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Abstract. In this paper we define a new type of 2-degenerate Cartan curves
in Minkowski spacetime

(
R4

1

)
. We prove that this type of curves contain

only the polynomial functions as its components whose third derivative vanish

completely. No curve with acceleration zero in R4
1 is a 2-degenerate Cartan

curve, therefore we show that the type of curves that we search for must contain

polynomials of degree two among its components.

1. Introduction

H. Matsuda and S. Yorozu [7] introduced a new type of curves called special
Frenet curves and proved that a special Frenet curve in Rn is not a Bertrand curve
if n ≥ 4. They also improved an idea of generalized Bertrand curve in R4. A.
Ferrandez, A. Gimenez, P. Lucas [4] introduced the notion of s-degenerate curves
in Lorentzian space forms. They obtained a reference along an s-degenerate curve in
an n-dimensional Lorentzian space with the minimum number of curvatures. That
reference generalizes the reference of Bonnor for null curves in Minkowski spacetime
and it would be called the Cartan frame of the curve. The associated curvature
functions are called the Cartan curvatures of the curve. They characterized the
s-degenerate helices ( i.e, s-degenerate curves with constant Cartan curvatures ) in
n-dimensional Lorentzian space forms and they obtained a complete classification
of them in dimension four.

Let C be an s-degenerate Cartan curve in Rn
1 . We call Wj the spacelike Cartan

j-normal vector along C, and the spacelike Cartan j-normal line of C at c(s) is
a line generated by Wj(s) through c(s) (j = 1, 2, ..., n− 2) . The spacelike Cartan
(j, k)-normal plane of C at c(s) is a plane spanned by Wj(s) and Wk(s) through
c(s) (j, k = 1, 2, ..., n− 2; j 6= k) . In this paper we characterize 2-degenerate (1,2)-
Bertrand curves in Minkowski spacetime.

2. Preliminaries

Let E be a real vector space with a symmetric bilinear mapping g : E×E → R.
We say that g is degenerate on E if there exist a vector ε 6= 0 in E such that
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g(ε, ν) = 0 for all ν ∈ E,
otherwise, g is said to be non-degenerate. The radical ( also called the null space )
of E, with respect to g, is the subspace Rad(E) of E defined by

Rad(E) = {ε ∈ E such that g(ε, ν) = 0, ν ∈ E} .
For simplicity, we will use 〈, 〉 instead of g. A vector ν is said to be timelike, lightlike
or spacelike provided that g (ν, ν) < 0, g (ν, ν) = 0 ( and ν 6= 0), or g (ν, ν) > 0
respectively. The vector ν = 0 is said to be spacelike. A unit vector is a vector u
such that g (u, u) = ∓1. Two vectors u and v are said to be orthogonal, written
u⊥v, if g (u, v) = 0.

Let (Mn
1 ,∇) be an oriented Lorentzian manifold and let C : I → Mn

1 be a
differentiable curve in Mn

1 . For any vector field V along C, Let V ′ be the covariant
derivative of V along C. Write

Ei (t) = span
{
c′ (t) , c′′ (t) , ..., c(i) (t)

}
,

where t ∈ I and i = 1, 2, ..., n. Let d be the number defined by

d = max {i : dimEi (t) = i for all t} .

With the above notation, the curve C : I → Mn
1 is said to be an s-degenerate

( or s-lightlike) curve if for all 1 ≤ i ≤ d, dimRad (Ei (t)) is constant for all t, and
there exist s, 0 ≤ s ≤ d, such that Rad (Es) 6= {0} and Rad (Ej) = {0} for all
j < s. Note that 1-degenerate curves are precisely the null (or lightlike) curves. In
this paper we will focus on 2-degenerate curves (s = 2) in Minkowski spacetime.
Notice that they must be spacelike curves [4].

