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ON THE CURVATURES OF TUBULAR SURFACE WITH
BISHOP FRAME

FATIH DOĞAN AND YUSUF YAYLI

Abstract. A canal surface is the envelope of a moving sphere with varying
radius, defined by the trajectory C(t) (spine curve) of its center and a radius
function r(t) and it is parametrized through Frenet frame of the spine curve
C(t). If the radius function r(t) = r is a constant, then the canal surface is
called a tube or tubular surface. In this work, we investigate tubular surface
with Bishop frame in place of Frenet frame and afterwards give some charac-
terizations about special curves lying on this surface

1. Introduction

Canal surfaces are useful for representing long thin objects, e.g., pipes, poles,
ropes, 3D fonts or intestines of body. Canal surfaces are also frequently used in
solid and surface modelling for CAD/CAM. Representative examples are natural
quadrics, torus, tubular surfaces and Dupin cyclides.
Maekawa et.al. [6] researched necessary and suffi cient conditions for the regular-

ity of pipe (tubular) surfaces. More recently, Xu et.al. [8] studied these conditions
for canal surfaces and examined principle geometric properties of these surfaces like
computing the area and Gaussian curvature.
Gross [3] gave the concept of generalized tubes (briefly GT) and classified them in

two types as ZGT and CGT. Here, ZGT refers to the spine curve (the axis) that has
torsion-free and CGT refers to tube that has circular cross sections. He investigated
the properties of GT and showed that parameter curves of a generalized tube are
also lines of curvature if and only if the spine curve has torsion free (planar).
Bishop [1] displayed that there exists orthonormal frames which he called rela-

tively paralled adapted frames other than the Frenet frame and compared features
of them with the Frenet frame.
This paper is organized as follows. We introduce canal and tubular surfaces

in section 2. Section 3 gives us information concerning the curvatures of tubular
surface with the Frenet frame. In section 4, we define tubular surface with respect
to the Bishop frame. Subsequently, we compute the curvatures of this new tubular
surface and give some characterizations regarding special curves lying on it.
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2. Preliminaries

Initially, we parametrize a canal surface via characteristic circles of it. Later, we
define a tube as a special case of the canal surface. A canal surface is defined as
the envelope of a family of one parameter spheres. Alternatively, a canal surface is
the envelope of a moving sphere with varying radius, defined by the trajectory C(t)
of its center and a radius function r(t). This moving sphere S(t) touches the canal
surface at a characteristic circle K(t). If the radius function r(t) = r is a constant,
then the canal surface is called a tube or pipe surface.
Since the canal surface K(s, θ) is the envelope of a family of one parameter

spheres with the center C(t) and radius function r(t), a surface point p = K(t, θ) ∈
E3 satisfies the following equations.

Figure 1.[4] A circle K(t) on the sphere S(t)∥∥∥→p − C(t)
∥∥∥ = r(t)

(
→
p − C(t)) � C ′

(t) + r(t)r
′
(t) = 0. (2.1)

Now, we decompose the canal surface into a family of characteristic circles. Let
M(t) be center of characteristic circles K(t). For a point p = K(t, θ), the vector
−−−−−−→
C(t)M(t) is the orthogonal projection of

−−−→
C(t)p onto the tangent C

′
(t) as obtained

below.

−−−−−−→
C(t)M(t) =

−−−→
C(t)p � C ′

(t)

C ′(t) � C ′(t)
C

′
(t)

M(t)− C(t) =
(p− C(t) � C ′

(t)

C ′(t) � C ′(t)
C

′
(t).

By Eq (2.1), because (p−C(t)) �C ′
(t) = −r(t)r′(t) we get the center M(t) and the

radius function R(t) of characteristic circles as

M(t) = C(t) + r(t) cosα(t)
C

′
(t)

‖C ′(t)‖ ; cosα(t) = − r
′
(t)

‖C ′(t)‖

R(t) = r(t) sinα(t) = ∓r(t)

√
‖C ′(t)‖2 − r′(t)2

‖C ′(t)‖ ,
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where α(t) is the angle between
−−−→
C(t)p and C

′
(t). Thus, the canal surface is para-

metrized as follows.

