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GENERALIZED �-RECURRENT LORENTZIAN �-SASAKIAN
MANIFOLD

D.G. PRAKASHA AND A. YILDIZ

Abstract. The purpose of this paper is to study generalized �-recurrent
Lorentzian �-Sasakian manifolds.

1. Introduction

The notion of generalized recurrent manifolds was introduced by U. C. De and
N. Guha [5]. A Riemannian manifold (Mn; g) is called generalized recurrent if its
curvature tensor R satis�es the condition

(rXR)(Y; Z)W = A(X)R(Y;Z)W +B(X)[g(Z;W )Y � g(Y;W )Z]
where, A and B are two 1-forms, B is non-zero and these are de�ned by

A(X) = g(X; �1); B(X) = g(X; �2) (1.1)

�1 and �2 are vector �elds associated with 1-forms A and B, respectively.
The notion of �-recurrent Sasakian manifolds was introduced by U. C. De, A. A.

Shaikh and S. Biswas [4]. This notion generalizes the notion of locally �-symmetric
Sasakian manifolds. A Sasakian manifold is said to be a �-recurrent manifold if
there exists a non-zero 1-form A such that

�2((rXR)(Y;Z)W ) = A(X)R(Y; Z)W
for arbitrary vector �elds X, Y , Z, W . If the 1-form A vanishes, then the manifold
reduces to a �-symmetric manifold.
Generalized �-recurrent (k; �)-contact metric manifolds were studied by J-B.

Jun, A. Y¬ld¬z and U. C. De [10]. Also, generalized �-recurrent Sasakian manifolds
were studied by D. A. Patil, D. G. Prakasha and C. S. Bagewadi [15]. Motivated
by the above studies, in this paper we study generalized �-recurrent Lorentzian
�-Sasakian manifolds and obtain some interesting results.
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The paper is organized as follows: After Preliminaries, we give a brief account
of Lorentzian �-Sasakian manifolds. In section 4, we study Lorentzian �-Sasakian
manifolds satisfying the condition S(X; �) � R = 0, where S and R are the Ricci
and Riemannian curvature tensors respectively. Here it is shown that the manifold
under this condition is reduced to Einstein one. In Section 5, we show that a
generalized �-recurrent Lorentzian �-Sasakian manifold is an Einstein manifold.
We also show that in a generalized �-recurrent Lorentzian �-Sasakian manifold
the characteristic vector �eld � and the associated vector �eld �1�

2 + �2 are in
opposite direction. The same section also consists of locally generalized �-recurrent
Lorentzian �-Sasakian manifolds and obtained a necessary and su¢ cient condition
for such a manifold to be of locally generalized �-recurrent. In the last section, we
show that a 3-dimensional generalized �-recurrent Lorentzian �-Sasakian manifold
is of constant curvature.

2. Preliminaries

The product of an almost contact manifold M and the real line R carries a
natural almost complex structure. However if one takes M to be an almost contact
metric manifold and supposes that the product metric G on M � R is Kaehlerian,
then the structure on M is cosymplectic [8] and not Sasakian. On the other hand
Oubina [14] pointed out that if the conformally related metric e2tG, t being the
coordinate on R, is Kaehlerian, then M is Sasakian and conversely.
In [19], S. Tanno classi�ed connected almost contact metric manifolds whose

automorphism groups possess the maximum dimension. For such a manifold, the
sectional curvature of plane sections containing � is a constant, say c. He showed
that they can be divided into three classes: (i) homogeneous normal contact Rie-
mannian manifolds with c > 0; (ii) global Riemannian products of a line or a circle
with a Kaehler manifold of constant holomorphic sectional curvature if c = 0; (iii)
a warped product space if c < 0. It is known that the manifolds of class (i) are
characterized by admitting a Sasakian structure.
In the Gray-Hervella classi�cation of almost Hermitian manifolds [7], there ap-

pears a class, W4, of Hermitian manifolds which are closely related to locally con-
formal Kaehler manifolds [6]. An almost contact metric structure on a manifold M
is called a trans-Sasakian structure [14], [2] if the product manifold M �R belongs
to the classW4. The class C6�C5 [12] coincides with the class of the trans-Sasakian
structures of type (�; �): In fact, in [12], local nature of the two subclasses, namely,
C5 and C6 structures, of trans-Sasakian structures are characterized completely.
We note that trans-Sasakian structures of type (0; 0), (0; �) and (�; 0) are cosym-

plectic [2], �-Kenmotsu [9] and �-Sasakian [9], respectively. An almost contact met-
ric structure (�; �; �; g) on M is called a trans-Sasakian structure [14] if (M �R; J;
G) belongs to the class W4 [7], where J is the almost complex structure on M �R
de�ned by