A spacetime is a connected time-oriented four dimensional Lorentz manifold. A
Minkowski spacetime M is a spacetime that is isometric to Minkowski 4-space R4

1

[9]. So R4
1 is a 4-dimensional Lorentz manifold furnished with the metric 〈, 〉 defined

as follows

〈x, y〉 = −x0y0 + x1x1 + x2x2 + x3x3

for all vectors x, y ∈ R4
1; x =

(
x0, x1, x2, x3

)
, y =

(
y0, y1, y2, y3

)
, xi, yi ∈ R,

0 ≤ i ≤ 3.
Let C be a 2-degenerate Cartan curve in R4

1. Then the Cartan equations are in
the following form [4].

c′ = W1,

W ′
1 = L,

L′ = k1W2,

W ′
2 = −k2L+ k1N,

N ′ = W1 − k2W2.

where L,N are null, 〈L,N〉 = −1, {L,N} and {W1,W2} are orthogonal,
{W1,W2} is orthonormal. {L,N,W1,W2} is positively oriented. We assume the
set

{
c′, c′′, c′′′, c(4)

}
has the same orientation with the set {L,N,W1,W2} , so we

get k1 < 0.
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Let
(
C,C

)
be a pair of framed null Cartan curves in R4

1, with pseudo-arc param-
eters s and s, respectively. This pair is said to be a null Bertrand pair if their space-
like vectors W1 and W1 are linearly dependent. The curve C is called a Bertrand
mate of C and vice versa. A framed null curve is said to be a null Bertrand curve if it
admits a Bertrand mate [3]. To be precise, a null Cartan curve C in R4

1

(
c : I → R4

1

)
is called a Bertrand curve if there exist a null Cartan curve C

(
c : I → R4

1

)
, distinct

from C, and a regular map ϕ : I → I
(
s = ϕ (s) , dϕ(s)

ds 6= 0 for all s ∈ I
)

such that

the spacelike vectors W1 of C and W1 of C are linearly dependent at each pair of
corresponding points c (s) and c (s) = c (ϕ (s)) under ϕ.

3. (1,2)-Bertrand curves in R4
1

Let C and C be Cartan curves in R4
1 and ϕ : I → I a regular map(

s = ϕ (s) , dϕ(s)
ds 6= 0 for all s ∈ I

)
such that each point c (s) of C corresponds to

the point c (s) of C under ϕ for all s ∈ I. Here s and s are pseudo-arc parameters of
C and C respectively. If the Cartan (1,2)-normal plane at each point c (s) of C co-
incides with the Cartan (1,2)-normal plane at corresponding point c (s) = c (ϕ (s))
of C for all s ∈ I, then C is called the (1,2)-Bertrand curve in R4

1 and C is called
the (1,2)-Bertrand mate of C.

Theorem 3.1. Let C be a 2-degenerate Cartan curve in R4
1 with curvature func-

tions k1, k2. Then C is a (1,2)-Bertrand curve if and only if there are polynomial
functions α and β satisfying

β (s) 6= 0(a)

k1 (s) = 0(b)

k2 (s) =
α (s)

β (s)
(c)

β′ (s) 6= 0(d)

(1 + α′ (s))
2

+ (β′ (s))
2 6= 0(e)

max deg {α (s)} = 1(f)

deg {β (s)} = 1(g)

for all s ∈ I. By (f), we mean the maximum degree of the set containing the
polynomial function α is one.

Proof. ⇒): Assume that C is a (1,2)-Bertrand curve, then we can write

(3.1) c (s) = c (ϕ (s)) = c (s) + α (s)W1 (s) + β (s)W2 (s) .

And since the planes spanned by {W1,W2} and
{
W1,W2

}
coincide, we can also

write

W1 (s) = cos θ (s)W1 (s) + sin θ (s)W2 (s)(3.2)

W2 (s) = − sin θ (s)W1 (s) + cos θ (s)W2 (s) .(3.3)

Notice that sin θ (s) 6= 0 for all s ∈ I. Because if sin θ (s) = 0, then we get the
position W1 (s) = ∓W1 (s) which is possible only if C and C coincide. But we know
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that the Bertrand mate C of C must be distinct from C. So, we have sin θ (s) 6= 0
for all s ∈ I. Now differentiating (3.1) with respect to s, we get

W1 (s)
ds

ds
= (1 + α′ (s))W1 (s) + (α (s)− β (s) k2 (s))L (s)(3.4)

+ β′ (s)W2 (s) + β (s) k1 (s)N (s) .

Since we assume that the curve C is (1,2)-Bertrand curve, then the map ϕ between
the pseudo-arc parameters of C and its Bertrand mate C must be regular. So the
following equation holds.

d (ϕ (s))

ds
=
ds

ds
6= 0.