K(t, θ) = M(t) +R(t) (cos θN(t) + sin θB(t))

K(t, θ) = C(t)− r(t)r
′
(t)

C
′
(t)

‖C ′(t)‖2
∓ r(t)

√
‖C ′(t)‖2 − r′(t)2

‖C ′(t)‖ (cos θN + sin θB)

(2.2)
where N(t) and B(t) are the principal normal and binormal to C(t), respectively.
Alternatively, N(t) and B(t) are the basis vectors of the plane containing character-

istic circle. If the spine curve C(t) has an arclenght parametrization (
∥∥∥C ′

(t)
∥∥∥ = 1),

then the canal surface is reparametrized as

K(s, θ) = C(s)− r(s)r
′
(s)T (s)∓ r(s)

√
1− r′(s)2 (cos θN(s) + sin θB(s)) . (2.3)

In the event r(t) = r is a constant, the canal surface is called a tube or pipe surface
and it turns into the form

L(s, θ) = C(s) + r (cos θN(s) + sin θB(s)) , 0 ≤ θ < 2π. (2.4)

Let T (s) be tangent to C(s) and let N1(s) be arbitrary orthogonal unit vector
to T (s). If N2(s) is orthogonal to both T (s) and N1(s), then N2(s) = T (s)×N1(s).
This means that {T (s), N1(s), N2(s)} is an orthonormal frame. The frame is called
Bishop frame (relatively parallel adapted frame accordance with Frenet frame). If
we rotate the Bishop frame by the angle φ around the tangent vector T , we obtain
the Frenet frame as below.TN

B

 =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 TN1
N2


The derivative formulas for Frenet frame are given by

T
′
(s) = κ(s)N(s)

N
′
(s) = −κ(s)T (s) + τ(s)B(s) (2.5)

B
′
(s) = −τ(s)N(s),

where κ and τ are the curvature and the torsion of the spine curve C(s), respectively.
Let k1(s) and k2(s) be Bishop parameters (normal development). The derivative
formulas which correspond to Bishop frame and Bishop parameters are as follows.

T
′
(s) = k1(s)N1(s) + k2(s)N2(s)

N
′

1(s) = −k1(s)T (s)

N
′

2(s) = −k2(s)T (s) (2.6)

k1 = κ cosφ

k2 = κ sinφ

τ = φ
′
.

In next sections, first we will give the curvatures of the tube L(s, θ). Afterwards,
by taking N1(s) and N2(s) instead of N(s) and B(s) we will compute the curvatures
of this new tubular surface

P (s, θ) = C(s) + r (cos θN1(s) + sin θN2(s)) , 0 ≤ θ < 2π (2.7)
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and obtain some characterizations as regards special curves lying on P (s, θ).

3. The curvatures of tubular surfaces with respect to the Frenet
frame

For the tubular surface L(s, θ), the surface normal vector U and the coeffi cients
of the first and second fundamental form are given by

U =
Ls × Lθ
‖Ls × Lθ‖

= − cos θN − sin θB

Lθ = r(− sin θN + cos θB)

Ls = (1− rκ cos θ)T + τLθ

Lθθ = −r(cos θN + sin θB)

Lss =
(
−rκ

′
cos θ + rκτ sin θ

)
T +

[
κ− r(κ2 + τ2) cos θ − rτ ′ sin θ

]
N

+
(
−rτ2 sin θ + rτ ′ cos θ

)
B

E = Ls � Ls = (1− rκ cos θ)2 + r2τ2 (3.1)

F = Ls � Lθ = r2τ

G = Lθ � Lθ = r2

e = U � Lss = −κ cos θ(1− rκ cos θ) + rτ2

f = U � Lsθ = rτ

g = U � Lθθ = r

‖Ls × Lθ‖2 = EG− F 2 = r2(1− rκ cos θ)2. (3.2)

Theorem 3.1. L(s, θ) is a regular tube if and only if 1− rκ cos θ 6= 0.

Proof. For a regular surface, EG− F 2 6= 0. By Eq (3.2), we have

EG− F 2 = r2(1− rκ cos θ)2.

Since EG− F 2 6= 0 and r > 0, L(s, θ) is a regular tube if and only if

1− rκ cos θ 6= 0.

�

Thus, the Gaussian and mean curvature for a regular tube L(s, θ) are computed
as

K =
eg − f2
EG− F 2 =

−κ cos θ

r(1− rκ cos θ)
(3.3)

H =
eG− 2fF + gE

2(EG− F 2) =
1

2

[
1

r
+Kr

]
.
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Theorem 3.2. If the Gaussian curvature K is zero, then L(s, θ) is generated by a
moving sphere with the radius r = 1.

Proof. When K = 0, from Eq (3.3) cos θ = 0 and so the normal of L(s, θ) becomes

U = − cos θN − sin θB = ±B.

Again, when cos θ = 0 it follows that

L(s, θ)− C(s) = r (cos θN(s) + sin θB(s))

U = ±rB
±B = ±rB.