J(X; fd=dt) = (�X � f�; �(X)d=dt)
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for all vector �elds X on M and smooth functions f on M � R , and G is the
product metric on M � R . This may be expressed by the condition [1]

(rX�)Y = �(g(X;Y )� � �(Y )X) + �(g(�X; Y )� � �(Y )�X) (2.1)

for some smooth functions � and � on M , and we say that the trans-Sasakian
structure is of type (�; �): From the formula (2.1) it follows that

rX� = ���X + �(X � �(X)�) (2.2)

(rX�)Y = ��g(�X; Y ) + �g(�X; �Y ) (2.3)

More generally one has the notion of an �-Sasakian structure [9] which may be
de�ned by

(rX�)Y = �(g(X;Y )� � �(Y )X) (2.4)

where � is a non-zero constant. From the condition one may readily deduce that

rX� = ���X (2.5)

(rX�)Y = ��g(�X; Y ) (2.6)

Thus � = 0 and therefore a trans-Sasakian structure of type (�; �) with � a non-
zero constant is always �-Sasakian [9]. If � = 1, then �-Sasakian manifold is a
Sasakian manifold.
The relation between trans-Sasakian, �-Sasakian and �-Kenmotsu structures

was discussed by Marrero [13].

Proposition 1. [13] A trans-Sasakian manifold of dimension � 5 is either �-
Sasakian, �-Kenmotsu or cosymplectic.

3. Lorentzian �-Sasakian manifolds

A di¤erentiable manifold M of dimension n is called a Lorentzian �-Sasakian
manifold if it admits a (1; 1)-tensor �eld �, a contravariant vector �eld �, a covariant
vector �eld � and Lorentzian metric g which satisfy [16, 21]

�(�) = �1; �� = 0; �(�X) = 0 (3.1)

�2X = X + �(X)�; g(X; �) = �(X) (3.2)

g(�X; �Y ) = g(X;Y ) + �(X)�(Y ) (3.3)

(rX�)Y = �(g(X;Y )� + �(Y )X) (3.4)

for all X;Y 2 TM .
Also a Lorentzian �-Sasakian manifold M satis�es

rX� = ��X (3.5)

(rX�)(Y ) = �g(X;�Y ) (3.6)

wherer denotes the operator of covariant di¤erentiation with respect to the Lorentzian
metric g, then M is called Lorentzian �-Sasakian manifold.
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Further, on a Lorentzian �-Sasakian manifold M the following relations hold:
[22, 16]

�(R(X;Y )Z) = �2[g(Y;Z)�(X)� g(X;Z)�(Y )] (3.7)

R(X;Y )� = �2[�(Y )X � �(X)Y ] (3.8)

S(X; �) = (n� 1)�2�(X) (3.9)

Q� = (n� 1)�2� (3.10)

S(�X; �Y ) = S(X;Y ) + (n� 1)�2�(X)�(Y ) (3.11)

De�nition 3.1. A Lorentzian �-Sasakian manifold (M; g) is said to be Einstein
manifold if its Ricci tensor S is of the form

S(X;Y ) = ag(X;Y )

for any vector �elds X and Y , where a is constant on (M; g).

