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GEOMETRIC APPLICATIONS

BANG-YEN CHEN

(Communicated by Cihan ÖZGÜR)

Abstract. Almost all economic theories presuppose a production function,
either on the firm level or the aggregate level. In this sense the production func-

tion is one of the key concepts of mainstream neoclassical theories. A homo-
thetic function is a production function of the form f(x) = F (h(x1, . . . , xn)),

where h(x1, . . . , xn) is a homogeneous function and F is a monotonically in-

creasing function. The most common quantitative indices of production factor
substitutability are forms of the elasticity of substitution.

In this paper we prove that a homothetic function f = F ◦ h satisfies the

constant elasticity of substitution property if and only if the homogeneous
function h is either a generalized Cobb-Douglas production function or a gen-

eralized ACMS production function. Some of its geometric applications will

also be given in this paper.

1. Introduction.

In economics, a production function is a positive nonconstant function that spec-
ifies the output of a firm, an industry, or an entire economy for all combinations
of inputs. Almost all economic theories presuppose a production function, either
on the firm level or the aggregate level. In this sense, the production function is
one of the key concepts of mainstream neoclassical theories. By assuming that the
maximum output technologically possible from a given set of inputs is achieved,
economists using a production function in analysis are abstracting from the engi-
neering and managerial problems inherently associated with a particular production
process.

Let R denote the set of real numbers. Let us put

R+ = {r ∈ R : r > 0} and Rn+ = {(x1, . . . , xn) ∈ Rn : x1, . . . , xn > 0}.
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In this paper, by a production function we mean a function f : D ⊂ Rn+ → R+ from
a domain D of Rn+ into R+ which has non-vanishing first derivatives. Throughout
this paper we assume that production functions are twice differentiable.

There are two special classes of production functions that are often analyzed in
microeconomics and macroeconomics; namely, homogeneous and homothetic pro-
duction functions. A production function f(x1, · · · , xn) is said to be homogeneous
of degree p or p-homogeneous, if

f(tx1, . . . , txn) = tpf(x1, . . . , xn)(1.1)

holds for each t ∈ R for which (1.1) is defined. A homogeneous function of degree
one is called linearly homogeneous.

If p > 1, the homogeneous function exhibits increasing returns to scale, and it
exhibits decreasing returns to scale if p < 1. If it is homogeneous of degree one, it
exhibits constant returns to scale. The presence of increasing returns means that
a one percent increase in the usage levels of all inputs would result in a greater
than one percent increase in output; the presence of decreasing returns means that
it would result in a less than one percent increase in output. Constant returns to
scale is the in-between case.

A homothetic function is a production function of the form:

Q(x) = F (h(x1, . . . , xn)),(1.2)

where h(x1, . . . , xn) is a homogeneous function of any given degree and F is a
monotonically increasing function.

In economics, an isoquant is a contour line drawn through the set of points
at which the same quantity of output is produced while changing the quantities
of two or more inputs. While an indifference curve mapping helps to solve the
utility-maximizing problem of consumers, the isoquant mapping deals with the
cost-minimization problem of producers. Isoquants are typically drawn on capital-
labor graphs, showing the technological tradeoff between capital and labor in the
production function, and the decreasing marginal returns of both inputs. A family
of isoquants can be represented by an isoquant map, a graph combining a number
of isoquants, each representing a different quantity of output. Isoquants are also
called equal product curves.

Homothetic functions are functions whose marginal technical rate of substitution
(the slope of the isoquant) is homogeneous of degree zero. Due to this, along rays
coming from the origin, the slopes of the isoquants will be the same.

The most common quantitative indices of production factor substitutability are
forms of the elasticity of substitution. The elasticity of substitution was originally
introduced by J. R. Hicks [11] in case of two inputs for the purpose of analyzing
changes in the income shares of labor and capital.

R. G. Allen and J. R. Hicks suggested in [1] a generalization of Hicks’ original
two inputs elasticity concept as follows:

Let f be a production function. Put

Hij(x) =

1

xifxi
+

1

xjfxj

−fxixi
f2
xi

+
2fxixj
fxifxj

−
fxjxj
f2
xj

(1.3)
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for x ∈ Rn+, 1 ≤ i 6= j ≤ n, where the subscripts of f denote partial derivatives,
that is

fxi =
∂f

∂xi
, fxixj =

∂2f

∂xi∂xj
.

All partial derivatives are taken at the point x and the denominator is assumed to
be different from zero.

