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A SIMULATION STUDY ON TESTS FOR ONE-WAY ANOVA
UNDER THE UNEQUAL VARIANCE ASSUMPTION

ESRA YI¼GIT AND FIKRI GÖKPINAR

Abstract. The classical F-test to compare several population means depends
on the assumption of homogeneity of variance of the population and the nor-
mality. When these assumptions especially the equality of variance is dropped,
the classical F-test fails to reject the null hypothesis even if the data actu-
ally provide strong evidence for it. This can be considered a serious problem
in some applications, especially when the sample size is not large. To deal
with this problem, a number of tests are available in the literature. In this
study, the Brown-Forsythe, Weerahandi�s Generalized F, Parametric Boot-
strap, Scott-Smith, One-Stage, One-Stage Range, Welch and Xu-Wang�s Gen-
eralized F-tests are introduced and a simulation study is performed to compare
these tests according to type-1 errors and powers in di¤erent combinations of
parameters and various sample sizes.

1. INTRODUCTION

In applied statistics an experimenter wants to compare two or more populations
measured using independent samples. The classical F- (CF) test is used under the
assumption that the populations have normal distributions with the same variances.
In this paper we consider the problem of comparing the means of k populations with
the assumption of heteroscedastic variances.

The CF test fails to reject the null hypothesis even for large samples when the pop-
ulation variances are unequal. This is a serious problem, especially for biomedical
experiments in which one does not usually have large samples. In such applications
each data point can be so vital and expensive. Alternative methods are developed
due to this problem. Some of these test statistics�distribution is not known and the
p-value can be found by simulation (Weerahandi, 1995; Weerahandi, 2004). There
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16 ESRA YI ¼GIT AND FIKRI GÖKPINAR

are a large number of approximate tests (Chen and Chen, 1998; Chen, 2001; Tsui
and Weerahandi, 1989; Krishnamoorthy et al., 2006; Xu and Wang, 2007a, 2007b)
and exact tests (Bishop and Dudewicz, 1981; Welch, 1951; Scott and Smith, 1971;
Brown and Forsythe, 1974) in the literature. In practice, some exact procedures
such as the CF, Welch (W), Scott-Smith (SS) and Brown-Forsythe (BF) tests are
widely used. Alternative tests have been applied to solve a number of problems
when conventional methods are di¢ cult to apply or fail to provide exact solutions.

In this paper we carry out a simulation study to compare the size performance of
the CF, W, SS, BF, Chen-Chen�s One Stage (OS), Chen-Chen�s One Stage Range
(OSR), Weerahandi�s Generalized F (GF), Xu-Wang�s Generalized F (XW) and
Parametric Bootstrap (PB) tests when population variances are unequal in one-way
ANOVA problems. The type-I error rates and powers of the tests are compared us-
ing Monte Carlo simulation using various sample sizes and under various parameter
combinations.

2. TESTS FOR ONE-WAY ANOVA

Let Xi1; : : : ;Xinibe a random sample from N(�i; �
2
i ) i=1,. . . ,k. The problem of

interest involves testing

H0 : �1 = �2 = : : : = �k H1 : Not all �is are equal i = 1; : : : ; k (2.1)

The standardized between-group sum of squares and the standardized error sum of
squares are given in (2.2) and (2.3) when�2i s are unequal.

~Sb = ~Sb
�
�21; : : : ; �

2
k

�
=

kX
i=1

ni �X
2
i

�2i
�

�Pk
i=1

ni �Xi

�2i

�2
Pk

i=1
ni
�2i

(2.2)

~Se =

kX
i=1

niS
2
i

�2i
(2.3)

Most of the test statistics to test the equality of means under heteroscedasticity are
based on the standardized between-group sum of squares and standardized error
sum of squares. In the rest of this section test statistics are brie�y introduced. In
this section the W, SS and BF tests, whose distribution can be obtained theorically,
are given. GF test and the XW test based on the generalized F-test, whose p-values
are obtained by simulation, are given. The OS and OSR tests developed by Chen
and Chen (1998, 2001) based on Bishop and Dudewicz�s (1981) two-stage procedure
are investigated. Finally, the PB test developed by Krishnamoorthy et al. (2006)
is discussed.
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The Welch Test

