axis of the straight line surface X(s) = x(s) +
ev(s) if the following condition holds:

[X(s+ h)− x(s)] .K = 0, {h3}.
The investigations there are made by classical methods. This result gives us

occasion for carrying it over the theory of surfaces. So we introduce in respect to
any surface in the 3-dimensional Euclidean space a family of surfaces called Benz
surfaces. Our investigations are not in classical notations because it will be very
difficult and practically not possible. Because of this we applied the calculations
by computer using the computer algebra and graphic of Maple.

Let the surface be determined by the equation

S : x = x(u, v).

This is a two-variable vector function and we apply the well-known Taylor’s For-
mula:

x(u + h, v + k) = x(u, v) +
h

1!
xu+

k

1!
xv +

h2

2!
xuu+

2hk

2!
xuv +

+
k2

2!
xvv +

h3

3!
xuuu+

3h2k

3!
xuuv +

3hk2

3!
xuvv +

k3

3!
xvvv +O(h, k).
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Now we look for a surface of the form

(1.1) B = k1xu+ k2xv + k3n.

Here k1, k2, k3 are some coefficients. We take the growth k = mh with some
function m = m(h). From the Benz condition

[x(u+ h, v + k)− x(u, v)] .B = 0,

and dividing by h and putting h 7→ 0, we get the first equality

(1.2) k1(g11 +mg12) + k2(g12 +mg22) = 0.

Here g11, g12, g22 are the coefficients of the first fundamental form for the given
surface. In the same way, considering second degrees of h, we get the second equality

(1.3) k1e+ k2f + k3II(m) = 0.

For the corresponding coefficients, we have the expressions

e = xu.(xuu+ 2mxuv +m2xvv),

f = xv.(xuu + 2mxuv +m2xvv),

II(m) = n.(xuu+ 2mxuv +m2xvv).

From the equalities (2) and (3), up to homothety, we find the coefficients

(1.4) k1 = g12 +mg22, k2 = −g11 −mg12, k3 = −(k1e + k2f)/II(m)

if the second fundamental form for the given surface is not identically zero.
Thus, we have established the following

Theorem 1.1. Any surface with non-zero identical second fundamental form in-
duces one parameter family of surfaces defined by (1) and (4).

These surfaces we shall call Benz surfaces induced by the given surface.

2. Benz surfaces induced by a given surface and parameterized by
Cartesian coordinates

From the considerations we have already done, it is obvious that the parametriza-
tion of the given surface is very important. Changing the parametrization one
should expect different results. Let’s start with the following
Example 1. We take the hyperboloid in the non-classical parametrization:

x1 = u cosu, x2 = v cos v, x3 = uv cosu cos v.

It is shown on the Fig. 1.
We can find the family of Benz surfaces induced by the given hyperboloid and

picture in the case m = 0 is given by Fig. 2.
Let’s take now the hyperboloid in the classical representation:

x1 = u, x2 = v, x3 = uv.

Its graphic is shown on Fig. 3 below and the graphic of the Benz surface is shown
on Fig. 4. It is a segment and this is true for all values of the parameter m.

First we shall prove the following

Theorem 2.1. If the given surface is parameterized by the Cartesian coordinates
then the family of the Benz surfaces consists only of segments.
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(a) Fig.1 (b) Fig.2

(c) Fig.3 (d) Fig.4

Proof. Let the surface is represented by the equation:

z = F (x, y)

or in parametrical form:

x = u, y = v, z = F (u, v).

Then the coefficients of the first fundamental form are:

g11 = 1 +

(

∂

∂u
F (u, v)

)2

, g12 =
∂

∂u
F (u, v)

∂

∂v
F (u, v), g22 = 1 +

(

∂

∂u
F (u, v)

)2

.

The discriminate is

g = 1 + (
∂

∂u
F (u, v))

2

+ (
∂

∂v
F (u, v))

2

.
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Then we find:

e =
∂

∂u
F (u, v)(

∂2

∂u2
F (u, v) + 2m

∂2

∂v∂u
F (u, v) +m2 ∂2

∂v2
F (u, v))

f =
∂

∂v
F (u, v)(

∂2

∂u2
F (u, v) + 2m

∂2

∂v∂u
F (u, v) +m2 ∂2

∂v2
F (u, v))

II(m) =
∂
2

∂u2F (u, v) + 2m ∂
2

∂v∂u
F (u, v) +m2 ∂

2

∂v2F (u, v)
√

1 + ( ∂

∂u
F (u, v))

2
+ ( ∂

∂v
F (u, v))

2
.

k1 =
∂

∂u
F (u, v)

∂

∂v
F (u, v) +m+m(

∂

∂v
F (u, v))

2

,

k2 = −1− (
∂

∂u
F (u, v))

2

−m
∂

∂u
F (u, v)

∂

∂v
F (u, v),

k3 = −

√

1 + (
∂

∂u
F (u, v))

2

+ (
∂

∂v
F (u, v))

2

.(m
∂

∂u
F (u, v)− ∂

∂v
F (u, v)).