The function Hij is known as the Hicks elasticity of substitution of the i-th
production variable (input) with respect to the j-th production variable (input). A
production function f is said to satisfy the constant elasticity of substitution (CES)
property if there is a nonzero constant σ ∈ R such that

Hij(x) = σ for x ∈ Rn+ and 1 ≤ i 6= j ≤ n.(1.4)

Homogeneous production functions satisfying the constant elasticity of substitution
property have been completely classified recently (see [6, 12, 13] for details).

In this paper we extend this classification result by classifying all homothetic
functions satisfies the CES property. More precisely, we prove that a homothetic
function f = F ◦ h satisfies the constant elasticity of substitution property if and
only if the homogeneous function h is either a generalized Cobb-Douglas produc-
tion function or a generalized ACMS production function. Some of its geometric
applications will also be presented in this paper.

2. Cobb-Douglas and ACMS production functions

In 1928, C. W. Cobb and P. H. Douglas introduced in [10] a famous two-input
production function

Y = bLkC1−k,(2.1)

where b represents the total factor productivity, Y the total production, L the labor
input and C the capital input. This function is nowadays called Cobb-Douglas
production function.

The Cobb-Douglas production function is widely used in economics to represent
the relationship of an output to inputs. Later work in the 1940s prompted them
to allow for the exponents on C and L vary, which resulting in estimates that
subsequently proved to be very close to improved measure of productivity developed
at that time (cf. [7, 8]).

In its generalized form the Cobb-Douglas (CD) production function may be
expressed as

Q = γxα1
1 · · ·xαnn ,(2.2)

where γ is a positive constant and α1, . . . , αn are nonzero constants. Since then a
continuous search has been made for multi-input production functions with rela-
tively simple and manageable properties.

In 1961, K. J. Arrow, H. B. Chenery, B. S. Minhas and R. M. Solow [2] introduced
another two-input production function given by

Q = F · (aKr + (1− a)Lr)
1
r ,(2.3)

where Q is the output, F the factor productivity, a the share parameter, K and L
the primary production factors, r = (s− 1)/s, and s = 1/(1− r) is the elasticity of
substitution.
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The generalized form of ACMS production function is given by

Q = γ

(
n∑
i=1

aρi x
ρ
i

)p
ρ

,(2.4)

where ai, p, γ, ρ are nonzero constants.
It is easy to verify that the generalized ACMS production function satisfy the

CES property with

Hij(x) =
1

ρ

if ρ 6= 1. For ρ = 1 the denominator of Hij is zero, hence it is not defined. For this
reason, the generalized ACMS production function is also known as the generalized
CES production function.

The same functional form arises as a utility function in consumer theory. For ex-
ample, if there exist n types of consumption goods xi, then aggregate consumption
C could be defined using the CES aggregator as

C =

(
n∑
i=1

a
1
s
i x

s−1
s

i

) s
s−1

,(2.5)

where the coefficients a1, . . . , an are share parameters, and s is the elasticity of
substitution.

The classification of all homogeneous production functions satisfying the con-
stant elasticity of substitution property have been completely done recently. More
precisely, we have the following (see [2, 6, 12] for details).

Theorem 2.1. Let f be a homogeneous production function with non-vanishing
first partial derivatives. If f satisfies the constant elasticity of substitution property,
then it is either the generalized Cobb-Douglas production function or the generalized
ACMS production function.

Remark 2.1. For n = 2, Theorem 2.1 is due to L. Losonczi [12]. Losonczi’s result
generalizes and somewhat clarifies an analogous result of [2] (cf. [12, page 122]). It
was pointed out in [12, page 124] that the approach given in [12] does not work for
productions function of multiple inputs. The general form can be found in [6].

3. Classification of homothetic functions with CES property.

The next theorem completely classifies homothetic functions which satisfy the
constant elasticity of substitution property.

Theorem 3.1. Let

f(x) = F (h(x1, . . . , xn))(3.1)

be a homothetic production function. Then f satisfies the constant elasticity of
substitution property if and only if h is either a generalized Cobb-Douglas production
function or a generalized ACMS production function.