From the last equation we must have r = 1. �

Theorem 3.3. Let L(s, θ) be a regular tube. In that case, we have the following.
(1) The s−parameter curves of L(s, θ) are also asymptotic curves if and only if

τ2

κ
=

1

r
cos θ(1− rκ cos θ).

(2) The θ−parameter curves of L(s, θ) cannot also be asymptotic curves.

Proof. (1) A curve α lying on a surface is an asymptotic curve if and only if the
acceleration vector α

′′
is tangent to the surface that is U � α′′

= 0. Then, for the
s−parameter curves we have

U � Lss = −κ cos θ(1− rκ cos θ) + rτ2 = 0. (3.4)

From this, we get
τ2

κ
=

1

r
cos θ(1− rκ cos θ) for s−parameter curves.

(2) On account of the fact that U � Lθθ = r 6= 0, θ−parameter curves cannot also
be asymptotic curves.

Here, the equation
τ2

κ
=

1

r
cos θ(1 − rκ cos θ) is satisfied for a circular helix C(s).

In the case of general helix, we get the curvature of spine curve C(s) as

κ =
cos θ

r(tan2 β + cos2 θ)
,

where β is the angle between tangent line T and the fixed direction of the general
helix.

τ

κ
= tanβ is a constant for a general helix. Hence, if we substitute this in

the equation
τ2

κ
=

1

r
cos θ(1− rκ cos θ), it gathers that

r
(
tan2 β + cos2 θ

)
κ = cos θ.

In this situation, we obtain the curvature as κ(s) =
cos θ

r(tan2 β + cos2 θ)
. Because θ

and β are constants, it follows that κ(s) is a constant. Therefore,

τ = κ tanβ =
tanβ cos θ

r(tan2 β + cos2 θ)

is also a constant. We see that the general helix becomes a circular helix and finally
the equation is satisfied for a circular helix. �
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Theorem 3.4. Let L(s, θ) be a regular tube.
(1) The θ−parameter curves of L(s, θ) are also geodesics.
(2) The s−parameter curves are also geodesics of L(s, θ) if and only if the curvatures
of C(s) satisfy the equation

r cos2 θκ2 − 2 cos θκ+ rτ2 = c,

where c is a constant.

Proof. A curve α lying on a surface is a geodesic curve if and only if the acceleration
vector α

′′
is normal to the surface. This means that α

′′
and the surface normal U

are linearly dependent namely U×α′′
= 0. In this case, for the s− and θ−parameter

curves we conclude

U × Lθθ = r sin θ cos θT − r sin θ cos θT = 0

U × Lss = [κ sin θ(1− rκ cos θ)− rτ ′]T + [rκ
′
sin θ cos θ − rκτ sin2 θ]N(3.5)

+[−rκ
′
cos2 θ + rκτ sin θ cos θ]B.

(1) As immediately seen above, θ−parameter curves of L(s, θ) are also geodesics.
(2) Since {T,N,B} is an orthonormal basis, U × Lss = 0 if and only if

κ sin θ(1− rκ cos θ)− rτ ′ = 0

r sin θ[κ
′
cos θ − κτ sin θ] = 0 (3.6)

r cos θ[κ
′
cos θ − κτ sin θ] = 0

By the last two equations we have κ
′
cos θ − κτ sin θ = 0. If this equation is solved

with the first equation of (3.6) it concludes that

cos θκ
′
− r cos2 θκκ

′
− rττ ′ = 0.

Because θ is a constant, if we take integral of the above differential equation we
obtain

r cos2 θκ2 − 2 cos θκ+ rτ2 = c.

It is clear that this equation is satisfied for a circular helix or a circle C(s). �

Definition 3.5. A generalized tube around the spine curve Γ(s) is defined as

X(s, θ) = Γ(s) + u(θ) (cos θN(s) + sin θB(s)) , 0 ≤ θ < 2π (3.7)

where u is twice differentiable, u(θ) > 0 and u(0) = u(2π) [3].
Let U be the normal vector field of the generalized tube X(s, θ). In that case,

Xθ = (1− κu cos θ)T − uτ sin θN + uτ cos θB

Xs = (u
′
cos θ − u sin θ)N + (u

′
sin θ + u cos θ)B (3.8)

U = Xθ ×Xs = uu
′
τT + (1− κu cos θ)

 (
u
′
sin θ + u cos θ

)
N

+
(
u sin θ − u′ cos θ

)
B


F = Xs �Xθ = u2τ (3.9)

f = U �Xsθ =
1

‖U‖τκu
2(u

′
sin θ + u cos θ).
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Theorem 3.6 (Line of Curvature). The directions of the parameter curves at a
non-umbilical point on a patch are in the direction of the principal directions (line
of curvature) if and only if F = f = 0 at the point, where F and f are the respective
first and second fundamental coeffi cients [3].