4. Lorentzian �-Sasakian manifold satisfying S(X; �) �R = 0

Theorem 4.1. A Lorentzian �-Sasakian manifold (Mn; g), (n > 3) satisfying the
condition S(X; �) �R = 0 is an Einstein manifold.
Proof. Consider a Lorentzian �-Sasakian manifold (Mn; g), (n > 3) satisfying

the condition
(S(X; �) �R)(U; V )Z = 0 (4.1)

By de�nition we have

(S(X; �) �R)(U; V )Z = ((X ^S �) �R)(U; V )Z (4.2)

= (X ^S �)R(U; V )Z +R((X ^S �)U; V )Z
+R(U; (X ^S �)V )Z +R(U; V )(X ^S �)Z

where the endomorphism X ^S Y is de�ned by

(X ^S Y )Z = S(Y;Z)X � S(X;Z)Y (4.3)

Using the de�nition of (4.3) in (4.2), we get by virtue of (3.9) that

(S(X; �) �R)(U; V )Z (4.4)

= (n� 1)�2[�(R(U; V )Z)X + �(U)R(X;V )Z

+�(V )R(U;X)Z + �(Z)R(U; V )X]

�S(X;R(U; V )Z)� � S(X;U)R(�; V )Z
�S(X;V )R(U; �)Z � S(X;Z)R(U; V )�

In view of (4.1) and (4.4) we have

(n� 1)�2[�(R(U; V )Z)X + �(U)R(X;V )Z (4.5)

+�(V )R(U;X)Z + �(Z)R(U; V )X]

�S(X;R(U; V )Z)� � S(X;U)R(�; V )Z
�S(X;V )R(U; �)Z � S(X;Z)R(U; V )� = 0
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Taking the inner product on both sides of (4.5) with � we obtain

(n� 1)�2[�(R(U; V )Z)�(X) + �(U)�(R(X;V )Z) (4.6)

+�(V )�(R(U;X)Z) + �(Z)�(R(U; V )X)]

+S(X;R(U; V )Z)� S(X;U)�(R(�; V )Z)
�S(X;V )�(R(U; �)Z)� S(X;Z)�(R(U; V )�) = 0

Putting U = Z = � in (4.6) and using (3.7)-(3.11), we get

S(X;V ) = (n� 1)�2g(X;V ) (4.7)

which means that the manifold is an Einstein manifold. This completes the proof
of the theorem.

5. Generalized �-recurrent Lorentzian �-Sasakian Manifolds

De�nition 5.1. A Lorentzian �-Sasakian manifold is said to be a generalized �-
recurrent if its curvature tensor R satis�es the condition ([5, 18])

�2((rWR)(X;Y )Z) = A(W )R(X;Y )Z +B(W )[g(Y; Z)X � g(X;Z)Y ] (5.1)

where, A and B are two 1-forms, B is non-zero and these are de�ned as in (1.1).
If for any vector �elds X;Y; Z;W orthogonal to �, that is, for any horizontal vec-
tor �elds X;Y; Z;W , then a generalized �-recurrent manifold reduces to a locally
generalized �-recurrent manifold.

We begin with the following:

Theorem 5.2. A generalized �-recurrent Lorentzian �-Sasakian manifold (Mn; g)
(n > 1) is an Einstein manifold.

Proof. Let us consider a generalized �-recurrent Lorentzian �-Sasakian mani-
fold. Then by virtue of (3.2) and (5.1) we have

(rWR)(X;Y )Z + �((rWR)(X;Y )Z)� (5.2)

= A(W )R(X;Y )Z +B(W )[g(Y; Z)X � g(X;Z)Y ]
from which it follows that

g((rWR)(X;Y )Z;U) + �((rWR)(X;Y )Z)�(U) (5.3)

= A(W )g(R(X;Y )Z;U) +B(W )[g(Y;Z)X � g(X;Z)Y ]
Let feig, i = 1; 2; :::; n be an orthonormal basis of the tangent space at any point
of the manifold. Then putting X = U = ei in (4.2) and taking summation over i,
1 � i � n; we get

(rWS)(Y; Z) +
nX
r=1

�((rWR)(ei; Y )Z)�(ei) (5.4)