Proof. Let

f(x) = F (h(x1, . . . , xn))(3.2)
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be a homothetic production function. Then we have

(3.3)
fxi = F ′(u)hxi ,

fxixj = F ′′(u)hxihxj + F ′(u)hxixj , i, j = 1, . . . , n,

where u = h(x1, . . . , xn).
Assume that the homothetic function (3.1) satisfies the constant elasticity of

substitution property. Then we have

Hij(x) = σ for x ∈ Rn+ and 1 ≤ i 6= j ≤ n(3.4)

for some nonzero constant σ. Therefore, after substituting (3.3) into (1.3) and after
applying (3.4), we derive that

(3.5)
F ′(u)

{
σxixj(h

2
xihxjxj + h2xjhxixi − 2hxihxjhxixj )

+ (xihxi + xjhxj )hxihxj
}

= 0

for 1 ≤ i < j ≤ n. Since F is a monotonically increasing function, F ′ > 0. Hence
(3.5) gives

(3.6)
σxixj(h

2
xihxjxj + h2xjhxixi − 2hxihxjhxixj )

+ (xihxi + xjhxj )hxihxj = 0, 1 ≤ i < j ≤ n.

Solving (3.6) for hxixj yields

(3.7) hxixj =
(xihxi + xjhxj )hxihxj + σxixj(hxixih

2
xj + hxjxjh

2
xi)

2σxixjhxihxj

for 1 ≤ i < j ≤ n.
Since h(x1, . . . , xn) is assumed to be a homogeneous equation of degree, say p,

it follows from the Euler Homogeneous Function Theorem that the homogeneous
function h satisfies

x1hx1
+ x2hx2

+ · · ·+ xnhxn = ph.(3.8)

If p = 0, then by taking the partial derivatives of (1.1), we find thxj = hxj for
j = 1, . . . , n. Thus hx1 = · · · = hxn = 0, which contradicts to the assumption that
h is nonconstant. Hence we must have p 6= 0.

By taking the partial derivatives of (3.8) with respect to x1, . . . , xn, respectively,
we find

(3.9)

x1hx1x1 + x2hx1x2 + · · ·+ xnhx1xn = (p− 1)hx1 ,

x1hx1x2
+ x2hx2x2

+ · · ·+ xnhx2xn = (p− 1)hx2
,

...

x1hx1xn + x2hx2xn + · · ·+ xnhxnxn = (p− 1)hxn .

Now, by substituting (3.7) into (3.9) and applying (3.8), we obtain

(3.10) hxixi =

(
1 + (p− 1)σ

pσ
· hxi
h
− 1

σxi

)
hxi , i = 1, . . . , n.

Hence we find from (3.7) and (3.10) that

hxixj =

(
1 + (p− 1)σ

pσ

)
hxihxj
h

, 1 ≤ i < j ≤ n.(3.11)
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Case (a): σ = 1. In this case, system (3.10) and (3.11) reduce to

hxixi = hxi

(
hxi
h
− 1

xi

)
, i = 1, . . . , n,(3.12)

hxixj =
hxihxj
h

, 1 ≤ i 6= j ≤ n.(3.13)

After solving the system (3.12)-(3.13) we obtain

h = αxd11 · · ·xdnn(3.14)

for some positive number α and nonzero constants di, . . . , dn, with
∑n
i=1 di = p.

Hence h is a generalized Cobb-Douglas production function.

Case (b): σ 6= 1. In this case, after solving (3.12) for i = 1, we have

h = u(x2, . . . , xn)
(
x
σ−1
σ

1 + v(x2, . . . , xn)
) pσ
σ−1(3.15)

for some functions u(x2, . . . , xn) and v(x2, . . . , xn).
After substituting equation (3.15) into (3.13) with i = 1 and j ∈ {2, . . . , n}, we

derive that

ux2
= · · · = uxn = 0.

Thus u is a constant. Hence we may put u = αc
σ−1
σ

1 for some positive numbers α
and c1. Therefore (3.15) becomes

f = α
(
c
σ−1
σ

1 x
σ−1
σ

1 + ṽ(x2, . . . , xn)
) pσ
σ−1 .(3.16)

Next, by substituting (3.16) into (3.13) with 2 ≤ i < j ≤ n, we find ṽxixj = 0,
which imply that

ṽ = v(2)(x2) + · · ·+ v(n)(xn)(3.17)

for some non-constant functions v(2)(x2), . . . , v(n)(xn). Now, by combining (3.16)
and (3.17) we get

h = α
(
a
σ−1
σ

1 x
σ−1
σ

1 + v(2)(x2) + · · ·+ v(n)(xn)
) hσ
σ−1 .