From (3.4), we obtain the relations (a), (b) and (c). By the following facts

ds

ds
=

〈
W1 (s) ,W1 (s)

ds

ds

〉
= (1 + α′ (s)) cos θ (s) + β′ (s) sin θ (s)(3.5)

0 =

〈
W2 (s) ,W1 (s)

ds

ds

〉
= − (1 + α′ (s)) sin θ (s) + β′ (s) cos θ (s)(3.6)

we obtain

1 + α′ (s) =
ds

ds
cos θ (s) ,(3.7)

β′ (s) =
ds

ds
sin θ (s) .(3.8)

Since ds
ds 6= 0 and sin θ (s) 6= 0 for all s ∈ I in (3.8), we obtain the relation (d). By

using (3.7) and (3.8), we get

(3.9) (1 + α′ (s))
2

+ (β′ (s))
2

=

(
ds

ds

)2

.

Using (3.9), we obtain (e). The Bertrand mate C of C is itself a Bertrand curve,
therefore the curvature k1 of C is also zero. This means that the components of the
curve C consists of polnomials whose third derivative with respect to its pseudo-arc
parameter s vanish completely. By using this information and (3.1), it is obvious
that the map ϕ between the pseudo-arc parameters of C and C at corresponding

points c (s) and c (s) respectively, must be linear, that is, dϕ(s)
ds = ds

ds must be a
nonzero constant. Using this fact, (3.9), and (d) we get the relations (f) and (g).
⇐): Now let us think the contrary.

Let C be a 2-degenerate Cartan curve in R4
1 with curvature functions k1 and k2

and assume that the relations (a),(b),(c),(d),(e),(f),(g) are satisfied for this curve.
Now define a curve C by

(3.10) c (s) = c (s) + α (s)W1 (s) + β (s)W2 (s)

where s is the pseudo-arc parameter of C. Differentiating (3.10) with respect to s,
using the Frenet equations and the hypothesis in the above, we obtain

(3.11)
dc (s)

ds
= (1 + α′ (s))W1 (s) + β′ (s)W2 (s) .
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By using (3.11), we get

(3.12)

(
dc (s)

ds

)2

= (1 + α′ (s))2 + (β′ (s))
2 6= 0.

It is obvious from (3.12) that C is a regular curve. Let us define a regular map
ϕ : s→ s by

s = ϕ (s) =

s∫
0

〈
dc (s)

ds
,
dc (s)

ds

〉 1
2

ds.

where s denotes the pseudo-arc parameter of C. Then we obtain

(3.13)
ds

ds
=
dϕ (s)

ds
=
√

(1 + α′ (s))2 + (β′ (s))2 > 0.

Here, notice that

(3.14)
ds

ds
= λ

is a nonzero constant.
Thus the curve C is rewritten as

(3.15) c (s) = c (ϕ (s)) = c (s) + α (s)W1 (s) + β (s)W2 (s) .

If we differentiate (3.15) with respect to s, use the Cartan equations for the 2-
degenerate curves in R4

1 and the hypothesis, we get

(3.16) λW1 (s) = (1 + α′ (s))W1 (s) + β′ (s)W2 (s) .

By using (3.13), (3.14) and (3.16), we can set

(3.17) W1 (s) = cos τ (s)W1 (s) + sin τ(s)W2 (s)

where

cos τ (s) =
1 + α′ (s)

λ
,(3.18)

sin τ(s) =
β′ (s)

λ
.(3.19)

After differentiating (3.17) with respect to s, we get

λL (s) =
d cos τ (s)

ds
W1 (s) +

d sin τ (s)

ds
W2 (s)(3.20)

+ (cos τ (s)− k2 sin τ (s))L (s) .

Applying the metric 〈, 〉 on each side of the equation (3.20), we get

(3.21) (cos′ τ (s))2 + (sin′ τ (s))2 = 0.

From (3.21), we get
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d cos τ (s)

ds
=
d sin τ (s)

ds
= 0.

So the τ (s) must be the constant function τ0. Thus we obtain

cos τ0 =
1 + α′ (s)

λ
,(3.22)

sin τ0 =
β′ (s)

λ
.(3.23)

From (3.17), it holds

(3.24) W1 (s) = cos τ0W1 (s) + sin τ0W2 (s) .

Now the equation (3.20) becomes

(3.25) λL (s) = (cos τ0 − k2 sin τ0)L (s) .

Note that, since λ 6= 0 in (3.25), we have

cos τ0 − k2 sin τ0 6= 0.

So we can write the following

(3.26) N (s) (cos τ0 − k2 sin τ0) = λN (s) .