= A(W )S(Y; Z) + (n� 1)B(W )g(Y; Z)
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The second term of (5.4) by putting Z = � takes the form g((rWR)(ei; Y )�; �)g(ei; �)
which is denoted by E. In this case E vanishes. Since the following equation is well
known

g((rWR)(ei; Y )�); �) = g(rWR(ei; Y )�; �)� g(R(rW ei; Y )�; �)
�g(R(ei;rWY )�; �)� g(R(ei; Y )rW �; �)

at p 2M . Using (3.8), we have

g(R(ei;rWY )�; �) = �2[g(rWY; �)g(ei; �)� g(�; ei)g(rWY; �)] = 0
Thus we obtain

g((rWR)(ei; Y )�; �) = g(rWR(ei; Y )�; �)� g(R(ei; Y )rW �; �)
In virtue of g(R(ei; Y )�; �) = g(R(�; �)Y; ei) = 0, we have

g(rWR(ei; Y )�; �) + g(R(ei; Y )�;rW �) = 0
which implies

g((rWR)(ei; Y )�; �) = �g(R(ei; Y )�;rW �)� g(R(ei; Y )rW �; �)
Hence we reach

E = ��
nX
r=1

fg(R(�W; �)Y; ei)g(�; ei) + g(R(�; �W )Y; ei)g(�; ei)g

= ��fg(R(�W; �)Y; �) + g(R(�; �W )Y; �)g = 0
Replacing Z by � in (5.4) and using (3.9) we have

(rWS)(Y; �) = (n� 1)fA(W )�2 +B(W )g�(Y ) (5.5)

Now we have (rWS)(Y; �) = rWS(Y; �)� S(rWY; �)� S(Y;rW �).
Using (3.5) and (3.6) in the above relation, it follows that

(rWS)(Y; �) = �f(n� 1)�2g(W;�Y )� S(�W; Y )g (5.6)

In view of (5.5) and (5.6), we have

�f(n� 1)�2g(W;�Y )� S(�W; Y )g = (n� 1)fA(W )�2 +B(W )g�(Y ) (5.7)

Replacing Y by � in (5.7) and then using (3.1), we get

�2A(W ) = �B(W ) (5.8)

So using (5.8) in (5.7) we have

(n� 1)�2g(W;�Y )� S(�W; Y ) = 0
Replacing Y by �Y in above and using (3.2) and (3.11) we get

S(Y;W ) = (n� 1)�2g(Y;W )
for allY;W: This completes the proof of the theorem.
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Theorem 5.3. In a generalized �-recurrent Lorentzian �-Sasakian manifold (Mn; g)
the characteristic vector �eld � and the vector �eld �1�

2+�2 associated to the 1-form
A�2 +B are in opposite direction.

Proof. Two vector �elds P and Q are said to be codirectional if P = fQ, where
f is a non-zero scalar, that is g(P;X) = fg(Q;X) for all X.
Now, from (5.1), we have

(rWR)(X;Y )Z = ��((rWR)(X;Y )Z)� +A(W )R(X;Y )Z (5.9)

+B(W )[g(Y; Z)X � g(X;Z)Y ]
Then by the use of second Bianchi identity and (5.9), we get

A(W )�(R(X;Y )Z) + A(X)�(R(Y;W )Z) +A(Y )�(R(W;X)Z) (5.10)

+ B(W )[g(Y; Z)X � g(X;Z)Y ]
+ B(X)[g(W;Z)Y � g(Y;Z)W ]
+ B(Y )[g(X;Z)W � g(W;Z)X] = 0

By virtue of (3.7), we obtain from (5.10) that

fA(W )�2 +B(W )g[g(Y;Z)X � g(X;Z)Y ] (5.11)

+ fA(X)�2 +B(X)g[g(W;Z)Y � g(Y; Z)W ]
+ fA(Y )�2 +B(Y )g[g(X;Z)W � g(W;Z)X] = 0

Putting Y = Z = ei in (5.11) and taking summation over i, 1 � i � n, we get
fA(W )�2 +B(W )g�(X) = fA(X)�2 +B(X)g�(W ) (5.12)

for all vector �elds X;W .
Replacing X by � in (5.12), it follows that

fA(W )�2 +B(W )g = ��(W )f�(�1)�2 + �(�2)g (5.13)

for any vector �eld W , where A(�) = g(�; �1) = �(�1) and B(�) = g(�; �2) = �(�2).
Relation (5.12) and (5.13) completes proof of the theorem.

Theorem 5.4. A Lorentzian �-Sasakian manifold (Mn; g) is locally generalized
�-recurrent if and only if the relation

(rWR)(X;Y )Z = �f�2[g(�Y;W )g(X;Z)� g(�X;W )g(Y;Z)]� (5.14)

�g(R(X;Y )�W;Z)�g+A(W )R(X;Y )Z
+B(W )fg(Y; Z)X � g(X;Z)Y g

holds for all horizontal vector �elds X;Y; Z;W on M .

