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WEAKENED MANNHEIM CURVES IN GALILEAN 3-SPACE

MURAT KEMAL KARACAN AND YILMAZ TUNÇER

(Communicated by H. Hilmi HACISALIHOǦLU)

Abstract. In this study, Frenet-Mannheim curves and Weakened Mannheim

curves are investigated in Galilean 3-space. Some characterizations for this

curves are obtained.

1. Introduction

In the study of the fundamental theory and the characterizations of space curves,
the corresponding relations between the curves are very interesting and important
problems. The well-known Bertrand curve is characterized as a kind of such corre-
sponding relation between the two curves. For the Bertrand curve α, it shares the
normal lines with another curve β, called Bertrand mate or Bertrand partner curve
of α [2].

In 1967, H.F.Lai investigated the properties of two types of similar curves (the
Frenet-Bertrand curves and the Weakened Bertrand curves) under weakened con-
ditions.

In recent works, Liu and Wang (2007, 2008) were curious about the Mannheim
curves in both Euclidean and Minkowski 3-space and they obtained the necessary
and sufficient conditions between the curvature and the torsion for a curve to be
the Mannheim partner curves. Meanwhile, the detailed discussion concerned with
the Mannheim curves can be found in literature (Wang and Liu, 2007; Liu and
Wang, 2008; Orbay and Kasap, 2009) and references therein [3]. M.K.Karacan and
Y.Tuncer investigated the properties of two types of similar curves (the Frenet-
Mannheim curves and the Weakened Mannheim curves) under weakened conditions

[5]. Also H.B.Öztekin investigated Weakened Bertrand curves under weakened
conditions [4].

In this paper, our main purpose is to carry out some results which were given in
[1] to Frenet-Mannheim curves and Weakened Mannheim curves in Galilean 3-space
and we assume that, the angle between tangent vectors Tβ and Tα is constant such
that 〈Tα, Tβ〉 = cos θ 6= 0.
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2. Preliminaries

The Galilean space is a three dimensional complex projective space, P3, in which
the absolute figure {w, f, I1, I2} consists of a real plane w (the absolute plane), a
real line f ⊂ w (the absolute line) and two complex conjugate points, I1, I2 ∈ f
(the absolute points).

We shall take, as a real model of the space G3, a real projective space P3, with
the absolute {w, f} consisting of a real plane w ⊂ G3 and a real line f ⊂ w, on
which an elliptic involution ε has been defined. Let ε be in homogeneous coordinates

w...x0 = 0, f...x0 = x1 = 0

ε : (0 : 0 : x2 : x3)→ (0 : 0 : x3 : −x2) .

In the nonhomogeneous coordinates, the similarity group H8 has the form

x = a11 + a12x(2.1)

y = a21 + a22x+ a23 cos θ + a23 sin θ

z = a31 + a32x− a23 sin θ + a23 cos θ

where aij and θ are real numbers. For a11 = a23 = 1, we have have the subgroup
B6 , the group of Galilean motions:

x = a11 + a12x

y = b+ cx+ y cos θ + z sin θ

z = d+ ex− y sin θ + z cos θ.

In G3, there are four classes of lines:
a) (proper) nonisotropic lines - they do not meet the absolute line f .
b) (proper) isotropic lines - lines that do not belong to the plane w but meet

the absolute line f .
c) unproper nonisotropic lines - all lines of w but f .
d) the absolute line f .
Planes x =constant are Euclidean and so is the plane w. Other planes are

isotropic. In what follows, the coefficients a12 and a23 a will play a special role. In
particular, for a12 = a23 = 1, (2.1) defines the group B6 ⊂ H8 of isometries of the
Galilean space G3.

