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NUMERICAL STUDY OF VORTEX PATTERN IN FRAMEWORK
OF TWO-BAND GINZBURG-LANDAU THEORY

I. N. ASKERZADE (ASKERBEYLI)

Abstract. Numerical modeling of vortex nucleation in external magnetic field
in two-band superconductor using modified Ginzburg-Landau theory is con-
ducted. Results of simulation experiments for a two-band superconducting
films MgB 2 near the critical temperature in perpendicular magnetic field is
presented. Obtained results seems interesting from the point of investigation
of pecularities of vortex dynamics in systems with complex order parameter
and another possible applications.

1. Introduction

Despite a large period of time that passed since the discovery of the high-
temperature superconductivity in cuprate compounds in 1987, the question con-
cerning the nature of this phenomenon is still open. It is clear that, many properties
of superconductors can be analyzed in framework of Ginzburg-Landau (GL) theory
[1]. The GL theory which was proposed in 1950 years on phenomenological ground
as a generalization of phase transition theory to the quantum state [1]. In 1957,
Abrikosov predicted the existence of type-II superconductors based on GL theory
[2]. According to Abrikosov classification, there are type-I and type-II supercon-
ductors. The value of Ginzburg-Landau parameter κ = λ

ξ = 1√
2
separate type-II

superconductors (κ > 1√
2
) from those of type-I (κ < 1√

2
). It means that a type-II

superconductor at magnetic fields higher than the lower critical field Hc1, an ap-
plied magnetic field starts to penetrate a superconductor in the form of quantum
flux Φ0 (mixed state). In homogeneous uniform superconductors vortex pattern re-
veal hexagonal symmetry [2]. This leads to global minimum for energy functional.
Furthermore, the vortex pattern in mixed state is often affected by the locations
at which the initial seed (or seeds) are placed. A vortex consists of a normal-like
region called the core with a radius equal to the coherence length ξ , and a region
of circulating current with a radius equal to London penetration depth λ [2]. High
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temperature superconductors are type-II superconductors with a large value of the
Ginzburg-Landau parameter κ >> 1. The GL theory has been modified to account
high-Tc superconductivity (see below).
The energy band structure in many superconductors exhibits a complicated char-

acter; in particular, there are several overlapping energy bands near the Fermi level.
An two-band Bardeen—Cooper—Schriffer (BCS) model was used [3,4] to calculate the
dependence of the critical temperature Tc on the carrier concentration n. It should
be noted that the two-band BCS model was originally proposed long years ago [6,
7]. In recent years, a generalized electron—phonon Eliashberg theory for two-band
superconductors was used to study the properties of magnesium diboride [8] and
nonmagnetic Y(Lu)Ni2B2C borocarbides [9]. As shown by experimental investi-
gations, this compound seems to be first real objects of two-band superconductors
[8-9]. Many new models has been suggested last years for describing physical prop-
erties of many band superconductors. Up to now GL remains powerful method
in study of some physical properties. The vortices nucleation in the single-band
isotropic superconductors was originally studied by using Ginzburg—Landau equa-
tions for single-band isotropic superconductors [10-12]. It is important to note that,
the GL theory was generalized for the case superconductors with non-conventional
order parameter symmetry- d-wave symmetry [13]. GL equations also are useful
in study of fluctuational effects on physical properties near Tc [14] in single band
isotropic superconductors. Time-dependent single-band GL theory was used for
calculations of fluctuation conductivity neat Tc by Aslamazov-Larkin [15].
Previously, time independent two-band GL equations were successfully used to

study the physical properties of recently discovered superconductors such as magne-
sium diboride (MgB2 ) [16, 17] and nonmagnetic Y(Lu)Ni2B2C borocarbide com-
pounds [18,19]. In the present study, the vortices nucleation of vortex in exter-
nal magnetic field in the framework of a two-band model two-band GL equations.
Firstly we will drive time-dependent GL equations for two-band superconductors.
Secondly we apply this equations for numerical modeling for vortex nucleation in
the case thin superconducting film of two-band superconductor MgB2 with perpen-
dicular external magnetic field. We could use the modified forward Euler method
for numerical experiments. Finally, a conclusion remarks will be made.

2. Time-dependent GL equations for two-band superconductors

The GL free energy functional for an isotropic two-band superconductor can be
written as follows /16-19/:

FSC =

∫
d3r(F1 + F2 + F12 +

H2

8π
(2.1)
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where

Fi =
}2

4mi

∣∣∣∣∣∣
∇− 2πi

→
A

Φ0

Ψi

∣∣∣∣∣∣
2

+ αi(T )Ψ2
i + βiΨ

2
i /2 (2.2)

F12 = ε(Ψ∗1Ψ2 + c.c.) + ε1

{(
∇+

2πi ~A

Φ0

)
Ψ∗1

(
∇− 2πi ~A

Φ0

)
Ψ2 + c.c.