Thus for the parameterization of Benz family of surfaces we get:

B1 = m(1+(
∂

∂u
F (u, v))

2

+(
∂

∂v
F (u, v))

2

), B2 = −1−(
∂

∂u
F (u, v))

2

−(
∂

∂v
F (u, v))

2

), B3 = 0

The third equation shows the family consists from plane surfaces. From the first
two equations we get

B1 = −mB2.

So the theorem is proved.

3. Maple Program for treating Benz Surfaces

For the sake of convenience we prefer to use the following Maple Program to
investigate Benz surfaces. If the given surface has the parameterization

x1 = X1(u, v), x2 = X2(u, v), x3 = X3(u, v)

we introduce the package

with(VectorCalculus): x:=<x1,x2,x3>;

and calculate the coefficients of its first fundamental form:

g11:=simplify(DotProduct(diff(x,u),diff(x,u))):

g12:=simplify(DotProduct(diff(x,u),diff(x,v))):

g22:=simplify(DotProduct(diff(x,v),diff(x,v))):

g:=simplify(g11*g22-g12^2):

The unit normal vector field can be calculated by:

n:=CrossProduct(diff(x,u),diff(x,v))/sqrt(g);

We calculate
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e:=DotProduct(diff(x,u),diff(x,u,u)+2*m*diff(x,u,v)+m^2*diff(x,v,v)):

f:=DotProduct(diff(x,v),diff(x,u,u)+2*m*diff(x,u,v)+m^2*diff(x,v,v)):

II(m):=DotProduct(n,diff(x,u,u)+2*m*diff(x,u,v)+m^2*diff(x,v,v)):

k1:=g12+m*g22:k2:=-(g11+m*g12):k3:=-(k1*e+k2*f)/II(m):

The vector parameterization of the looking for surface is given by:

B:=k1*diff(x,u)+k2*diff(x,v)+k3*n:

To find a coordinate presentation of the Benz surface we introduce the usual
basis:

e1:=<1,0,0>;e2:=<0,1,0>;e3:=<0,0,1>;

Then the family of Benz surface is parameterized by the formulas

B1:=DotProduct(B,e1):B2:=DotProduct(B,e2):B3:=DotProduct(B,e3):

4. Benz surfaces induced from Möbius strip

For the Möbius strip we apply the following representation

x1 = cosu+ v cos(
u

2
) cosu, x2 = sinu+ v cos(

u

2
) sinu, x3 = v sin(

u

2
).

By Fig. 5 and 6 are shown the positions of the rotated normal vector field along
the closed curve v = 0at its initial point u = 0 and at its end point u = 2π . They
are of course opposite vectors.

with(plots):

p1:=plot3d([x1,x2,x3],u=0..2*Pi,v=-1..1):

opts:=color=red,thickness=2,numpoints=100:

p2:=animate(spacecurve,[[eval(x1+k*n1,[v=0]),eval(x2+k*n2,[v=0])

,eval(x3+k*n3,[v=0])], opts,k=0..1],u=0..2*Pi): p3:=spacecurve

([eval(x1,[v=0]),eval(x2,[v=0]), eval(x3,[v=0])],u=0..2*Pi,

color=red,thickness=3): p4:=spacecurve([eval(x1+k*n1,[v=0,u=0]),

eval(x2+k*n2,[v=0,u=0]),eval(x3+k*n3,[v=0,u=0])], k=0..1,

color=red,thickness=3): p5:=spacecurve([eval(x1+k*n1,[v=0,u=2*Pi]),

eval(x2+k*n2,[v=0,u=2*Pi]), eval(x3+k*n3,[v=0,u=2*Pi])],k=0..1,

color=blue,thickness=3):

display([p1,p2,p3,p4,p5]);

But what happens on the Benz surfaces? Applying the Maple program we find
the Benz family of surfaces. Then we can prove the following