If wi = ni
S2i
, Welch (1951) gives the following test statistics.
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~Sb
�
S21 ; : : : ; S
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1 + 2(k�2)
k2�1
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�2 (2.4)

If H 0 is true, then the distribution of W is Fk�1;f where

f =
1

3
k2�1

Pk
i=1

1
ni�1

�
1� wiP

wj

�2
For a given level �, and an observed value W h of W, this test rejects the H 0 in
(2.1) whenever the p-value is given as P (Fk�1;f iWh) h�.

The Scott-Smith Test

If S�2i = ni�1
ni�3S

2
i , Scott and Smith (1971) give the following test statistics.

Fs =
kX
i=1

ni
�
�Xi � �X

�2
S�2i

If H o is true, then the distribution of F s is �2k. For a given level �, and an observed
value fs of F s, this test rejects the H 0 in (2.1) whenever the p-value is given as
P (Fsifs) h�.

The Brown-Forsythe Test

Brown and Forsythe (1974) give the following test statistics.

B =
kX
i=1

ni
�
�Xi � �X

�2, kX
i=1

�
1� ni

n

�
S2i

If H 0 is true, then the distribution of B is Fk�1;v; where

v =

"
kX
i=1

�
1� ni

n

�
S2i

#2, kX
i=1

�
1� ni

n

�2
S4i

ni � 1
For a given level �, and an observed value Bh of B, this test rejects the H 0 in (2.1)
whenever the p-value is given as P (Fk�1;viBh) h�.
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Weerahandi�s Generalized F-test

The sample variances (MLEs) of the k populations are denoted by S2i , where

S2i =
1

ni

niX
i=1

�
Xij � �Xi

�2
:

De�ne

Bj =

�Pj
i=1

niS
2
i

�2i

�
�Pj+1

i=1
niS2i
�2i

� ; j = 1; : : : ; k � 1

It follows from (2.3) that Bj is a beta random variable with parameters
Pj

i=1
(ni�1)
2 and

(nj+1�1)
2 and that ~Se, Bj are all independent random variables. Note also that the

random variables niS
2
i

�2i
can be expressed as

n1S
2
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Therefore, the generalized p value can be expressed as
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(2.5)

where Hk�1;n�kis the cumulative distribution function of the F -distribution with
k-1 and N-k degrees of freedom. This test rejects the H 0 in (2.1) whenever ph�
(Weerahandi, 1995a).

Xu-Wang�s Generalized F-test

For a bigger value of k the type-I error probability of the generalized F-test ex-
ceeds the nominal level. Xu-Wang (2007a) developed some test statistics where its
empirical type-I error probability does not exceed its nominal level.

Denote va =
�
�1; �2; : : : ; �k�1

�0
and vb = 1k�1�k, where 1 k�1 is the

(k � 1)�1vector whose elements are all ones. Then null hypothesis in (2.1) is equal
to the null hypothesis as

H0 : va = vb
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The sample variances (MLEs) of the k populations are denoted by S2i , where

S2i =
1

ni

niX
i=1

�
Xij � �Xi

�2
.

De�ne

�Ya =
�
�X1; : : : ; �Xk�1

�0
; �Yb = 1k�1 �Xk;

Sa = diag

�
S21

n1 � 1
; : : : ;

S2k�1
nk�1 � 1

�
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Let ya, yb, sa and sb denote the observed values of �Ya; �Yb; Sa and Sb respectively.
T is a generalized test variable as

T = Y 0
�
(sa + sb)

�1=2
�
diag

�
s21
U1
; : : : ;

s2k�1
Uk�1

�
+
s2k
Uk
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0
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�
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�
Y

and the observed value of T is given as

t = (�ya � �yb)
0
(sa + sb)

�1
(�ya � �yb)

where Y � N (0; Ik�1) ; Ui � �2ni�1; i = 1; : : : ; k:
Under the null hypothesis in (2.1), the generalized p-value is given by

p = P (T � t)

and H0 is rejected if p <�.