After substituting this into (3.13) with i = 2, . . . , n, we obtain

v(i)(xi) = c
σ−1
σ

i x
σ−1
σ

i

for some positive numbers c2, . . . , cn. Therefore h is a generalized ACMS function.
The converse can be verify by direct computation. �

Remark 3.1. Theorem 3.1 is a natural extension of Theorem 2.1.

4. Curvature of production functions.

Each production function f(x) can be identified with its graph, which is the non-
parametric hypersurface of a Euclidean (n+1)-space En+1 given by (cf. [6, 15, 16])

L(x) = (x1, . . . , xn, f(x1, . . . , xn)).(4.1)

For a hypersurface M of a Euclidean (n+ 1)-space, the Gauss map

ν : M → Sn+1

maps M to the unit hypersphere Sn of En+1. The Gauss map is a continuous map
such that ν(p) is a unit normal vector ξ(p) of M at p. The Gauss map can always be
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defined locally, i.e., on a small piece of the hypersurface. It can be defined globally
if the hypersurface is orientable.

The differential dν of the Gauss map ν can be used to define a type of extrinsic
curvature, known as the shape operator or Weingarten map. Since at each point
p ∈ M , the tangent space TpM is an inner product space, the shape operator Sp
can be defined as a linear operator on this space by the formula:

g(Spv, w) = g(dν(v), w)(4.2)

for v, w ∈ TpM , where g is the metric tensor on M induced from the Euclidean
metric on En+1.

The second fundamental form σ is related with the shape operator S by

g(σ(v, w), ξ(p)) = g(Sp(v), w)(4.3)

for tangent vectors v, w of M at p. The eigenvalues of the shape operator Sp are
called the principal curvatures.

The determinant of the shape operator Sp is called the Gauss-Kronecker cur-
vature, which is denoted by G(p). Thus the Gauss-Kronecker curvature G(p) is
nothing but the product of the principal curvature at p. When n = 2, the Gauss-
Kronecker curvature is simply called the Gauss curvature, which is intrinsic due to
Gauss’ theorema egregium.

For an n-input production function f , we put

w =
√

1 +
∑n

i=1
f2xi .(4.4)

We recall the following lemma (see, e.g. [5, 4, 14]).

Lemma 4.1. For the production hypersurface of En+1 defined by

L(x1, . . . , xn) = (x1, . . . , xn, f(x1, . . . , xn)),

we have:

(1) The coefficient gij = g( ∂
∂xi

∂
∂xj

) of the metric tensor is

gij = δij + fxifxj , δij =

{
1, if i = j,

1, if i 6= j;
(4.5)

(2) The inverse matrix (gij) of (gij) is

gij = δij −
fxifxj
w2

;(4.6)

(3) The matrix of the second fundamental form σ is

σij =
fij
w

;(4.7)

(4) The mean curvature H is

H =
1

n

n∑
j=1

∂

∂xj

(
fxj
w

)
;(4.8)

(5) The Gauss-Kronecker curvature G is

G =
det(fxixj )

wn+2
;(4.9)
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(6) The sectional curvature Kij of the plane section spanned by ∂
∂xi

, ∂
∂xj

is

Kij =
fxixifxjxj − f2xixj
w2(1 + f2xi + f2xj )

;(4.10)

(7) The Riemann curvature tensor R satisfies

(4.11) g

(
R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
,
∂

∂x`

)
=
fxix`fxjxk − fxixkfxjx`

w4
.

5. Graphs with null Gauss-Kronecker curvature

As an application of Theorem 3.1 we give the following simple characterization
of linearly homogeneous generalized ACMS production functions in terms of Gauss-
Kronecker curvature.

Theorem 5.1. Let f(x) = F (h(x1, . . . , xn)) be a homothetic function satisfying
the constant elasticity of substitution property. Then the graph of f has vanishing
Gauss-Kronecker curvature if and only if f is either

(a) a linearly homogeneous generalized Cobb-Douglas production function or

(b) a linearly homogeneous generalized ACMS production function.

Proof. Let f(x) = F (h(x1, . . . , xn)) be a homothetic function satisfying the con-
stant elasticity of substitution property. Then h is a generalized Cobb-Douglas
function or a generalized ACMS function according to Theorem 3.1.