The scalar product in Galilean space G3 is defined by

〈X,Y 〉G3
=

{
x1y1 , if x1 6= 0 ∨ y1 6= 0
x2y2 + x3y3 , if x1 = 0 ∧ y1 = 0

where X = (x1,x2, x3) and Y = (y1,y2, y3) .The Galilean cross product is defined
for a = (a1, a2, a3), b = (b1, b2, b3) by

a ∧G3
b =

∣∣∣∣∣∣
0 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ .
A curve α : I ⊆ R→ G3 of the class Cr (r ≥ 3) in the Galilean space G3 is given
defined by

(2.2) α(x) = (s, y(s), z(s)) ,
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where s is a Galilean invariant and the arc length on α. The curvature κ(s) and
the torsion τ(s) are defined by

(2.3) κ(s) =

√
(y′′(s))

2
+ (z′′(s))

2
, τ(x) =

det (α′(s), α′′(s), α′′′(s))

κ2(s)
.

The orthonormal frame in the sense of Galilean space G3 is defined by

T = α′(s) = (1, y′(s), z′(s))(2.4)

N =
1

κ(s)
α′′(s) =

1

κ(s)
(0, y′′(s), z′′(s))

B =
1

κ(s)
(0,−z′′(s), y′′(s))

The vectors T,N and B in (2.4) are called the vectors of the tangent, principal
normal and the binormal line of α, respectively. They satisfy the following Frenet
equations

T ′ = κN(2.5)

N ′ = τB

B′ = −τN.

[4].

Definition 2.1. Let G3 be the 3-dimensional Galilean space with the standard
inner product 〈, 〉G3

. If there exists a corresponding relationship between the space
curves α and β such that, at the corresponding points of the curves, the principal
normal lines of β coincides with the binormal lines of α, then β is called a Mannheim
curve, and α a Mannheim partner curve of β. The pair {α, β} is said to be a
Mannheim pair [2].

Definition 2.2. A Mannheim curve β(s?),s? ∈ I is a C∞ regular curve with
non-zero curvature for which there exists another (different) C∞ regular curve α(s)
where α(s) is of class C∞ and α′(s) 6= 0 (s being the arc length of α(s) only), also
with non-zero curvature, in bijection with it in such a manner that the principal
normal to β(s?) and the binormal to α(s) at each pair of corresponding points
coincide with the line joining the corresponding points. The curve α(s) is called a
Mannheim conjugate of β(s?).

Definition 2.3. A Frenet-Mannheim curve β(s?) (briefly called a FM curve) is a
C∞ Frenet curve for which there exists another C∞ Frenet curve α(s), where α(s)
is of class C∞ and α′(s) 6= 0, in bijection with it so that, by suitable choice of the
Frenet frames the principal normal vector Nβ(s?) and binormal vector Bα(s) at
corresponding points on β(s?), α(s), both lie on the line joining the corresponding
points. The curve α(s) is called a FM conjugate of β(s?).

Definition 2.4. A weakened Mannheim curve β(s?), s? ∈ I? (briefly called a
WM curve) is a C∞ regular curve for which there exists another C∞ regular curve
α(s),s ∈ I , where s is the arclength of α(s), and a homeomorphism σ : I → I?such
that (i) here exist two (disjoint) closed subsets Z,N of I with void interiors such

that σ ∈ C∞ on L\N,
(
ds?

ds

)
= 0 on Z, σ−1 ∈ C∞ on σ (L\Z) and

(
ds
ds?

)
= 0 on

σ(N).(ii) The line joining corresponding points s, s? of α(s) and β(s?) is orthogonal
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to α(s) and β(s?) at the points s, s? respectively, and is along the principal normal
to β(s?) or α(s) at the points s, s? whenever it is well defined. The curve α(s) is
called a WM conjugate of β(s?).

Thus for a WM curve we not only drop the requirement of α(s) being a Frenet

curve, but also allow
(
ds?

ds

)
to be zero on a subset with void interior

(
ds?

ds

)
= 0

on an interval would destroy the injectivity of the mapping σ. Since
(
ds?

ds

)
= 0

implies that
(
ds
ds?

)
does not exist, the apparently artificial requirements in (i) are

in fact quite natural.
It is clear that a Mannheim curve is necessarily a FM curve, and a FM curve

is necessarily a WM curve. It will be proved in Theorem 3 that under certain
conditions a WM curve is also a FM curve.