Theorem 4.1. 1. The curve v = 0 is on any (for any m) Benz surface induced
from Möbius strip non-closed;
2. There exists exactly one number namely

mo =

√

−18 + 12
√
3

6
,

for which the moved unit normal vector field along the curve v = 0 at the initial
point u = 0 and at the end point u = 2π bring to vectors n1,n2which are opposite
vectors.
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(e) Fig.5 (f) Fig.6

We sketch the proof. The first part follows from the results:

B(v = 0, u = 0) = (−1,m,−1 + 2m2

m
)

B(v = 0, u = 2π) = (1,m,−1 + 2m2

m
)

They show these points can be never identical. For the second part we find the unit
normal vector field N on the Benz surfaces and then we calculate the vectors:

n1:=simplify(eval(N, [v=0,u=0]));

n2:=simplify(eval(N, [v=0,u=2*Pi]));

We find the expressions:

n1 =
2(12m2 + 12m4 − 1)

√

4+592m4
−11m2+1280m6+576m8

m6 m3
e1 +

8m2 + 9
√

4+592m4
−11m2+1280m6+576m8

m6 m2
e2

− 2(−1 + 4m2)
√

4+592m4
−11m2+1280m6+576m8

m6 m2

e3,

n2 =
2(12m2 + 12m4 − 1)

√

4+592m4
−11m2+1280m6+576m8

m6 m3
e1 −

8m2 + 9
√

4+592m4
−11m2+1280m6+576m8

m6 m2
e2

+
2(−1 + 4m2)

√

4+592m4
−11m2+1280m6+576m8

m6 m2

e3

For their sum we get

n1 + n2 =
4(12m2 + 12m4 − 1)

√

4+592m4
−11m2+1280m6+576m8

m6 m3
e1

The equation

12m4 + 12m2 − 1 = 0
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has solutions:

mo,−mo,±
√

−18− 12
√
3

6
.

The situation in the last theorem is shown by the Figures 7 and 8. So we got the
following important situation. For the classical Möbius strip, which is a non orient
table surface, the moved unit normal vector field along the closed curve at its initial
point and at its end point bring to vectors which are opposite vectors in one and
the same point. Now we found an extension of this result but the initial and the
end points are different. In my opinion this situation is new in the all mathematics
(topology). This was realized in our concept for introducing Benz surfaces and it
was an essential motivation for introducing Benz surfaces. Here is the program for
Figures 7 and 8:

with(plots):

l1:=plot3d([eval(B1,[m=1]),eval(B2,[m=1]),eval(B3,[m=1])],

u=0..2*Pi,v=-1..1,grid=[30,30]):

l2:=spacecurve([eval(B1,[m=1,v=0]),eval(B2,[m=1,v=0]),

eval(B3,[m=1,v=0])],u=0..2*Pi,color=red,thickness=3):

l3:=textplot3d([-1,1,-3,G1],align={LEFT},color=blue):

l4:=textplot3d([1,1,-3,G2],align={RIGHT},color=blue):

display([l1,l2,l3,l4]);

(g) Fig.7 (h) Fig.8

Benz surfaces over a cup

We define the following surface

x1 = cosu+ sin v, x2 = cos v + sinu, x3 = (cosu+ sin v)
2
+ (cos v + sinu)

2
.

Evidently it is a part of a rotational paraboloid; we call it cup. It is shown by Fig.
9:
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with(plots):

l1:=plot3d([x1,x2,x3],u=0..2*Pi,v=0..2*Pi,grid=[25,25]):

l2:=spacecurve([eval(x1,[u=Pi]),eval(x2,[u=Pi]),

eval(x3,[u=Pi])],v=0..2*Pi,color=red,thickness=3):

display([l1]);

(i) Fig.9

As in the previews cases we find the family B(u, v;m) of Benz surfaces induced
from our cup. We show some of them. By Fig. 10 is shown the case m = 0 - it is
a part of a cone. By Fig.11, the same figure together with the given cup.

(j) Fig.10 (k) Fig.11

By Fig. 12 is shown the case m = 1 and by Fig. 13 -the case m = 2.
We give the following classification theorem for Benz surfaces over the cup.
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(l) Fig.12 (m) Fig.13

Theorem 4.2. The Benz family of surfaces induced from the cup can be classified
in the following way: 1. If m = 0 the Benz surface is really a part of a cone;
2. If m = 1 the Benz surface is a circle of radius

r ≈ 13.15378318.

Sketch for the proof. We find the coefficients of the second fundamental of any
Benz surface induced from the cup. In the case 1 we establish that

h11 = h12 = 0, h22 6= 0.