If we differentiate (3.25) with respect to s, we get

λ2k1 (s)W2 (s) =
d (cos τ0 − k2 sin τ0)

ds
L (s)(3.27)

+ (cos τ0 − k2 sin τ0) k1 (s)W2 (s) .

If we use (b) ( k1 (s) = 0 ) in (3.27), we get

(3.28) k1 (s) = 0.

And therefore the equation (3.27) reduces to

(3.29)
d (cos τ0 − k2 sin τ0)

ds
= 0.

Then the nonzero term cos τ0 − k2 sin τ0 in (3.29), must be a constant. So we can
write

(3.30) cos τ0 − k2 sin τ0 = δ 6= 0

where δ is a constant.
If we wrıte

(3.31)
λ

δ
= `0 6= 0

where `0 is a constant. By using (3.25), (3.26) and (3.31), we get
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(3.32) L (s) =
1

`0
L (s) ,

(3.33) N (s) = `0N (s) .

Differentiating (3.33) with respect to s, we get

(3.34)
(
W1 (s)− k2 (s)W2 (s)

)
λ = `0 (W1 (s)− k2 (s)W2 (s)) .

From (3.34), we have

(3.35) (1 +
(
k2 (s)

)2
)λ2 = (`0)2

(
1 + (k2 (s))2

)
.

Using (3.30) and (3.31) into (3.35), we obtain

(
k2 (s)

)2
=

[
sin τ0 + k2 (s) cos τ0
cos τ0 − k2 (s) sin τ0

]2

.

Let us take

(3.36) k2 (s) =
sin τ0 + k2 (s) cos τ0
cos τ0 − k2 (s) sin τ0

.

If we use (3.17), (3.30), (3.31) and (3.36) into (3.34), we get

(3.37) W2 (s) = − sin τ0W1 (s) + cos τ0W2 (s) .

And it is trivial that the Cartan (1,2)-normal plane at each point c (s) of C
coincides with the Cartan (1,2)-normal plane at corresponding point c (s) of C.
Therefore C is a (1,2)-Bertrand curve in R4

1. �

4. An example of 2-degenerate (1,2)-Bertrand curve in R4
1

Let C be a curve in R4
1 defined by

c (s) =

(
s2

2
, s,

s2

2
, 1

)
.

Then we get the Cartan frame and the Cartan curvatures as follows:

W1 (s) = (s, 1, s, 0) ,

L (s) = (1, 0, 1, 0) ,

W2 (s) =
(√

3, 0,
√

3, 1
)
,

N (s) =

(
s2

2
+ 2, s,

s2

2
+ 1,
√

3

)
,

k1 (s) = k2 (s) = 0.

Now we choose the polynomial functions α and β as follows:



8 MEHMET GÖÇMEN AND SADIK KELEŞ

α (s) = 0,

β : R− {0} → R; β (s) =
√

3s.

Its Bertrand mate is given by

c (s) =

(
(s)2

8
+

3s

2
,
s

2
,

(s)2

8
+

3s

2
, 1 +

√
3

2
s

)
where s is the pseudo-arc parameter of C, and a regular map ϕ : s→ s is given by

s = ϕ (s) = 2s.

Then we find the corresponding Cartan frames and the Cartan curvatures of C as
follows:

W1 (s) =

(
s

4
+

3

2
,

1

2
,
s

4
+

3

2
,

√
3

2

)
,

L (s) =

(
1

4
, 0,

1

4
, 0

)
,

W2 (s) =

(
−
√

3

4
s+

√
3

2
,−
√

3

2
,−
√

3

4
s+

√
3

2
,

1

2

)
,

N (s) =

(
(s)

2

2
+ 8, 2s,

(s)
2

2
+ 4, 4

√
3

)
,

k1 (s) = 0, k2 (s) = ∓
√

3
(

we take k2 (s) =
√

3
)
.

We know that C and C are Bertrand mates of each other. To get another Bertrand
mate of C, we choose the functions α, β as follows:

α (s) = 3s,

β : R− {0} → R; β (s) =
√

3s.

Then the Bertrand mate C of C, which is different from C, is given by

c
(
s
)

=

((
s
)2

152
+

15

2
√

19
s,

s

2
√

19
,

(
s
)2

152
+

15

2
√

19
s,

5
√

3

2
√

19
s+ 1

)
where s is the pseudo-arc parameter of C, and a regular map ϕ : s→ s is given by

ϕ (s) = s =
√

19s.
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