3. Frenet-Mannheim curves

In this section we study the structure and characterization of FM curves. We
begin with a lemma, by using the classical method.

Lemma 3.1. Let β(s?), s? ∈ I? be a FM curve and α(s) a FM conjugate of β(s?).
Let

(3.1) β(s?) = α(s) + λ(s)Bα(s)

Then the distance |λ| between corresponding points of α(s), β(s?) is constant, and
there is a constant angle θ such that 〈Tα, Tβ〉 = cos θ and

(i) sin θ = −λτα cos θ

(ii) sin θ = λτβ cos θ

(iii) cos2 θ = 1

(iv) sin2 θ = λ2τατβ .

Proof. From (3.1) it follows that

λ(s) = 〈β(s?)− α(s), Bα(s)〉
is of class C∞. Differentiation of (3.1) with respect to s gives

(3.2) Tβ
ds?

ds
= Tα + λ′Bα − λταNα.

By hypothesis we have Bα = εNβ with ε = ±1, scalar multiplication of (3.2) by Bα
gives

λ′ = 0⇒ λ = cons tan t.

Therefore we have

(3.3) Tβ
ds?

ds
= Tα − λταNα.

But by the definition of FM curve we have ds?

ds 6= 0, so that Tβ is C∞ function of
s. Hence

〈Tα, Tβ〉′G3
= κα 〈Nα, Tβ〉G3

+
ds?

ds
κβ 〈Tα, Nβ〉G3

= 0.

Consequently 〈Tα, Tβ〉 is constant, and there exists a constant angle θ such that

(3.4) Tβ = Tα cos θ +Nα sin θ.
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Taking the vector product of (3.3) and (3.4), we obtain

sin θ = −λτα cos θ

which is (i). Now we can write

α(s) = β(s?)− ελ(s)Nβ(s).

Therefore

(3.5) Tα =
ds?

ds
[Tβ − λετβBβ ] .

On the other hand, equation (3.4) gives

Bβ = Tβ ∧G3 Nβ = −εNα cos θ.

Using (3.4) again, we get

(3.6) Tα = Tβ cos θ − εBβ sin θ.

Taking the vector product of (3.5) and (3.6), we obtain

sin θ = λτβ cos θ,

which is (ii).On the other hand, comparison of (3.3) and (3.4) gives

(3.7)
ds?

ds
cos θ = 1,

(3.8)
ds?

ds
sin θ = −λτα.

Similarly (3.5), (3.6) give

(3.9)
ds?

ds
= cos θ,

(3.10)
ds?

ds
(λτβ) = sin θ.

The properties (iii) and (iv) then easily follow from (3.7) and (3.9), (3.6) and (3.8)
and (3.10). �

Theorem 3.1. Let β(s?), s? ∈ I? be a C∞ Frenet curve with τβ nowhere zero and
satisfying the equation for constants λ with λ 6= 0 . Then β(s?) is a non-planar
FM curve.

(3.11) sin θ = λτβ cos θ

Proof. We can write the curve β(s?) with position vector

β(s?) = α(s) + λ(s)Bα(s)

Then, denoting differentiation with respect to s by a dash, we have

β′(s?) = Tα − λταNα.
Since τα 6= 0, it follows that β(s?) is a C∞ regular curve. Then we have

Tβ
ds?

ds
= Tα − λταNα.

Hence
ds?

ds
=
√

1− λ2τ2
α.
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Using (3.11), we get

Tβ = Tα cos θ +Nα sin θ,

notice that from (3.11) we have sin θ 6= 0. Therefore

Tβ
ds?

ds?

ds
= καNα cos θ + ταBα sin θ

Now we write Nβ = εBα,

κβ =
ε
ds?

ds

τα sin θ.

These are C∞ functions of s (and hence of s?), and

Tβ
ds?

= κβNβ .

