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A SIMULATION STUDY ON TESTS FOR ONE-WAY ANOVA
UNDER THE UNEQUAL VARIANCE ASSUMPTION

ESRA YIGIT AND FIKRI GOKPINAR

ABSTRACT. The classical F-test to compare several population means depends
on the assumption of homogeneity of variance of the population and the nor-
mality. When these assumptions especially the equality of variance is dropped,
the classical F-test fails to reject the null hypothesis even if the data actu-
ally provide strong evidence for it. This can be considered a serious problem
in some applications, especially when the sample size is not large. To deal
with this problem, a number of tests are available in the literature. In this
study, the Brown-Forsythe, Weerahandi’s Generalized F, Parametric Boot-
strap, Scott-Smith, One-Stage, One-Stage Range, Welch and Xu-Wang’s Gen-
eralized F-tests are introduced and a simulation study is performed to compare
these tests according to type-1 errors and powers in different combinations of
parameters and various sample sizes.

1. INTRODUCTION

In applied statistics an experimenter wants to compare two or more populations
measured using independent samples. The classical F- (CF) test is used under the
assumption that the populations have normal distributions with the same variances.
In this paper we consider the problem of comparing the means of k populations with
the assumption of heteroscedastic variances.

The CF test fails to reject the null hypothesis even for large samples when the pop-
ulation variances are unequal. This is a serious problem, especially for biomedical
experiments in which one does not usually have large samples. In such applications
each data point can be so vital and expensive. Alternative methods are developed
due to this problem. Some of these test statistics’ distribution is not known and the
p-value can be found by simulation (Weerahandi, 1995; Weerahandi, 2004). There
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16 ESRA YIGIT AND FIKRI GOKPINAR

are a large number of approximate tests (Chen and Chen, 1998; Chen, 2001; Tsui
and Weerahandi, 1989; Krishnamoorthy et al., 2006; Xu and Wang, 2007a, 2007b)
and exact tests (Bishop and Dudewicz, 1981; Welch, 1951; Scott and Smith, 1971;
Brown and Forsythe, 1974) in the literature. In practice, some exact procedures
such as the CF, Welch (W), Scott-Smith (SS) and Brown-Forsythe (BF) tests are
widely used. Alternative tests have been applied to solve a number of problems
when conventional methods are difficult to apply or fail to provide exact solutions.

In this paper we carry out a simulation study to compare the size performance of
the CF, W, SS, BF, Chen-Chen’s One Stage (OS), Chen-Chen’s One Stage Range
(OSR), Weerahandi’s Generalized F (GF), Xu-Wang’s Generalized F (XW) and
Parametric Bootstrap (PB) tests when population variances are unequal in one-way
ANOVA problems. The type-I error rates and powers of the tests are compared us-
ing Monte Carlo simulation using various sample sizes and under various parameter
combinations.

2. TESTS FOR ONE-WAY ANOVA

Let Xi1,...,Xin,be a random sample from N(u;, 0?) i=1,...,k. The problem of
interest involves testing

Hy:py=py=...=p, Hp: Notall y;sareequal i=1,...,k (2.1)

The standardized between-group sum of squares and the standardized error sum of
squares are given in (2.2) and (2.3) when o?7s are unequal.

2\2

_ k n; X,

- - n; X? (Zi:l ;21)

Sp =Sy (0’%,...,0’%): E 5 — % 7" (22)
i1 i Dic o2

i

S

g =y S 2.3
= (23)
Most of the test statistics to test the equality of means under heteroscedasticity are
based on the standardized between-group sum of squares and standardized error
sum of squares. In the rest of this section test statistics are briefly introduced. In
this section the W, SS and BF tests, whose distribution can be obtained theorically,
are given. GF test and the XW test based on the generalized F-test, whose p-values
are obtained by simulation, are given. The OS and OSR tests developed by Chen
and Chen (1998, 2001) based on Bishop and Dudewicz’s (1981) two-stage procedure
are investigated. Finally, the PB test developed by Krishnamoorthy et al. (2006)
is discussed.
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The Welch Test

S;_;,, Welch (1951) gives the following test statistics.

v S (S2,.-,8%) [ (b =1) B ] (609 WA I

2 2 (k—2)
kQ)Z 1_ +=e= flnl%l<1 Ew)
k2—1 i= 1n,—1 ij

If Hy is true, then the distribution of W is Fj,_; ; where

1
2
k2— 121 1n71(1_2w)

For a given level «, and an observed value W, of W, this test rejects the Hg in
(2.1) whenever the p-value is given as P (Fy_1,5) Wp) («

The Scott-Smith Test

If 57 = %=2.57, Scott and Smith (1971) give the following test statistics.