The One-Stage Test

Chen and Chen (1998) developed the OS procedure since the number of samples
that are required at the second stage of two-stage procedure of Bishop and Dudewicz
(1981) can be large and impracticable.
For each population, the �rst (or any randomly chosen) n0 (2 � n0 �ni) observation
is chosen to calculate the usual sample mean and variance as
�Xi (n0) =

Pn0
j=1

Xij

n0
and S2i =

Pn0
j=1

(Xij� �Xi(n0))
2

(n0�1)
De�ne weights U i and V i for the observations in the ith sample as
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1
ni
+ 1

ni

s
ni�n0
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�
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� 1
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[k]
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Where S2[k]is the maximum of (S21 ; : : : ; S
2
k). Let the �nal weighted sample mean be

de�ned by
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~Xi =
nX
j=1

WijXij

where

Wij =

�
Ui 1 � j � n0
Vi n0hj � n

Chen and Chen (1998) give the following test statistics.
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Then we have
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!2
Under the null hypothesis in (2.1), it follows that ~F 1 is distributed as

Q =
kX
i=1

(ti � �t)2

which is a quadratic form in the independent student�s t variates each with n0-1
degrees of freedom (Chen and Chen, 1998). For a given level �, and an observed
value ~F 1hof ~F

1, this test rejects the H0 in (2.1) whenever the p-value is given as

P
�
Qk;n0 >

~F 1h

�
< �.

The One-Stage Range Test

In another procedure based on one stage, Chen (2001) gives the following test
statistics.

T1 =
~Xmax � ~Xminp

z�

where ~Xmax( ~Xmin) is the maximum (minumum) of ~X1; � � � ; ~Xk and z* is the max-
imum of S

2
1

n1
; : : : ;

S2k
nk
. Under the null hypothesis in (2.1), it follows that T 1 is dis-

tributed as
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R = max
1�i;j�k

j ti � tj j

which is the range of k independent student�s t variates each with n0-1 degrees of
freedom. For a given level �, and an observed value t1 of T 1, this test rejects the
H 0 in (2.1) whenever the p-value is given as P (Rk;n0�1 > t1) < � .

A Parametric Bootstrap Approach

In the case of population variances �2i s are unknown; a test statistic can be obtained
by replacing �2i in (2.2) by S

2
i and is given by

~Sb
�
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2
k

�
=

kX
i=1

ni �X
2
i

S2i
�

�Pk
i=1

ni �Xi

S2i

�2
Pk

i=1
ni
S2i

(2.6)

As the test statistic in (2.6) is location invariant, without loss of generality, we can

take the common mean to be zero. Let �XBi � N
�
0;

S2i
ni

�
and S2Bi � S2i �2ni�1

�
(ni � 1).

Then the parametric boostrap pivot variable can be obtained by replacing �X, S2i in
(2.6) by �XBi, S2Bi and is given by
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�XBi is distributed as Zi
�
Sip
ni

�
, where Zi is a standard normal random variable.

So the PB pivot variable in (2.7) is distributed as
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2
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H 0 is rejected if P
n
~SbB

�
Zi; �

2
ni�1 ; s

2
i

�
i ~sb
o
h� (Krishnamoorthy, 2006).