First, let us assume that h is a generalized Cobb-Douglas production function
given by

h = γxα1
1 · · ·xαnn ,(5.1)

where γ is a positive constant and α1, . . . , αn are nonzero constants.
Suppose that the graph of f has vanishing Gauss-Kronecker curvature. Then it

follows from f = F ◦ h, (5.1) and Lemma 4.1(5) that

(p− 1)F ′(u) = puF ′′(u),(5.2)

where p =
∑n
i=1 αi and u = xα1

1 · · ·xαnn . By solving (5.2) we get

F (u) = αu
1
p + γ(5.3)

for some constants α, γ with α 6= 0. Consequently, after a suitable translation, we
obtain

f(x) = α (xα1
1 · · ·xαnn )

1
p , p =

n∑
i=1

αi.(5.4)

Therefore, the homothetic function f is a generalized Cobb-Douglas production
function with the degree of homogeneity equal to one.

Next, assume that h is a generalized ACMS production function. Then, without
loss of generality, we may assume that f takes the form:

f(x) = F
(
c1x

σ−1
σ

1 + · · ·+ cnx
σ−1
σ

n

)
(5.5)

for some nonzero constants σ, c1, . . . , cn with σ 6= 0, 1
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If the graph of f has vanishing Gauss-Kronecker curvature, then it follows from
f = F ◦ h, (5.5) and Lemma 4.1(5) that

F ′(u) = (σ − 1)uF ′′(u)(5.6)

with

u = c1x
σ−1
σ

1 + · · ·+ cnx
σ−1
σ

n .(5.7)

After solving (5.6) and applying a suitable translation on u, we get

F (u) = αu
σ
σ−1(5.8)

for some nonzero constant α. After combining (5.7) and (5.8) we obtain

F (u) = α
(
c1x

σ−1
σ

1 + · · ·+ cnx
σ−1
σ

n

) σ
σ−1

.(5.9)

Therefore, we conclude that the homothetic function f is a linearly homogeneous
generalized ACMS production function.

The converse can be verify by direct computation. �

Another application of Theorem 3.1 is the following.

Theorem 5.2. Let f(x) = F (h(x1, . . . , xn)) be a homothetic function satisfying
the constant elasticity of substitution property. Then the graph of f is a flat space
if and only if f is either

(1) a linearly homogeneous generalized Cobb-Douglas production function or

(2) a linearly homogeneous generalized ACMS production function.

Proof. It is straightforward to verify that the graphs of all linearly homogeneous
generalized Cobb-Douglas production functions and of all linearly homogeneous
generalized ACMS production functions are flat spaces. By combining this with
Theorem 5.1 we obtain Theorem 5.2. �

6. Minimal graphs

In economics, goods that are completely substitutable with each other are called
perfect substitutes, e.g., margarine and butter, tea and coffee. They may be charac-
terized as goods having a constant marginal rate of substitution. Mathematically,
a production function is a perfect substitute if it is of the form:

f(x) =

n∑
i=1

aixi(6.1)

for some nonzero constants a1, . . . , an.
The following result was obtained by the author in [4].

Theorem 6.1. A two-input homogeneous production function is a perfect substitute
if and only if the graph of the production function is a minimal surface.

The next result classifies all homogeneous functions with CES property which
have minimal graphs.

Theorem 6.2. Let f(x) = h(x1, . . . , xn) be a p-homogeneous production function
satisfying the constant elasticity of substitution property. Then f has minimal graph
if and only if f is one of the following:

(i) a perfect substitute;
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(ii) a three-input production function of the form f(x, y, z) = xy/z.

Proof. Let f = h(x1, . . . , xn) be a p-homogeneous production function satisfying
the constant elasticity of substitution property. Then, according to Theorem 2.1,
f is either a generalized Cobb-Douglas production function or a generalized ACMS
production function.

Case (a): f is a generalized Cobb-Douglas production function. Without loss of
generality, we may assume that

f(x) = xα1
1 xα2

2 · · ·xαnn ,(6.2)

where α1, . . . , αn are nonzero numbers. It follows from Lemma 4.1(4) that the mean
curvature of the graph of f satisfies

(6.3)

H =
u

n(1+u2
∑n
i=1 α

2
ix
−2
i )3/2

×{
n∑
j=1

αj(αj − 1)

x2j
− u2

∑
1≤i<j≤n

αiαj(αi + αj)

x2ix
2
j

}
with u = xα1

1 · · ·xαnn . Therefore, if the graph of f is minimal, then
n∑
j=1

αj(αj − 1)

x2j
= u2

∑
i<j

αiαj(αi + αj)

x2ix
2
j

.(6.4)

By taking the partial derivative of (6.4) with respect to xk, we obtain

(6.5)
2(1− αk)

x2k
= 2u2

∑
i<j

αiαj(αi + αj)

x2ix
2
j

− 2u2

x2k

∑
j 6=k

αj(αk + αj)

x2j
,

which implies that, for 1 ≤ k 6= ` ≤ n, we have

(6.6)

1− αk
x2k

+
u2

x2k

∑
j 6=k

αj(αk + αj)

x2j

=
1− α`
x2`

+
u2

x2`

∑
j 6=`

αj(α` + αj)

x2j
.