-3~
n; )2
poy A

If H, is true, then the distribution of Fs is Xk' For a given level o, and an observed
value fs of Fg, this test rejects the Hg in (2.1) whenever the p-value is given as

P (Fo) fs) (a.

The Brown-Forsythe Test

Brown and Forsythe (1974) give the following test statistics.

k

B= Zn x-x° /Y (1 — 7)
=1 =1

If Hy is true, then the distribution of B is Fj,_; ,; where

k S4
=[Sy [y toErs
i=1

For a given level o, and an observed value B}, of B, this test rejects the Ho in (2.1)
whenever the p-value is given as P (Fj_1,,)B},) (o
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Weerahandi’s Generalized F-test

The sample variances (MLEs) of the k populations are denoted by S?, where
I &

vi=1

i=1 o2
j+1 niS2\’
i=1 o2

(ni—1)

It follows from (2.3) that B; is a beta random variable with parameters >°7_, -— and
(nj+1-1)
2

Define

B; =

and that 5’6, B; are all independent random variables. Note also that the

. nS2
random variables >+ can be expressed as

i

s2 5?4
Mol §.ByBy... By, 0t =S, (1— Bi 1) B;... By
o1 o;
fori=2,...,k—1
nkS,f
=5.(1- By
U% ( k 1)

Therefore, the generalized p value can be expressed as

n—=k_ nls% ngsg nksi
p=1-E (H’“‘L”"“ { k1" L&B2 .Biy 1—B1)Ba...Biy U (1- Bkl)} })
(2.5)
where Hy_1 ,_%is the cumulative distribution function of the F-distribution with
k-1 and N-k degrees of freedom. This test rejects the Hg in (2.1) whenever p{a
(Weerahandi, 1995a).

Xu-Wang’s Generalized F-test

For a bigger value of k the type-I error probability of the generalized F-test ex-
ceeds the nominal level. Xu-Wang (2007a) developed some test statistics where its
empirical type-I error probability does not exceed its nominal level.

Denote v, = (pl, Loy ey #kq) and vy = 1j_1 i), where 151 is the

(k — 1) x 1vector whose elements are all ones. Then null hypothesis in (2.1) is equal
to the null hypothesis as

Hozva:vb
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The sample variances (MLEs) of the k populations are denoted by S?, where

1 &

Szz - 72 (X'L] Xl)z
L
Define
Ytl = (Xl, . ,kal) 5 Yb = -Zk*]XkH
52 Si
S, = di kT Skli-11;
. zag(nl_l, e b nk_lkklk:—l

Let ya, yb, sa and sb denote the observed values of Y,, Y;, S,and S, respectively.
T is a generalized test variable as

2

2 82
T=Y ((sa + sb)_l/2 (diag (le, e U’;_t) + 3:01k11;€1) (S0 + Sb)—1/2> Yy

and the observed value of T is given as

t= (o — ) (sa+56)"" (Ja — Vo)
where Y ~ N (0, I}_1) , inxiifl, 1=1,...,k.
Under the null hypothesis in (2.1), the generalized p-value is given by

p=P(T >1%)
and Hj is rejected if p <a.

The One-Stage Test

Chen and Chen (1998) developed the OS procedure since the number of samples
that are required at the second stage of two-stage procedure of Bishop and Dudewicz
(1981) can be large and impracticable.

For each population, the first (or any randomly chosen) ng (2 < ng <n, ) observation
is chosen to calculate the usual sample mean and variance as

- 2
£, (o) = 510, % ana 52 = e, o Xito)”

=1 ng j=1 (no—1)
Define weights U; and V; for the observations in the ith sample as

Sz S?
o1 1 fni=ng ( Tk _ 1 _ 1 ng Zlk]
U; = s + ”i\/ o ( 52 1> and Vi = ng n; \/m—no < S? )

Where S7,is the maximum of (S7,..., 7). Let the final weighted sample mean be
defined by
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Xi=> WX
j=1
where
Wi‘:{ Ui 1<j<mng

Vi no(j <n
Chen and Chen (1998) give the following test statistics.

k ~ ~ 2
~ X, — X
Pt = —_
; (5%1/\/5)
LetX:Zle %,ﬂ: ; b
and .