3. SIMULATION STUDY

In this section we compare the CF, W, SS, BF, GF, XW, OS, OSR and PB tests
according to type-1 errors and powers in di¤erent combinations of parameters and
sample sizes.
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3.1. Comparison between the type I error rates of the tests. In this section
we consider the balanced and unbalanced cases from smaller to larger sample sizes
where k=3 and k=5 for comparing the tests. The values for the variances vary over
a large range so that �21 < : : : < �

2
k and �

2
1 > : : : > �

2
k. For each combination of

ni and �2i the rejection rate of each testing procedure is calculated and compared
with the nominal level 0.05 when the means are all equal. To estimate the type I
error rates of the CF, W, SS, BF tests, we use simulation consisting of 5000 runs
for each of the sample sizes and parameter con�gurations. CF, W, SS, BF test
statistics are calculated from these generated data and type I errors are estimated
by the proportion of test statistics that exceed the critical values calculated from
the distributions. To estimate the type I error rates of the GF, PB, OS, OSR and
XW tests, we use a two-step simulation. For estimating the type I error rates of
the GF test we generate 5000 observed vectors

�
�x1; :::; �xk; s

2
1; :::; s

2
k

�
, and used 5000

runs for each observed vector to estimate the p value in (2.5). Finally the type I
error rate of the GF test are estimated by the proportion of the 5000 p-values that
are less than the nominal level �. The type I error rates of the PB, OS, OSR and
XW tests are similarly estimated. In both cases of equal and unequal variances for
k=3 and k=5 simulated type I error probabilities are given in tables 1, 2, 3 and 4.

ni �i CF W SS BF GF OS OSR PB XW
(1 ,1 ,1) .0494 .0422 .0360 .0348 .0324 .0464 .0494 .0412 .0150

(4,4 ,4) .0498 .0432 .0366 .0374 .0342 .0484 .0480 .0418 .0158

4,4 ,4 (9 ,9 ,9) .0492 .0388 .0366 .0338 .0332 .0462 .0466 .0372 .0132

(1,1 .25,1 .5) .0565 .0443 .0386 .0417 .0363 .0481 .0450 .0432 .0166

(1,2 ,4) .0798 .0521 .0975 .0571 .0431 .0435 .0418 .0498 .0368

(1,4 ,9) .0932 .0674 .2996 .0588 .0652 .0548 .0558 .0620 .0446

(1,1 ,1) .0498 .0492 .0314 .0490 .0460 .0490 .0430 .0492 .0370

(4,4 ,4) .0496 .0526 .0322 .0501 .0480 .0460 .0434 .0540 .0380

10,10,10 (9,9 ,9) .0499 .0532 .0292 .0502 .0470 .0510 .0478 .0530 .0394

(1,1 .25,1 .5) .0548 .0522 .0376 .0506 .0482 .0502 .0508 .0532 .0426

(1,2 ,4) .0730 .0502 .1446 .0576 .0494 .0490 .0458 .0504 .0610

(1,4 ,9) .0760 .0448 .4202 .0606 .0478 .0500 .0472 .0442 .0680

(1,1 ,1) .0474 .0490 .0224 .0474 .0466 .0470 .0460 .0484 .0532

(4,4 ,4) .0476 .0479 .0210 .0476 .0466 .0453 .0440 .0469 .0480

30,30,30 (9,9 ,9) .0474 .0490 .0224 .0474 .0466 .0470 .0456 .0484 .0504

(1,1 .25,1 .5) .0490 .0476 .0260 .0480 .0464 .0510 .0486 .0482 .0640

(1,2 ,4) .0694 .0499 .1481 .0645 .0493 .0458 .0446 .0505 .0708

(1,4 ,9) .0724 .0510 .4504 .0658 .0510 .0466 .0434 .0500 .0756

Table 1.Simulated type I error rates when k=3 and sample sizes are equal under
nominal � = 0:05
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ni �i CF W SS BF GF OS OSR PB XW
(1 ,1 ,1) .0496 .0508 .0172 .0446 .0390 .0524 .0514 .0524 .0166