Further we write Bβ = Tβ ∧G3 Bα and τβ = −
〈
Bβ
ds? , Nβ

〉
G3

. These are also C∞

functions on I?. It is easy to verify that with the frame {Tβ , Nβ , Bβ} and the
functions κβ , τβ , the curve β(s?) becomes a C∞ Frenet curve. But Bα and Nβ lie
on the line joining corresponding points of α(s) and β(s?). Thus β(s?) is a FM
curve and α(s) a FM conjugate of β(s?). �

Lemma 3.2. For a C∞ regular curve β to be a FM curve with a FM conjugate if
and only if β should be either a line or a non-planar circular helix.

Proof. ⇒: Let β have a FM conjugate α which is a line. Then κα = 0.Using Lemma
1, (iii) and (i), (ii), we have

(3.12) cos2 θ = 1,

and then

(3.13) cos2 θ sin θ = λτβ cos θ,

(3.14) sin θ = −λτα cos θ.

From (3.14) it follows that cos θ 6= 0. Hence (3.13) is equivalent to

(3.15) λτβ = cos θ sin θ.

Case 1. sin θ = 0. Then cos θ = ±1, so that (3.12) implies that κβ = 0, and β
is a line. We also note that (3.15) implies that τβ = 0.

Case 2. sin θ 6= 0. Then cos θ 6= ±1, and (3.12), (3.15) imply that κβ , τβ are
non-zero constants, and β is a non-planar circular helix.
⇐: If β is a non-planar circular helix

β = (as, b cos s, b sin s) ,

we may take

Nβ = (0,− cos s, sin s) .

Now put λ = b, then the curve β with

β = α+ λBα

will be a line along the x−axis, and can be made into a FM conjugate of β if Nβ is
defined as equal to Bα. �
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Theorem 3.2. Let β(s?) be a plane C∞ Frenet curve with zero torsion and whose
curvature is either bounded below or bounded above. Then β is a FM curve, and
has FB conjugates which are plane curves.

Proof. Let β be a curve satisfying the conditions of the hypothesis.Then there are
non-zero numbers λ such that κβ < − 1

λ on I or κβ > − 1
λ on I. For any such λ,

consider the plane curve α with position vector

α = β − λNβ .
Then

Tα = Tβ

It is then a straightforward matter to verify that α is a FM conjugate of β. �

4. Weakened Mannheim curves

Definition 4.1. Let D be a subset of a topological space X. A function on X into
a set Y is said to be D-piecewise constant if it is constant on each component of
D.

Lemma 4.1. Let X be a proper interval on the real line and D an open subset
of X. Then a necessary and sufficient condition for every continuous, D-piecewise
constant real function on X to be constant is that X\D should have empty dense-
in-itself kernel.

We notice, however, that if D is dense in X, any C1 and D-piecewise constant
real function on X must be constant, even if D has non-empty dense-in-itself kernel.

Theorem 4.1. A WM curve for which N and Z have empty dense-in-itself kernels
is a FM curve.

Proof. Let β(s?), s? ∈ I? be a WM curve and α(s), s ∈ I be WM conjugate of
β(s?). It follows from the definition that α(s) and β(s?) each has a C∞ family of
tangent vectors Tβ(s?), Tα(s).Let

(4.1) β(s) = β(σ(s)) = α(s) + λ(s)Bα(s),

where Bα(s) is some unit vector function and λ(s) ≥ 0 is some scalar function. Let
D = I\N , D? = I?\σ(Z). Then s?(s) ∈ C∞on D?.
Step 1. To prove λ =constant.

Since λ = ‖β(s)− α(s)‖ , it is continuous on I and is of class C∞ on every
interval of D on which it is nowhere zero. Let P = {s ∈ I : λ(s) 6= 0} and X any
component of P . Then P , and hence also X, is open in I. Let L be any component
interval of X ∩D. Then on L, λ(s) and Bα(s) are of class C∞, and from (4.1) we
have

β′(s) = α′(s) + λ′(s)Bα(s) + λ(s)B′α(s).

Now by definition of a WM curve we have 〈α′(s), Bα(s)〉G3
= 0 = 〈β′(s?), Bα(s)〉G3

.