T Yt
— i=1%
t = k
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Then we have

’112
I
o

2
T My — 1
t, —t+ ———
i=1 ( S [k]/ ﬁ)
Under the null hypothesis in (2.1), it follows that F'! is distributed as
k
Q=> (-7

i=1

which is a quadratic form in the independent student’s t variates each with ng-1

degrees of freedom (Chen and Chen, 1998). For a given level «, and an observed
value Fjlof F1, this test rejects the Hy in (2.1) whenever the p-value is given as

P (Qk,no > 13’,1) < a.
The One-Stage Range Test

In another procedure based on one stage, Chen (2001) gives the following test
statistics.

Xmax - Xmln
T, =
/Z*
where Xmax(Xmin) is the maximum (minumum) of Xl, e ,)N(k. and z* is the max-
2 2
imum of %, cee i—’; Under the null hypothesis in (2.1), it follows that T’ is dis-

tributed as
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R = max [t —tj]
1<4,j<k
which is the range of k independent student’s t variates each with ng-1 degrees of
freedom. For a given level «, and an observed value t; of T, this test rejects the
Hy in (2.1) whenever the p-value is given as P (Rj po—1 > t1) < o .

A Parametric Bootstrap Approach

In the case of population variances o?s are unknown; a test statistic can be obtained

by replacing o7 in (2.2) by SZand is given by

2 (S
A )
D1 &

i

2
k
= n; X >
Sy (3, Z ‘ (2.6)
As the test statistic in (2.6) is location invariant, without loss of generality, we can
take the common mean to be zero. Let Xp; ~ N (0 ) and SE; ~ S2x2 1/ (ni —1).

Then the parametric boostrap pivot variable can be obtained by replacing X, S%in
(2.6) by Xp;, 5%, and is given by

k

SbB:Z

i=1 BZ

n; X g ’ b n;
Zz ] 9y (2.7)

Xp; is distributed as Z; ( ) where Z; is a standard normal random variable.

So the PB pivot variable in (2.7) is distributed as

2
~ s oy mZ2(ns— 1) [Ei—l Ll }
SvB (Zz',Xm_1§S¢>:Z —5 - E ni(n—1)
im1 Xni—1 > i1 2.,

Hy is rejected if P {S’bB (Zl-, Xo, . 52> >.§b} (a (Krishnamoorthy, 2006).

3

3. SIMULATION STUDY

In this section we compare the CF, W, SS, BF, GF, XW, OS, OSR and PB tests
according to type-1 errors and powers in different combinations of parameters and
sample sizes.



22 ESRA YIGIT AND FIKRI GOKPINAR

3.1. Comparison between the type I error rates of the tests. In this section
we consider the balanced and unbalanced cases from smaller to larger sample sizes
where k=3 and k=5 for comparing the tests. The values for the variances vary over
a large range so that 0 < ... < 0% and o} > ... > o%. For each combination of
n; and o7the rejection rate of each testing procedure is calculated and compared
with the nominal level 0.05 when the means are all equal. To estimate the type I
error rates of the CF, W, SS, BF tests, we use simulation consisting of 5000 runs
for each of the sample sizes and parameter configurations. CF, W, SS, BF test
statistics are calculated from these generated data and type I errors are estimated
by the proportion of test statistics that exceed the critical values calculated from
the distributions. To estimate the type I error rates of the GF, PB, OS, OSR and
XW tests, we use a two-step simulation. For estimating the type I error rates of
the GF test we generate 5000 observed vectors (i’l, ey T3 8%, s si), and used 5000
runs for each observed vector to estimate the p value in (2.5). Finally the type I
error rate of the GF test are estimated by the proportion of the 5000 p-values that
are less than the nominal level ae. The type I error rates of the PB, OS, OSR and
XW tests are similarly estimated. In both cases of equal and unequal variances for
k=3 and k=5 simulated type I error probabilities are given in tables 1, 2, 3 and 4.