(4,4 ,4) .0476 .0510 .0155 .0452 .0396 .0500 .0488 .0516 .0160

3,5 ,7 (9 ,9 ,9) .0485 .0504 .0144 .0396 .0342 .0488 .0464 .0508 .0178

(1,1 .25,1 .5) .0336 .0500 .0174 .0410 .0322 .0468 .0450 .0486 .0166

(1,2 ,4) .0292 .0512 .0264 .0264 .0406 .0468 .0456 .0494 .0248

(1,4 ,9) .0332 .0566 .0350 .0638 .0486 .0468 .0444 .0542 .0452

(1.5 ,1 .25,1) .0792 .0586 .0214 .0500 .0448 .0522 .0510 .0592 .0266

(4,2 ,1) .1852 .0680 .0908 .0712 .0568 .0524 .0506 .0676 .0368

(9,4 ,1) .2332 .0766 .3554 .0728 .0734 .0502 .0484 .0646 .0432

(1,1 ,1) .0486 .0492 .0302 .0454 .0448 .0502 .0482 .0498 .0158

(4,4 ,4) .0496 .0504 .0298 .0408 .0452 .0536 00502 .0502 .0358

(9,9 ,9) .0490 .0490 .0296 .0470 .0454 .0454 .0430 .0488 .0396

7,10,13 (1,1 .25,1 .5) .0388 .0460 .0344 .0476 .0426 .0502 .0474 .0460 .0142

(1,2 ,4) .0300 .0500 .1284 .0570 .0446 .0478 .0476 .0488 .0560

(1,4 ,9) .0314 .0534 .3746 .0632 .0524 .0484 .0472 .0502 .0640

(1.5 ,1 .25,1) .0816 .0560 .0364 .0580 .0388 .0540 .0502 .0524 .0390

(4,2 ,1) .1462 .0540 .1360 .0632 .0526 .0516 .0504 .0588 .0470

(9,4 ,1) .1688 .0548 .4136 .0666 .0580 .0512 .0516 .0510 .0534

(1,1 ,1) .0494 .0534 .0254 .0540 .0506 .0502 .0492 .0522 .0500

(4,4 ,4) .0505 .0460 .0226 .0474 .0442 .0476 .0456 .0452 .0506

(9,9 ,9) .0496 .0478 .0224 .0468 .0462 .0456 .0472 .0470 .0536

20,25,30 (1,1 .25,1 .5) .0418 .0528 .0314 .0540 .0502 .0494 .0506 .0514 .0570

(1,2 ,4) .0386 .0470 .1370 .0598 .0458 .0484 .0466 .0456 .0672

(1,4 ,9) .0394 .0470 .4254 .0634 .0492 .0472 .0470 .0482 .0684

(1.5 ,1 .25,1) .0694 .0521 .0305 .0559 .0509 .0507 .0488 .0502 .0478

(4,2 ,1) .1110 .0482 .1446 .0652 .0486 .0542 .0488 .0468 .0454

(9,4 ,1) .1248 .0464 .4456 .0678 .0484 .0520 .0484 .0454 .0470

.

Table 2. Simulated type I error rates when k=3 and sample sizes are unequal
under nominal �=0.05
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ni �i CF W SS BF GF OS OSR PB XW
(1 ,1 ,1 ,1 ,1) .0486 .0472 .0494 .0334 .0618 .0484 .0480 .0322 .0162

(4,4 ,4 ,4 ,4) .0480 .0472 .0472 .0344 .0568 .0530 .0538 .0356 .0120

(9,9 ,9 ,9 ,9) .0462 .0522 .0510 .0318 .0640 .0510 .0516 .0358 .0108

4,4 ,4 ,4 ,4 (1 ,1 .25,1 .5 ,1 .75,2) .0638 .0634 .0640 .0442 .0740 .0494 .0494 .0470 .0226

(1,2 ,4 ,6 ,8) .0920 .0804 .1899 .0571 .0936 .0465 .0467 .0528 .0342

(1,4 ,9 ,13,18) .0978 .0856 .4198 .0556 .1092 .0538 .0532 .0580 .0358

(1,1 ,1 ,1 ,1) .0486 .0518 .0420 .0468 .0586 .0516 .0460 .0496 .0522

(4,4 ,4 ,4 ,4) .0488 .0520 .0404 .0470 .0580 .0492 .0434 .0494 .0484

10,10,10,10,10 (9,9 ,9 ,9 ,9) .0498 .0548 .0436 .0488 .0616 .0498 .0442 .0506 .0508