So the surface is flat but not a plane surface. It must be a cone surface. In the
case 2 we find that

h11 = h12 = h22 = 0,

B3(m = 0) = 0.

These equalities show the corresponding surface is a plane piece. To see that it
is a circle (more precisely surround from circle) we calculate

b1 = B1(m = 1, v = u), b2 = B2(m = 1, v = u), b3 = B3(m = 1, v = u).

and find:

b1 = −32cos5u− 32 sinucos4u+ 30cos3u+ 34 sinucos2u− 7 cosu− 9 sinu,

b2 = 32cos5u+ 32 sinucos4u− 30cos3u− 34 sinucos2u+ 7 cosu+ 9 sinu,

b3 = 0.

Defining the function

R =
√

b21 + b22

we get that

R =
√

2((−1 + 2cos2u)
2
(512 sinucos5u+ 320cos4u− 512cos3u sinu− 320cos2u+ 126 sinu cosu+ 81))

1/2
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and solving the equation

dR

du
= 0

we find, for example, as an solution

u2 = arctan

(

5

2
−
√

2830 + 70
√
2345

32
+

√
2345

14
−
√

2830 + 70
√
2345

√
2345

1120

)

.

Now we calculate the maximum for

R :

r = R(u = u2)

and find

r = 8(572651
√

2830+70
√

5
√

469
√

5−45161640
√

5+59125
√

469
√

2830+70
√

5
√

469−4663080
√

469)

(25
√

80−
√

2830+70
√

5
√

469(51
√

2830+70
√

5
√

469
√

5
√

469−4024
√

5
√

469+2473
√

2830+70
√

5
√

469−194984)

which approximation is

r ≈ 13.15378318.

5. Sufficient conditions the Benz surface to be segment or plane
piece

We prove here two theorems valid for the Benz surfaces in the case m = 0 .

Theorem 5.1. If one of the coordinates of the given surface is function only of
parameter v, the Benz surface in the case m = 0 is a segment.

Proof. We calculate for m = 0:

eval(B1,[X3(u,v)=X3(v)])=0;

eval(B2,[X3(u,v)=X3(v)])=0;

eval(B3,[X3(u,v)=X3(v)])=/0: ,

eval(B1,[X2(u,v)=X2(v)])=0;

eval(B2,[X2(u,v)=X2(v)]))=/0:

eval(B3,[X2(u,v)=X2(v)])=0; ,

eval(B1,[X1(u,v)=X1(v)])=/0:

eval(B2,[X1(u,v)=X1(v)])=0;

eval(B3,[X1(u,v)=X1(v)])=0; .

Theorem 5.2. If two of the coordinates of the given surface are functions of the
following art:

f(u)g(v) + i(v), f(u)h(v) + j(v)

where f, g, h, i, j are arbitrary functions, the Benz surface in the case m = 0 is a
plane piece.

Proof.We calculate for m = 0:



180 GROZIO STANILOV

eval(B1,[X2(u,v)=f(u)*g(v)+j2(v),X3(u,v)=f(u)*h(v)+j3(v)])=0;

eval(B2,[X2(u,v)=f(u)*g(v)+j2(v),X3(u,v)=f(u)*h(v)+j3(v)])=/0:

eval(B3,[X2(u,v)=f(u)*g(v)+j2(v),X3(u,v)=f(u)*h(v)+j3(v)])=/0:,

eval(B1,[X1(u,v)=f(u)*g(v)+j1(v),X3(u,v)=f(u)*h(v)+j3(v)])=/0:

eval(B2,[X1(u,v)=f(u)*g(v)+j1(v),X3(u,v)=f(u)*h(v)+j3(v)])=0;

eval(B3,[X1(u,v)=f(u)*g(v)+j1(v),X3(u,v)=f(u)*h(v)+j3(v)])=/0:;

eval(B1,[X1(u,v)=f(u)*g(v)+j1(v),X2(u,v)=f(u)*h(v)+j2(v)])=/0 :

eval(B2,[X1(u,v)=f(u)*g(v)+j1(v),X2(u,v)=f(u)*h(v)+j2(v)])=/0 :

eval(B3,[X1(u,v)=f(u)*g(v)+j1(v),X2(u,v)=f(u)*h(v)+j2(v)])=0; .

Remarks : Some parts of this paper were plenary talks on the following interna-
tional meetings:
1. VIII. Geometry Symposium in Antalia, Turkey, 29.04-02.05. 2010;
2. Fest Colloquium zum 80. Geburtstag von Prof. Dr. (DHC) Walter Benz am
13.05.2011 in Hamburg.
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