ng o CF |W |SS |BF |GF |OS |OSR | PB | XW
(1,1,1) .0494 .0422 L0360 .0348 L0324 L0464 10494 L0412 L0150
(4,4,4) .0498 .0432 L0366 L0374 L0342 .0484 .0480 .0418 L0158
4,44 (9,9,9) .0492 .0388 .0366 L0338 L0332 .0462 .0466 L0372 L0132
(1,1.25,1.5) .0565 .0443 .0386 L0417 L0363 .0481 .0450 .0432 .0166
(1,2,4) .0798 .0521 L0975 0571 L0431 L0435 .0418 .0498 L0368
(1,4,9) .0932 0674 2996 .0588 L0652 .0548 .0558 L0620 .0446
(1,1,1) .0498 .0492 .0314 .0490 .0460 .0490 .0430 .0492 L0370
(4,4,4) .0496 .0526 .0322 L0501 .0480 .0460 .0434 .0540 .0380
10,10,10 (9,9,9) .0499 .0532 .0292 L0502 .0470 L0510 .0478 L0530 L0394
(1,1.25,1.5) .0548 .0522 L0376 .0506 L0482 L0502 L0508 .0532 .0426
(1,2,4) .0730 .0502 .1446 L0576 .0494 L0490 .0458 .0504 L0610
(1,4,9) .0760 .0448 14202 .0606 .0478 L0500 .0472 .0442 .0680
(1,1,1) 0474 .0490 .0224 L0474 .0466 .0470 .0460 .0484 L0532
(4,4,4) .0476 .0479 .0210 .0476 L0466 L0453 .0440 .0469 .0480
30,30,30 (9,9,9) .0474 .0490 .0224 L0474 .0466 .0470 .0456 .0484 L0504
(1,1.25,1.5) .0490 .0476 .0260 .0480 .0464 L0510 .0486 .0482 .0640
(1,2,4) .0694 .0499 1481 L0645 L0493 L0458 .0446 .0505 .0708
(1,4,9) 0724 .0510 4504 L0658 .0510 L0466 .0434 .0500 0756

Table 1.Simulated type I error rates when k=3 and sample sizes are equal under
nominal a = 0.05
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n; o CF |W |SS |BF |GF |OS |OSR | PB | XW
(1,1,1) .0496 .0508 0172 .0446 L0390 L0524 .0514 .0524 .0166
(4,4,4) .0476 .0510 L0155 L0452 L0396 L0500 .0488 .0516 .0160
3,5,7 (9,9,9) .0485 .0504 .0144 L0396 L0342 .0488 .0464 L0508 0178
(1,1.25,1.5) .0336 .0500 0174 .0410 L0322 L0468 L0450 .0486 .0166
(1,2,4) .0292 .0512 .0264 L0264 .0406 .0468 .0456 .0494 .0248
(1,4,9) .0332 .0566 .0350 L0638 .0486 .0468 .0444 .0542 L0452
(1.5,1.25,1) .0792 .0586 L0214 L0500 .0448 L0522 .0510 .0592 .0266
(4,2,1) 1852 .0680 .0908 0712 L0568 L0524 .0506 L0676 L0368
(9,4,1) .2332 L0766 .3554 0728 0734 L0502 .0484 L0646 L0432
(1,1,1) .0486 .0492 .0302 L0454 .0448 L0502 .0482 .0498 L0158
(4,4,4) .0496 .0504 .0298 .0408 L0452 L0536 | 00502 .0502 L0358
(9,9,9) .0490 .0490 L0296 .0470 L0454 .0454 .0430 .0488 L0396
7,10,13 (1,1.25,1.5) .0388 .0460 L0344 .0476 L0426 L0502 L0474 .0460 L0142
(1,2,4) .0300 .0500 .1284 L0570 .0446 .0478 .0476 .0488 L0560
(1,4,9) .0314 .0534 3746 L0632 L0524 .0484 .0472 .0502 .0640
(1.5,1.25,1) .0816 .0560 .0364 .0580 .0388 .0540 .0502 .0524 L0390
(4,2,1) 1462 .0540 .1360 L0632 L0526 L0516 .0504 .0588 .0470
(9,4,1) .1688 .0548 4136 L0666 .0580 L0512 .0516 .0510 .0534
(1,1,1) .0494 .0534 .0254 .0540 .0506 L0502 .0492 .0522 .0500
(4,4,4) .0505 .0460 .0226 L0474 L0442 .0476 .0456 L0452 L0506
(9,9,9) .0496 .0478 .0224 .0468 L0462 .0456 .0472 .0470 .0536
20,25,30 (1,1.25,1.5) .0418 .0528 0314 .0540 L0502 L0494 L0506 .0514 L0570
(1,2,4) .0386 .0470 .1370 L0598 L0458 .0484 .0466 .0456 L0672
(1,4,9) .0394 .0470 4254 .0634 L0492 L0472 .0470 .0482 .0684
(1.5,1.25,1) .0694 .0521 .0305 L0559 L0509 L0507 .0488 .0502 .0478
(4,2,1) 1110 .0482 1446 L0652 .0486 L0542 .0488 .0468 L0454
(9,4,1) .1248 .0464 4456 L0678 L0484 L0520 .0484 L0454 .0470