(1,1 .25,1 .5 ,1 .75,2) .0626 .0518 .0494 .0570 .0610 .0512 .0518 .0488 .0586

(1,2 ,4 ,6 ,8) .0852 .0514 .1844 .0566 .0644 .0512 .0518 .0488 .0760

(1,4 ,9 ,13,18) .0880 .0516 .5476 .0664 .0684 .0496 .0490 .0490 .0768

(1,1 ,1 ,1 ,1) .0494 .0484 .0300 .0490 .0510 .0476 .0504 .0484 .0666

(4,4 ,4 ,4 ,4) .0494 .0500 .0310 .0490 .0538 .0468 .0472 .0504 .0736

(9,9 ,9 ,9 ,9) .0504 .0550 .0318 .0496 .0570 .0532 .0528 .0548 .0688

30,30,30,30,30 (1,1 .25,1 .5 ,1 .75,2) .0582 .0484 .0376 .0562 .0516 .0490 .0476 .0488 .0832

(1,2 ,4 ,6 ,8) .0830 .0494 .2822 .0790 .0542 .0474 .0462 .0470 .1044

(1,4 ,9 ,13,18) .0854 .0502 .5812 .0814 .0502 .0538 .0536 .0486 .1000

.

Table 3.Simulated type I error rates when k=5 and sample sizes are equal under
nominal �=0.05
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ni �i CF W SS BF GF OS OSR PB XW
(1 ,1 ,1 ,1 ,1) .0466 .0592 .0326 .0378 .0656 .0452 .0442 .0462 .0132

(4,4 ,4 ,4 ,4) .0500 .0630 .0334 .0394 .0686 .0468 .0454 .0470 .0164

(9,9 ,9 ,9 ,9) .0504 .0636 .0336 .0410 .0666 .0462 .0450 .0496 .0108

3,4 ,5 ,6 ,7 (1 ,1 .25,1 .5 ,1 .75,2) .0356 .0548 .0330 .0454 .0650 .0490 .0486 .0402 .0210

(1,2 ,4 ,6 ,8) .0380 .0606 .0616 .0650 .0688 .0460 .0454 .0480 .0486

(1,4 ,9 ,13,18) .0326 .0682 .0720 .0620 .0790 .0482 .0460 .0504 .0536

(2,1 .75,1 .5 ,1 .25,1) .1088 .0804 .0426 .0554 .0884 .0526 .0512 .0600 .0168

(8,6 ,4 ,2 ,1) .2114 .0862 .2180 .0580 .1000 .0516 .0502 .0590 .0404

(18,13,9 ,4 ,1) .2236 .0920 .5140 .0618 .1124 .0560 .0540 .0582 .0492

(1,1 ,1 ,1 ,1) .0506 .0521 .0420 .0462 .0608 .0494 .0474 .0510 .0470

(4,4 ,4 ,4 ,4) .0508 .0530 .0430 .0494 .0622 .0556 .0524 .0534 .0470

(9,9 ,9 ,9 ,9) .0504 .0535 .0466 .0496 .0672 .0528 .0496 .0570 .0474

7,9 ,11,13,15 (1,1 .25,1 .5 ,1 .75,2) .0378 .0522 .0518 .0596 .0584 .0496 .0490 .0496 .0588