Proof. Weingarten equations are given by

−S(xu) = Uu =
fF − eG
EG− F 2xu +

eF − fE
EG− F 2xv (3.10)

−S(xv) = Uv =
gF − fG
EG− F 2xu +

fF − gE
EG− F 2xv.

�

(=⇒) Assume that the directions of the parameter curves at a non-umbilical
point on a patch are in the direction of the principal directions. In this case, from
the Weingarten equations and definition of line of curvature we have

S(xu) = − fF − eG
EG− F 2xu

S(xv) = − fF − gE
EG− F 2xv

This means that
eF − fE
EG− F 2 =

gF − fG
EG− F 2 = 0 in Eq (3.10). By the last two equations

we obtain

eF − fE = 0

gF − fG = 0.

From this, F = f = 0.
(⇐=) Let F = f = 0 at a non-umbilical point on a patch. By the Weingarten
equations it follows that

S(xu) =
e

E
xu

S(xv) =
g

G
xv.

Then, u− and v−parameter curves are lines of curvature concurrently.
We view that the parameter curves of a tube or generalized tube are also lines

of curvature if and only if the spine curve is planar. For the tube L(s, θ), we have

F = Ls � Lθ = r2τ

f = rτ .

Also, for the generalized tube X(s, θ) we have

F = u2τ

f =
1

‖U‖τκu
2(u

′
sin θ + u cos θ).

Truthfully, in both two cases, F = f = 0 if and only if the torsion τ of the spine
curve is zero, i.e., the spine curve is planar.
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4. The curvatures of tubular surfaces with respect to the Bishop
frame

From this time, we will compute the curvatures of tubular surfaces with Bishop
frame and then give some characterizations relative to it. Let P (s, θ) be a tubular
surface with Bishop frame. By applying Eq (2.6), the first and second derivatives
of P (s, θ) with respect to s and θ are obtained as

Ps = (1− rk1 cos θ − rk2 sin θ)T

Pθ = r(− sin θN1 + cos θN2)

Pss = −r
(
k
′

1 cos θ + k
′

2 sin θ
)
T + k1(1− rk1 cos θ − rk2 sin θ)N1 (4.1)

+k2(1− rk1 cos θ − rk2 sin θ)N2

Psθ = (rk1 sin θ − rk2 cos θ)T

Pθθ = −r(cos θN1 + sin θN2).

Since T ×N1 = N2 and T ×N2 = −N1, the cross product of Ps and Pθ is that

Ps × Pθ = −r(1− rk1 cos θ − rk2 sin θ) [cos θN1 + sin θN2] . (4.2)

For this reason, the normal vector field U and the coeffi cients of the first and second
fundamental form are computed as

U =
Ps × Pθ
‖Ps × Pθ‖

= − cos θN1 − sin θN2

E = Ps � Ps = (1− rk1 cos θ − rk2 sin θ)2

F = Ps � Pθ = 0

G = Pθ � Pθ = r2 (4.3)

e = U � Pss = − (k1 cos θ + k2 sin θ) (1− rk1 cos θ − rk2 sin θ)

f = U � Psθ = 0

g = U � Pθθ = r.

Theorem 4.1. P (s, θ) is a regular tube if and only if k1 cos θ + k2 sin θ 6= 1

r
.

Proof. By using Eq (4.2) we attain EG−F 2 = r2(1− rk1 cos θ− rk2 sin θ)2. When
1− rk1 cos θ − rk2 sin θ 6= 0, EG− F 2 6= 0. As a result, P (s, θ) is a regular tube if

and only if k1 cos θ + k2 sin θ 6= 1

r
. �

In this case, the Gaussian curvature K and mean curvature H for the regular
tube P (s, θ) are obtained as

K =
k1 cos θ + k2 sin θ

r (rk1 cos θ + rk2 sin θ − 1)
(4.4)

H = rK − K

2 (k1 cos θ + k2 sin θ)
.
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Theorem 4.2. The Gaussian curvature K of the regular tube P (s, θ) is zero if and
only if the spine curve C(s) is planar for the s−parameter curves.

Proof. Let K be zero. Then,

K =
k1 cos θ + k2 sin θ

r (rk1 cos θ + rk2 sin θ − 1)
= 0.