Table 2. Simulated type I error rates when k=3
under nominal a=0.05

23

and sample sizes are unequal
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ng o CF |W |SS |BF |GF |OS |OSR | PB | XW
(1,1,1,1,1) .0486 L0472 .0494 .0334 .0618 .0484 .0480 L0322 .0162
(4,4,4,4,4) .0480 L0472 .0472 .0344 .0568 .0530 L0538 .0356 .0120
(9,9,9,9,9) L0462 L0522 .0510 .0318 .0640 L0510 L0516 L0358 .0108
4,4,4,4,4 (1,1.25,1.5,1.75,2) L0638 L0634 L0640 .0442 0740 L0494 L0494 L0470 .0226
(1,2,4,6,8) L0920 .0804 11899 L0571 .0936 .0465 L0467 L0528 .0342
(1,4,9,13,18) L0978 .0856 4198 .0556 .1092 .0538 L0532 L0580 .0358
(1,1,1,1,1) .0486 L0518 10420 .0468 .0586 .0516 .0460 .0496 .0522
(4,4,4,4,4) .0488 L0520 .0404 .0470 .0580 .0492 .0434 L0494 .0484
10,10,10,10,10 (9,9,9,9,9) .0498 .0548 .0436 .0488 .0616 .0498 .0442 L0506 .0508
(1,1.25,1.5,1.75,2) .0626 L0518 .0494 .0570 .0610 .0512 L0518 .0488 .0586
(1,2,4,6,8) L0852 L0514 1844 .0566 .0644 .0512 L0518 .0488 .0760
(1,4,9,13,18) .0880 0516 .5476 .0664 .0684 .0496 .0490 L0490 0768
(1,1,1,1,1) .0494 .0484 L0300 .0490 .0510 .0476 L0504 .0484 .0666
(4,4,4,4,4) .0494 .0500 .0310 .0490 .0538 .0468 L0472 L0504 .0736
(9,9,9,9,9) L0504 L0550 .0318 .0496 .0570 .0532 L0528 .0548 .0688
30,30,30,30,30 (1,1.25,1.5,1.75,2) L0582 .0484 L0376 .0562 .0516 .0490 .0476 10488 .0832
(1,2,4,6,8) L0830 L0494 12822 .0790 .0542 L0474 .0462 .0470 1044
(1,4,9,13,18) L0854 L0502 5812 .0814 .0502 .0538 .0536 .0486 .1000