(1,2 ,4 ,6 ,8) .0426 .0528 .2398 .0770 .0602 .0484 .0460 .0514 .0860

(1,4 ,9 ,13,18) .0448 .0580 .4958 .0804 .0702 .0504 .0490 .0540 .0822

(2,1 .75,1 .5 ,1 .25,1) .0926 .0526 .0488 .0522 .0638 .0516 .0510 .0484 .0442

(8,6 ,4 ,2 ,1) .1744 .0612 .2820 .0650 .0724 .0508 .0514 .0472 .0460

(18,13,9 ,4 ,1) .1832 .0588 .5740 .0672 .0732 .0512 .0476 .0486 .0526

(1,1 ,1 ,1 ,1) .0486 .0564 .0304 .0494 .0590 .0564 .0512 .0564 .0570

(4,4 ,4 ,4 ,4) .0474 .0478 .0310 .0490 .0510 .0520 .0470 .0476 .0622

(9,9 ,9 ,9 ,9) .0510 .0542 .0324 .0516 .0564 .0540 .0464 .0532 .0668

20,23,26,29,32 (1,1 .25,1 .5 ,1 .75,2) .0438 .0506 .0390 .0568 .0524 .0536 .0512 .0492 .0834

(1,2 ,4 ,6 ,8) .0466 .0436 .2486 .0726 .0472 .0532 .0466 .0448 .0982

(1,4 ,9 ,13,18) .0496 .0502 .5488 .0790 .0556 .0528 .0496 .0494 .0918

(2,1 .75,1 .5 ,1 .25,1) .0778 .0478 .0448 .0558 .0582 .0422 .0422 .0476 .0482

(8,6 ,4 ,2 ,1) .1360 .0466 .2870 .0736 .0518 .0488 .0468 .0560 .0504

(18,13,9 ,4 ,1) .1310 .0494 .5864 .0778 .0638 .0496 .0476 .0558 .0504

.

Table 4.Simulated type I error rates when k=5 and sample sizes are unequal
under nominal �=0.05

We observe the following from the numerical results in Tables 1, 2, 3 and 4. The CF
and SS tests seem to have a type I error probability exceeding the nominal level for
the balanced case and small sample sizes. In the case of extreme heteroscedasticity
the W, BF, GF and PB tests exceed the nominal level. However, the OS, OSR and
XW tests are superior to the other tests. The W, GF and PB tests also seem to
be very conservative, when the sample sizes are large. The CF, SS and BF tests
exceed the nominal level when the sample sizes are proportional to variances for
small sample sizes. The W, GF, OS, OSR, PB tests seem to be very conservative
not only for the small sample sizes but also for the large samples. However, the
XW test exceeds the nominal level for the large sample sizes. The CF, W, BF, SS
and GF tests exceed the nominal level when variances and sample sizes are inversly
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proportional. However, the OS, OSR and XW tests seem to be very conservative.
The W, GF and PB tests have similarly results when the sample sizes are large.
For a bigger value of k the CF, W, SS, BF, GF tests exceed the nominal level when
the sample sizes are small. The SS, BF and XW tests have similar results when the
sample sizes are large. The OS, OSR and PB tests seem to be very conservative
not only for the small sample sizes but also for the large sample sizes. For all cases
similar results were found. It appears that the PB, OS and OSR tests are superior
to the other tests.

3.2. Comparison Between The Powers Of The Tests. For each combination
of ni and �2i the rejection rate of each testing procedure is calculated and compared
with the nominal level 0.05 when the means are not all equal. In this section we
use 5000 runs for each of the sample sizes and parameter con�gurations to alculate
the powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests. For k=3 and k=5
we provide the powers of these tests.

Figure 1. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal �=0.05 for k=3, n=3, 5, 7 and �2i=1, 4, 9
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Figure 2. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal �=0.05 for k=3, n=3, 5, 7 and �2i=9, 4, 1

Figure 3. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal �=0.05 for k=5, n=3, 4, 5, 6, 7 and �2i=1, 4, 9, 13, 18
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Figure 4. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal �=0.05 for k=5, n=3, 4, 5, 6, 7 and �2i=18, 13, 9, 4, 1

Figure 5. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests for k=3,
n=20, 25, 30 and �2i=1, 4, 9
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Figure 6. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests for k=3,
n=20, 25, 30 and �2i=9, 4, 1

Figure 7. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests for k=5,
n=20, 23, 26, 29,32 and �2i=1, 4, 9, 13,18
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Figure 8. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests for k=5,
n=20, 23, 26, 29,32 and �2i=18, 13, 9, 4, 1