Hence, we conclude that k1 cos θ + k2 sin θ = 0. Because of the fact that θ is a
constant for the s−parameter curves, the normal development (k1, k2) lies on a line
through the origin. According to [1], this means that the spine curve C(s) is a
plane curve. The suffi ciency part of proof is obvious. �

Theorem 4.3. The parameter curves of tubular surface P (s, θ) are also lines of
curvature.

Proof. For the tubular surface P (s, θ), by Eq (4.3) we have F = f = 0. Therefore,
from Theorem of line of curvature the parameter curves of P (s, θ) are also lines of
curvature. �

Theorem 4.4. Let P (s, θ) be a regular tube. Then, we have the following.
(1) The s−parameter curves of P (s, θ) are concurrently asymptotic curves if and
only if the spine curve C(s) is planar.
(2) The θ−parameter curves of P (s, θ) cannot concurrently be asymptotic curves.

Proof. A curve α lying on a surface is an asymptotic curve if and only if U �α′′
= 0.

For the s− and θ−parameter curves, it follows that

U � Pss = − (k1 cos θ + k2 sin θ) (1− rk1 cos θ − rk2 sin θ) (4.5)

U � Pθθ = r 6= 0.

(1) Because P (s, θ) is a regular tube, k1 cos θ + k2 sin θ 6= 1

r
. Then

U � Pss = 0 ⇐⇒ k1 cos θ + k2 sin θ = 0.

From this, it follows that the spine curve C(s) is planar.
(2) Since U � Pθθ 6= 0, the θ−parameter curves of the regular tube P (s, θ) cannot
concurrently be asymptotic curves. �

Theorem 4.5. Let P (s, θ) be a regular tube. Then, we have the following.
(1) The θ−parameter curves of P (s, θ) are also geodesics.
(2) The s−parameter curves of P (s, θ) cannot also be geodesic curves.

Proof. A curve lying on a surface is a geodesic curve if and only if the acceleration
vector α

′′
is normal to the surface, i.e., U × α′′

= 0. In this case, for the s− and
θ−parameter curves, we obtain

U × Pss = (k1 sin θ − k2 cos θ)T + r sin θ
(
k
′

1 cos θ + k
′

2 sin θ
)
N1

−r cos θ
(
k
′

1 cos θ + k
′

2 sin θ
)
N2 (4.6)

U × Pθθ = r sin θ cos θT − r sin θ cos θT = 0.
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(1) Seeing that, U × Pθθ = 0, θ−parameter curves are also geodesics of P (s, θ).
(2) U × Pss = 0 if and only if

k1 sin θ − k2 cos θ = 0

r sin θ
(
k
′

1 cos θ + k
′

2 sin θ
)

= 0 (4.7)

r cos θ
(
k
′

1 cos θ + k
′

2 sin θ
)

= 0.

We know that sin θ and cos θ cannot be zero at the same time. Now that r > 0,
the system of equations above is held if and only if

k1 sin θ − k2 cos θ = 0

k
′

1 cos θ + k
′

2 sin θ = 0.

Since k1 sin θ − k2 cos θ = 0, we get
k1
k2

= cot θ. Besides, we have
k
′

1

k
′
2

= − tan θ. By

the last two equations, cot θ + tan θ = 0. From this, it follows that
1

sin θ cos θ
6= 0.

This is a contradiction, i.e., the system of equations does not have a solution. Then,
the s−parameter curves of P (s, θ) cannot also be geodesic curves. �

5. Conclusions

In this paper, we defined a tube with respect to the Bishop frame. Later, we
computed the curvatures of this tube and examined special curves on it. Surpris-
ingly, we viewed that θ−parameter curves of P (s, θ) are both lines of curvature
and geodesics in other words θ−parameter curves are planar. Furthermore, while
a s−parameter curve of L(s, θ) can also be a geodesic none of the s−parameter
curves of P (s, θ) can concurrently be a geodesic.

ÖZET: Kanal yüzeyi, merkezlerinin yörüngesi C(t) eğrisi (spine
eğrisi) ve yarıçap fonksiyonu r(t) olan hareketli bir kürenin zarfı
olarak tanımlanır ve spine eğrisinin Frenet çatısı yardımı ile pa-
rametrize edilir. Eğer yarıçap fonksiyonu r(t) = r olacak şekilde
bir sabit ise, kanal yüzeyine bir tüp adıverilir. Bu çalı̧smada tüp
yüzeyini Frenet çatısıyerine Bishop çatısıile birlikte araştıracağız
ve daha sonra bu yüzey üzerinde yatan özel eğrilerle ilgili bazı
karakterizasyonlar vereceğiz.
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