Table 3.Simulated type I error rates when k=5 and sample sizes are equal under

nominal a=0.05
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n; o; CF | W SS |BF |[GF | OS | OSR | PB | XW
(1,1,1,1,1) 0466 | .0592 | .0326 | .0378 | .0656 | .0452 | .0442 | .0462 | .0132
(4,4,4,4,4) 0500 | .0630 | .0334 | .0394 | .0686 | .0468 | .0454 0470 | .0164
(9,9,9,9,9) 0504 | .0636 | .0336 | .0410 | .0666 | .0462 | .0450 | .0496 | .0108
3,4,5,6,7 (1,1.25,1.5,1.75,2) | .0356 | .0548 | .0330 | .0454 | .0650 | .0490 | .0486 | .0402 | .0210
(1,2,4,6,8) 0380 | .0606 | .0616 | .0650 | .0688 | .0460 | .0454 | .0480 | .0486
(1,4,9,13,18) .0326 | .0682 | .0720 | .0620 | .0790 | .0482 | .0460 | .0504 | .0536
(2,1.75,1.5,1.25,1) | .1088 | .0804 | .0426 | .0554 | .0884 | .0526 | .0512 | .0600 | .0168
(8,6,4,2,1) 2114 | .0862 | .2180 | .0580 | .1000 | .0516 | .0502 | .0590 | .0404
(18,13,9,4.1) 2236 | .0920 | .5140 | .0618 | .1124 | .0560 | .0540 | .0582 | .0492
(1,1,1,1,1) 0506 | .0521 | .0420 | .0462 | .0608 | .0494 | .0474 | .0510 | .0470
(4,4,4,4,4) 0508 | .0530 | .0430 | .0494 | .0622 | .0556 | .0524 0534 | .0470
(9,9,9,9,9) 0504 | .0535 | .0466 | .0496 | .0672 | .0528 | .0496 | .0570 | .0474
7,9.11,13,15 (1,1.25,1.5,1.75,2) | .0378 | .0522 | .0518 | .0596 | .0584 | .0496 | .0490 | .0496 | .0588
(1,2,4,6,8) 0426 | .0528 | .2398 | .0770 | .0602 | .0484 | .0460 | .0514 | .0860
(1,4,9,13,18) 0448 | .0580 | .4958 | .0804 | .0702 | .0504 | .0490 | .0540 | .0822
(2,1.75,1.5,1.25,1) | .0926 | .0526 | .0488 | .0522 | .0638 | .0516 | .0510 | .0484 | .0442
(8,6,4,2,1) 1744 | L0612 | .2820 | .0650 | .0724 | .0508 | .0514 | .0472 | .0460
(18,13,9,4,1) 1832 | .0588 | .5740 | .0672 | .0732 | .0512 | .0476 | .0486 | .0
(1,1,1,1,1) 0486 | .0564 | .0304 | .0494 | .0590 | .0564 | .0512 | .0564 | .0
(4,4,4,4,4) 0474 | .0478 | .0310 | .0490 | .0510 | .0520 | .0470 0476 | .0622
(9,9,9,9.9) 0510 | .0542 | .0324 | .0516 | .0564 | .0540 | .0464 | .0532 | .0668
20,23,26,29,32 | (1,1.25,1.5,1.75,2) | .0438 | .0506 | .0390 | .0568 | .0524 | .0536 | .0512 | .0492 | .0834
(1,2,4,6,8) 0466 | .0436 | .2486 | .0726 | .0472 | .0532 | .0466 | .0448 | .0982
(1,4,9,13,18) 0496 | .0502 | .5488 | .0790 | .0556 | .0528 | .0496 | .0494 | .0918
(2,1.75,1.5,1.25,1) | .0778 | .0478 | .0448 | .0558 | .0582 | .0422 | .0422 0476 | 0482
(8,6,4,2,1) 1360 | .0466 | .2870 | .0736 | .0518 | .0488 | .0468 | .0560 | .0504
(18,13,9,4,1) 1310 | .0494 | .5864 | .0778 | .0638 | .0496 | .0476 | .0558 | .0

Table 4.Simulated type I error rates when k=5 and sample sizes are unequal
under nominal a=0.05

We observe the following from the numerical results in Tables 1, 2, 3 and 4. The CF
and SS tests seem to have a type I error probability exceeding the nominal level for
the balanced case and small sample sizes. In the case of extreme heteroscedasticity
the W, BF, GF and PB tests exceed the nominal level. However, the OS, OSR and
XW tests are superior to the other tests. The W, GF and PB tests also seem to
be very conservative, when the sample sizes are large. The CF, SS and BF tests
exceed the nominal level when the sample sizes are proportional to variances for
small sample sizes. The W, GF, OS, OSR, PB tests seem to be very conservative
not only for the small sample sizes but also for the large samples. However, the
XW test exceeds the nominal level for the large sample sizes. The CF, W, BF, SS
and GF tests exceed the nominal level when variances and sample sizes are inversly
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proportional. However, the OS, OSR and XW tests seem to be very conservative.
The W, GF and PB tests have similarly results when the sample sizes are large.
For a bigger value of k the CF, W, SS, BF, GF tests exceed the nominal level when
the sample sizes are small. The SS, BF and XW tests have similar results when the
sample sizes are large. The OS, OSR and PB tests seem to be very conservative
not only for the small sample sizes but also for the large sample sizes. For all cases
similar results were found. It appears that the PB, OS and OSR tests are superior
to the other tests.

3.2. Comparison Between The Powers Of The Tests. For each combination
of n; and o?the rejection rate of each testing procedure is calculated and compared
with the nominal level 0.05 when the means are not all equal. In this section we
use 5000 runs for each of the sample sizes and parameter configurations to alculate
the powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests. For k=3 and k=5
we provide the powers of these tests.