Hence, using the identity 〈B′α(s), Bα(s)〉G3
= 0, we have

0 = λ′(s) 〈Bα(s), Bα(s)〉G3
.

Therefore λ =constant on L.
Hence λ is constant on each interval of the set X ∩D. But by hypothesis X\D

has empty dense-in-itself kernel. It follows from Lemma 2 that λ is constant (and
non-zero) on X. Since λ is continuous on I, X must be closed in I. But X is also



WEAKENED MANNHEIM CURVES IN GALILEAN 3-SPACE 17

open in I. Therefore by connectedness we must have X = I, that is, λ is constant
on I.

Step 2. To prove the existence of two frames

{Tα(s), Nα(s), Bα(s)} , {Tβ(s?), Nβ(s?), Bβ(s?)}
which are Frenet frames for α(s), β(s?) on D, D? respectively.

Since λ is a non-zero constant, it follows from (4.1) that Bα(s) is continuous
on I and C∞ on D, and is always orthogonal to Tα(s). Now we write Bα(s) =
Tα(s) ∧G3

Nα(s). Then {Tα(s), Nα(s), Bα(s)} forms a right-handed orthonormal
frame for α(s) which is continuous on I and C∞ on D.

Now from the definition of WM curve we see that there exists a scalar function

κβ(s?) such that T ′β(s?) = κβ(s?)Nβ(s?) on I? . Hence κβ(s?) =
〈
T ′β(s?), Nβ(s?)

〉
G3

is continuous on I? and C∞ on D?. Thus the first Frenet formula holds on D?. It
is then straightforward to show that there exists a C∞ function τα(s) on D such
that the Frenet formulas hold. Thus {Tα(s), Nα(s), Bα(s)} is a Frenet frame for
α(s) on D.

Similarly there exists a right-handed orthonormal frame {Tβ(s?), Nβ(s?), Bβ(s?)}
for β(s?) which is continuous on I? and is a Frenet frame for β(s?) on D?. Moreover,
we can choose

Bα(s) = Nβ(σ(s))

Step 3. To prove that N = ∅, Z = ∅, we first notice that on D we have

〈Tβ , Tα〉′G3
=

〈
κβNβ

ds?

ds
, Tα

〉
G3

+ 〈Tβ , καNα〉G3
= 0,

so that 〈Tβ , Tα〉 is constant on each component of D and hence on I by Lemma 2.
Consequently there exists a angle θ such that

Tβ = Tα cos θ +Nα sin θ.

Further,

Bα(s) = Nβ(σ(s))

and so

Bβ(s?) = −Tα sin θ +Nα cos θ.

Thus {Tβ(s?), Nβ(s?), Bα(s)} are also of class C∞ on D. On the other hand
{Tβ(s?), Nβ(s?), Bβ(s?)} are of class C∞ with respect to s? on D?. Writing (4.1)
in the form

α = β − λNβ .
and differentiating with respect to s on D ∩ σ−1(D?), we have

Tα =
ds?

ds
[Tβ − λτβBβ ] .

But we have

Tα = Tβ cos θ −Bβ sin θ.

Hence we get

(4.2)
ds?

ds
= cos θ and λτβ = sin θ.

Since κβ(s?) =
〈
T ′β , Nβ

〉
G3

is defined and continuous on I? and σ−1(D?) is dense,

it follows by continuity that (4.2) holds throughout D.
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Case 1. cos θ 6= 0. Then (4.2) implies that ds?

ds 6= 0 on D. Hence N = ∅.
Similarly Z = ∅.

Case 2. cos θ = 0. Then we have

(4.3) Tβ = ±Nα.
Differentiation of (4.1) with respect to s in D gives

Tβ
ds?

ds
= Tα − λταNα.

Hence using (4.3) we have
ds?

ds
= ∓λτα.

Therefore

τα = ∓ 1

λ

ds?

ds
,

and so also on I, by Lemma 2. It follows that τα is nowhere zero on I. Consequently
β(s?) = α(s)+λ(s)Bα(s) is of class C∞ on I?. Hence N = ∅. Similarly Z = ∅. �
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