Figure 9. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal �=0.05 for k=3, n=4, 4, 4 and �2i=1, 4, 9
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Figure 10. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal �=0.05 for k=3, n=30, 30, 30 and �2i=1, 4, 9

Figure 11. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal �=0.05 for k=5, n=4, 4, 4, 4, 4 and �2i=1, 4, 9, 13, 18
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Figure 12. Powers of the CF, W, SS, BF, OS, OSR, GF, PB, XW tests under
nominal �=0.05 for k=5, n=30, 30, 30, 30, 30 and �2i=1, 4, 9, 13, 18

We once again observe from these �gures that the tests control the type I errors.
The OS and OSR tests are badly a¤ected, especially with small and di¤erent sample
sizes. These tests appear to be less powerful than the other tests although their
type I error rates are close to the intended level 0.05. In most cases the SS test is
disregarded because of its type I error rates exceeding the intended level 0.05. The
other tests exhibit close power proporties provided the type I error rates are close
to the intended level 0.05. Powers of tests become di¤erent from each other when
the variances and sample sizes are inversely proportional for small sample sizes.
These di¤erences increase, especially for bigger values of k. In most cases the GF,
W and PB tests appear to be more powerful than the other tests. In particular,
the GF test is superior to the other tests, except for small sample sizes and bigger
values of k, because its type I error rates exceed the intended level 0.05. In this
case the PB test is superior to the other tests.

4. CONCLUSION

In this simulation study for a range of choices of sample sizes and parameter con-
�gurations we compared the performance of the above tests for testing the equality
of means of one-way ANOVA models under heteroscedasticity. The CF test is not
an appropriate test for heteroscedasticity because its type I error rates exceed the
intended level 0.05. The same is true for the SS test. The OS and OSR tests
appear to be less powerful than the other tests even though their type I error rates
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are close to the intended level 0.05, regardless of the sample sizes, value of the error
variances and the number of means being compared.

The W and PB and especially the GF tests appear to be more powerful than the
other tests when k=3 and the sample sizes are small (n1, n2, n3=3, 5, 7). The
W and PB tests are superior to the other tests when k=5 and the sample sizes
are small (n1, n2, n3=3, 5, 7). When the sample sizes are large the GF, W and
PB tests are more powerful than the other tests when both k=3 and k=5. In this
case the XW test is also powerful when the variances and sample sizes are inversely
proportional.

Although the empirical type I errors of the tests based on the OS procedure are
close to their nominal level, the powers of these tests are not as high as those of
the GF, W and PB tests. For this reason, the GF, W and PB tests can be used
instead of tests based on the OS procedure.

ÖZET: ·Ikiden fazla y¬¼g¬n¬n ortalamalar¬n¬n eşitli¼gi hipotezinin
testi amac¬yla kullan¬lan klasik F testi, normallik ve y¬¼g¬n varyanslar¬n¬n
homojenlik varsay¬m¬na dayan¬r. Bu varsay¬mlar özellikle varyanslar¬n
homojenlik varsay¬m¬sa¼glanmad¬¼g¬nda klasik F testinin kullan¬lma-
s¬uygun olmamaktad¬r. Bu durum özellikle örneklem hacmi büyük
olmad¬¼g¬nda, önemli bir s¬k¬nt¬ do¼gurmaktad¬r. Literatürde bu
konuyla ilgili bir çok test istatisti¼gi geli̧stirilmi̧stir. Bu çal¬̧smada
Brown-Forsythe, Weerahandi�nin Genelleştirilmi̧s F, Parametrik
Bootstrap, Scott-Smith, One-Stage, One-Stage Range, Welch ve
Xu-Wang testleri tan¬t¬lm¬̧s ve testlerin farkl¬y¬¼g¬n parametre-
leri ve örnek hacimleri alt¬nda deneysel I.tip hata oran¬ve testin
gücü bak¬m¬ndan karş¬laşt¬r¬lmas¬yap¬lm¬̧st¬r.
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