Proof. By the de�nition, we have

g((rWR)(X;Y )Z;U) = g(rWR(X;Y )Z;U) +R(rWX;Y; U; Z) (5.15)
+R(X;rWY;U; Z) +R(X;Y; U;rWZ)
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where R(X;Y; Z; U) = g(R(X;Y )Z;U) and the property of curvature tensor have
been used. Since r is a metric connection, it follows that

g(rWR(X;Y )Z;U) = g(R(X;Y )rWU;Z)�rW g(R(X;Y )U;Z) (5.16)

and

rW g(R(X;Y )U;Z) = g(rWR(X;Y )U;Z) + g(R(X;Y )U;rWZ) (5.17)

From (5.16) and (5.17) we have

g(rWR(X;Y )Z;U) = �g(rWR(X;Y )U;Z) (5.18)

�g(R(X;Y )U;rWZ) + g(R(X;Y )rWU;Z)

Using (5.18) in (5.15), we get

g((rWR)(X;Y )Z;U) = �g((rWR)(X;Y )U;Z) (5.19)

In view of (5.19), it follows from (3.2) and (5.1) that

(rWR)(X;Y )Z = g((rWR)(X;Y )�; Z)� (5.20)

+A(W )R(X;Y )Z +B(W )[g(Y; Z)X � g(X;Z)Y ]

By virtue of (3.1), (3.6) and (3.8) we can easily get

(rWR)(X;Y )� = �[�2fg(�Y;W )X � g(�X;W )Y g �R(X;Y; �W )] (5.21)

Using (5.21) in (5.19) we obtain the relation (5.14). Conversely, if in a Lorentzian
�-Sasakian manifold the relation (5.14) holds, then applying � on both sides of
(5.14) and keeping mind that X;Y; Z and W are orthogonal to �, we obtain (5.1).
This completes the proof of the theorem.

Theorem 5.5. A Lorentzian �-Sasakian manifold is of constant curvature if and
only if the relation

�2((rWR)(X;Y )�) = A(W )R(X;Y )� +B(W )[g(Y; �)X � g(X; �)Y ] (5.22)

holds for all horizontal vector �elds X;Y;W .

Proof. With the help of (3.1), the relation (5.22) can be written as

(rWR)(X;Y )� + �((rWR)(X;Y )�)� (5.23)

= A(W )R(X;Y )� +B(W )[g(Y; �)X � g(X; �)Y ]

By taking account of (3.8) and (5.14) in (5.23), one can get

(rWR)(X;Y )� = 0 (5.24)

for any horizontal vector �elds X;Y;W . By taking account of (5.21) in (5.24) we
have

R(X;Y; �W ) = �2fg(�Y;W )X � g(�X;W )Y g (5.25)

for any orthogonal vector �elds X;Y;W .



GENERALIZED �-RECURRENT LORENTZIAN �-SASAKIAN MANIFOLD 61

Now assume that X, Y and Z are vector �elds such that (rX)p = (rY )p =
(rZ)p = 0 for a �xed point p of Mn. By the Ricci identity for � [20]

�(R(X;Y )�W ) = (rXrY �)W � (rYrX�)W
We have at the point p,

�R(X;Y; �W ) + �R(X;Y;W ) = rX((rY �)W )�rY ((rX�)W )
Using (3.4), we have

�R(X;Y; �W ) + �R(X;Y;W )

= �rXfg(Y;W )� + �(W )Y g
��rY fg(X;W )� + �(W )Xg

= �fg(Y;W )rX� + (rX�)(W )Y g
��fg(X;W )rY � + (rY �)(W )Xg

In view of (2.5) and (2.6), the above equation becomes

R(X;Y )�W = �2fg(�Y;W )X + g(X;W )�Y � g(�X;W )Y � g(Y;W )�Xg(5.26)
+�R(X;Y )W

From (5.25) and (5.26), it follows that

�R(X;Y )W = �2fg(Y;W )�X � g(X;W )�Y g:
Operating � on both sides and using (3.2) we get

R(X;Y )W = �2fg(Y;W )X � g(X;W )Y g (5.27)

for any vector �elds X;Y;W are orthogonal to �.
Conversely, if a Lorentzian �-Sasakian manifold is of constant curvature, then

from (5.27) it follows that the relation (5.22) holds. This completes the proof of
the theorem.