1 x o L e SeCE— . - - ——

Figure 1. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal a=0.05 for k=3, n=3, 5, 7 and o?=1, 4, 9
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Figure 2. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal a=0.05 for k=3, n=3, 5, 7 and 0?=9, 4, 1

Figure 3. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal a=0.05 for k=5, n=3, 4, 5, 6, 7 and 0?=1, 4, 9, 13, 18
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Figure 4. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal a=0.05 for k=5, n=3, 4, 5, 6, 7 and 07=18, 13, 9, 4, 1
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Figure 5. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests for k=3,
n=20, 25, 30 and o?=1, 4, 9
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Figure 6. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests for k=3,

n=20, 25, 30 and 07=9, 4, 1
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Figure 7. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests for k=5,

n=20, 23, 26, 29,32 and o2=1, 4, 9, 13,18
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Figure 8. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests for k=5,
n=20, 23, 26, 29,32 and 0?=18, 13, 9, 4, 1

[] 5 o 1% 1] =
b2 0

Figure 9. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal a=0.05 for k=3, n=4, 4, 4 and o?=1, 4, 9
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Figure 10. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal a=0.05 for k=3, n=30, 30, 30 and o?=1, 4, 9

== BF .

—— GF
— 05
—ca
——-35

=]

Li] & L] 16 il
[T (e R

Figure 11. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal a=0.05 for k=5, n=4, 4, 4, 4, 4 and 07=1, 4, 9, 13, 18
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Figure 12. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal a=0.05 for k=5, n=30, 30, 30, 30, 30 and 012:1, 4,9, 13, 18

We once again observe from these figures that the tests control the type I errors.
The OS and OSR tests are badly affected, especially with small and different sample
sizes. These tests appear to be less powerful than the other tests although their
type I error rates are close to the intended level 0.05. In most cases the SS test is
disregarded because of its type I error rates exceeding the intended level 0.05. The
other tests exhibit close power proporties provided the type I error rates are close
to the intended level 0.05. Powers of tests become different from each other when
the variances and sample sizes are inversely proportional for small sample sizes.
These differences increase, especially for bigger values of k. In most cases the GF,
W and PB tests appear to be more powerful than the other tests. In particular,
the GF test is superior to the other tests, except for small sample sizes and bigger
values of k, because its type I error rates exceed the intended level 0.05. In this
case the PB test is superior to the other tests.

4. CONCLUSION

In this simulation study for a range of choices of sample sizes and parameter con-
figurations we compared the performance of the above tests for testing the equality
of means of one-way ANOVA models under heteroscedasticity. The CF test is not
an appropriate test for heteroscedasticity because its type I error rates exceed the
intended level 0.05. The same is true for the SS test. The OS and OSR tests
appear to be less powerful than the other tests even though their type I error rates
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are close to the intended level 0.05, regardless of the sample sizes, value of the error
variances and the number of means being compared.

The W and PB and especially the GF tests appear to be more powerful than the
other tests when k=3 and the sample sizes are small (ny, n2, n3=3, 5, 7). The
W and PB tests are superior to the other tests when k=5 and the sample sizes
are small (n1, no, n3=3, 5, 7). When the sample sizes are large the GF, W and
PB tests are more powerful than the other tests when both £=3 and k=5. In this
case the XW test is also powerful when the variances and sample sizes are inversely
proportional.

Although the empirical type I errors of the tests based on the OS procedure are
close to their nominal level, the powers of these tests are not as high as those of
the GF, W and PB tests. For this reason, the GF, W and PB tests can be used
instead of tests based on the OS procedure.

OZET: ikiden fazla yigmin ortalamalarmin esitligi hipotezinin
testi amaciyla kullanilan klasik F testi, normallik ve y1gin varyanslarinin
homojenlik varsayimina dayanir. Bu varsayimlar 6zellikle varyanslarin
homojenlik varsayimi saglanmadiginda klasik F testinin kullanilma-
st uygun olmamaktadir. Bu durum o¢zellikle 6rneklem hacmi biiyiik
olmadiginda, ¢nemli bir sikint1 dogurmaktadir. Literatiirde bu
konuyla ilgili bir ¢ok test istatistigi geligtirilmigtir. Bu caligmada
Brown-Forsythe, Weerahandi'nin Genellestirilmis F, Parametrik
Bootstrap, Scott-Smith, One-Stage, One-Stage Range, Welch ve
Xu-Wang testleri tanitilmig ve testlerin farkl yigin parametre-
leri ve 6rnek hacimleri altinda deneysel I.tip hata oram ve testin
giicii bakimindan kargilagtirilmasi yapilmigtir.
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