By multiplying x2kx
2
` to (6.6), we find

(6.7)

(1− αk)x2` + x2`
∑
j 6=k

αj(αk + αj)x
2α1
1 · · ·x2αj−1

j−1 x
2αj−2
j x

2αj+1

j+1 · · ·x2αnn

= (1− α`)x2k + x2k
∑
j 6=`

αj(α` + αj)x
2α1
1 · · ·x2αj−1

j−1 x
2αj−2
j x

2αj+1

j+1 · · ·x2αnn .

In particular, for k = 1, ` = 2, (6.7) gives

(6.8)

(1− α1)x22 + x22
∑
j 6=1

αj(α1 + αj)x
2α1
1 · · ·x2αj−1

j−1 x
2αj−2
j x

2αj+1

j+1 · · ·x2αnn

= (1− α2)x21 + x21
∑
j 6=2

αj(α2 + αj)x
2α1
1 · · ·x2αj−1

j−1 x
2αj−2
j x

2αj+1

j+1 · · ·x2αnn .

Case (a.1) n = 2. In this case (6.8) reduces to

(6.9)
(1− α1)x22 + α2(α1 + α2)x2α1

1 x2α2
2

= (1− α2)x21 + α1(α1 + α2)x2α1
1 x2α2

2 .
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Since α1, α2 are nonzero numbers, it follows from (6.9) that

1− α1 = 1− α2 = α1(α1 + α2) = α2(α1 + α2) = 0,

which is impossible.
Case (a.2) n ≥ 3. It follows from (6.8) that

(6.10)

(1− α2)x21 − (1− α1)x22 + (α2
1 − α2

2)x2α1
1 · · ·x2αnn

=

n∑
j=3

(α1 + αj)αjx
2α1
1 x2α2+2

2 x2α3
3 · · ·x2αj−1

j−1 x
2αj−2
j x

2αj+1

j+1 · · ·x2αnn

−
n∑
j=3

(α2 + αj)αjx
2α1+2
1 x2α2

2 · · ·x2αj−1

j−1 x
2αj−2
j x

2αj+1

j+1 · · ·x2αnn .

If n = 3, (6.10) yields

(6.11)

(1− α2)x21 − (1− α1)x22 + (α2
1 − α2

2)x2α1
1 x2α2

2 x2α3
3

= (α1 + α3)α3x
2α1
1 x2α2+2

2 x2α3−2
3

− (α2 + α3)α3x
2α1+2
1 x2α2

2 x2α3−2
3 ,

which implies that α1 = α2 = 1 and α3 = −1. Therefore, the production function
is of the form:

f =
x1x2
x3

.

If n ≥ 4, then it follows from (6.10) that α1 = α2 = 1 and α3 = · · · = αn = −1.
By substituting these into (6.4) we find

n∑
j=3

1

x2j
+

∑
3≤i<j≤n

u2

x2ix
2
j

=
u2

x21x
2
2

,(6.12)

which is impossible. Consequently, if the homogeneous function f is a generalized
Cobb-Douglas production function with minimal graph, then f is a three-input
production function of the form f = xy/z.

Case (b): f is a generalized ACMS production function. In this case, without
loss of generality, we may assume that

f(x) =

(
n∑
i=1

aix
ρ
i

)p
ρ

,(6.13)

where ai, p, γ, ρ are constants with ai, γ, p 6= 0 and ρ 6= 0, 1.
It follows from (6.13) and Lemma 4.1(4) that the graph of f is minimal if and

only if we have

(6.14)

0 = p2(ρ− 1)

(
n∑
i=1

aix
ρ
i

)2p
ρ −1 ∑

1≤i6=j≤n

cic
2
jx
ρ−2
i x2ρ−2j

+ (ρ− 1)
∑

1≤i 6=j≤n

cicjx
ρ−2
i xρj + (p− 1)

n∑
i=1

c2ix
2ρ−2
i .

Clearly, if (6.14) holds, then we obtain p = ρ = 1. Consequently, the production
function f is a perfect substitute.

The converse is easy to verify. �
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