6. 3-dimensional locally generalized �-recurrent Lorentzian
�-Sasakian Manifolds

Theorem 6.1. A 3-dimensional locally generalized �-recurrent Lorentzian �-Sasakian
manifold is of constant curvature.

Proof. In a 3-dimensional Lorentzian �-Sasakian manifold (M3; g), we have

R(X;Y )Z = g(Y; Z)QX � g(X;Z)QY + S(Y; Z)X (6.1)

�S(X;Z)Y + r

2
[g(X;Z)Y � g(Y; Z)X]

Now putting Z = � and using (3.2) and (3.9), we get

R(X;Y )� = �(Y )QX � �(X)QY (6.2)

+2�2[�(Y )X � �(X)Y ] + r

2
[�(X)Y � �(Y )X]
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Using (3.6) in (6.2), we have�r
2
� �2

�
[�(Y )X � �(X)Y ] = �(Y )QX � �(X)QY (6.3)

Putting Y = � in (6.3), we obtain

QX =
�r
2
� �2

�
X +

�r
2
� 3�2

�
�(X)� (6.4)

Therefore, it follows from (6.4) that

S(X;Y ) =
�r
2
� �2

�
g(X;Y ) +

�r
2
� 3�2

�
�(X)�(Y ) (6.5)

Thus from (6.1), (6.4) and (6.5), we get

R(X;Y )Z =
�r
2
� 2�2

�
[g(Y; Z)X � g(X;Z)Y ] (6.6)

+
�r
2
� 3�2

�
[g(Y;Z)�(X)� � g(X;Z)�(Y )�

+�(Y )�(Z)X � �(X)�(Z)Y ]
Taking the covariant di¤erentiation to the both sides of the equation (6.6), we get

(rWR)(X;Y )Z =
dr(W )

2
[g(Y; Z)X � g(X;Z)Y + g(Y;Z)�(X)�

�g(X;Z)�(Y )� + �(Y )�(Z)X + �(X)�(Z)Y ] (6.7)

+
�r
2
� 3�2

�
[g(Y;Z)�(X)� g(X;Z)�(Y )]rW �

+
�r
2
� 3�2

�
[�(Y )X � �(X)Y ](rW �)(Z)

+
�r
2
� 3�2

�
[g(Y;Z)� � �(Z)Y ](rW �)(X)

�
�r
2
� 3�2

�
[g(X;Z)� � �(Z)X](rW �)(Y )

Noting that we may assume that all vector �elds X;Y; Z;W are orthogonal to � in
the above relation, we have

(rWR)(X;Y )Z =
dr(W )

2
[g(Y;Z)X � g(X;Z)Y ] (6.8)

+
�r
2
� 3�2

�
[g(Y; Z)(rW �)(X)� g(X;Z)(rW �)(Y )]�

Applying �2 to the both sides of (6.8) and using (3.1) and (3.2), we get

�2(rWR)(X;Y )Z =
dr(W )

2
[g(Y;Z)X � g(X;Z)X] (6.9)

By (5.1) the equation (6.9) reduces to

A(W )R(X;Y )Z =

�
dr(W )

2
�B(W )

�
[g(Y; Z)X � g(X;Z)X]
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PuttingW = ei, where feig; i = 1; 2; 3; is an orthonormal basis of the tangent space
at any point of the manifold and taking summation over i, 1 � i � 3, we obtain

R(X;Y )Z = �[g(Y; Z)X � g(X;Z)X]

where � =
h
dr(ei)
2A(ei)

+ �2
i
is a scalar, since A is a non-zero 1-form. Then by Schur�s

theorem � will be a constant on the manifold. Therefore, (M3; g) is of constant
curvature �. This completes the proof of the theorem.

ÖZET: Bu makalenin amac¬genelles.tirilmis. �-recurrent Lorentzian
�-Sasakian manifoldlar¬c.al¬s.makt¬r.
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