}
(2.3)

mi are the masses of electrons belonging to different bands (i = 1, 2); αi =
γi(T—Tci) are the quantities linearly dependent on the temperature; β and γi are
constant coeffi cients; ε and ε1 describe the interaction between the band order
parameters and their gradients, respectively; H is the external magnetic field; and
Φ0 is the magnetic flux quantum. In Eqs. (2.1) and (2.2), the order parameters are
assumed to be slowly varying in space. Minimization procedure of the free-energy
functional yields the GL equations describing the two-band superconductors. For
an isotropic superconductor in the case (not limiting the generality) of A = (0, Hx,
0), the time-independent GL equations take the following form:

− }2

4m1
(
d2

dx2
− x2

l4s
)Ψ1 + α1(T )Ψ1 + εΨ2 + ε1(

d2

dx2
− x2

l4s
)Ψ2 + β1Ψ3

1 = 0, (2.4)

− }2

4m2
(
d2

dx2
− x2

l4s
)Ψ2 + α2(T )Ψ2 + εΨ1 + ε1(

d2

dx2
− x2

l4s
)Ψ1 + β2Ψ3

2 = 0 (2.5)

where l−2
s = }c

2eH is the so-called magnetic length. In the general case, the signs of
the parameters of interband interaction in Eqs. (2.4) and (2.5) can be arbitrary.
These signs are determined by the microscopic nature of the interaction of electrons
belonging to different bands. If the inter-band interaction vanishes, Eqs. (2.4) and
(2.5) convert into the usual GL equations with the critical temperatures Tc1 and Tc2.
In the general case (irrespective of the sign of ε), the superconducting transition
takes place at a temperature Tc, which is higher than both Tc1 and Tc2 and is
determined by the following equation [16—19]:

(Tc − Tc1)(Tc − Tc2) =
ε2

γ1γ2

, (2.6)

Time-dependent equations in two-band Ginzburg-Landau theory can be obtained
from Eqs. (1-3) in analogical way to [20]:

Γ1(
∂

∂t
+ i

2e

}
φ)Ψ1 = − δF

δΨ∗1
,

Γ2(
∂

∂t
+ i

2e

}
φ)Ψ2 = − δF

δΨ∗2
, (2.7)

σn(
∂ ~A

∂t
+∇φ)Ψ1 = −1

2

δF

δ ~A
Here we use notations similar to [20]. In Eqs. (2.7) φ means electrical scalar
potential, Γ1,2 -relaxation time of order parameters, σn-conductivity of sample in
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two-band case. Choosing corresponding gauge invariance we can eliminate scalar
potential from system of equations (2.7) [20]. Under such calibration and magnetic
field in form, ~H = (0, 0, H) without any restriction of generality, time-dependent
equations in two-band Ginzburg-Landau theory can be written as

Γ1
∂Ψ1

∂t
= − }2

4m1
(
d2

dx2
−x

2

l4s
)Ψ1+α1(T )Ψ1+εΨ2+ε1(

d2

dx2
−x

2

l4s
)Ψ2+β1Ψ3

1 = 0, (2.8)

Γ2
∂Ψ2

∂t
= − }2

4m2
(
d2

dx2
−x

2

l4s
)Ψ2+α2(T )Ψ2+εΨ1+ε1(

d2

dx2
−x

2

l4s
)Ψ1+β2Ψ3

2 = 0, (2.9)

σn(∂
~A
∂t −∇φ) = −rot ~A+ 2π

Φ0
{ }2

4m1
n1(T )(dϕ1dr −

2πA
Φ0

)

+ε1(n1(T )n2(T ))0.5 cos(ϕ1 − ϕ2) + }2
4m2

n2(T )(dϕ2dr −
2πA
Φ0

) }
(2.10)

where ϕ1,2(~r) phase of order parameters Ψ1,2(~r) = |Ψ1,2| exp(iϕ1,2), n1,2(T ) =

2 |Ψ1,2|2-density of superconducting electrons in different bands, expressions for
whichs are presented in [16—19] with so-called natural boundary conditions{

1

4m1
(∇− 2πi ~A

Φ0
)Ψ1 + ε1(∇− 2πi ~A

Φ0
)Ψ2 }~n = 0 , (2.11){

1

4m2
(∇− 2πi ~A

Φ0
)Ψ2 + ε1(∇− 2πi ~A

Φ0
)Ψ1 }~n = 0, (2.12)

(~n× ~A)× ~n = ~H0 × ~n (2.13)
First two conditions correspond to absence of supercurrent through boundary of
two-band superconductor, third conditions correspond to the contiunity of normal
component of magnetic field to the boundary superconductor-vacuum.
In this study we introduce unconventional scales to non-dimensionalize the time-

dependent two-band G-L system of equations. As shown in [16—19], temperature
dependence of some physical quantities becomes nonlinear in contrast to single-
band G-L theory. It is well known that, G-L parameter κ for single-band supercon-
ductors is temperature independent, while in two-band G-L theory κ grows with
decreasing of temperature [18—19]. This implies about possibility changing of type
of superconductivity with lowering of temperature. It means that dynamics of or-
der parameters in two-band superconductors differs from those of in single-band
superconductors. In this study, we focus mostly on experiments performed with
two-band time-dependent GL system, and claim that our model yields realistic
results.

3. Application of TD TB GL equations to thin superconducting film

We consider a finite homogeneous superconducting film of uniform thickness,
subject to a constant magnetic field. We also consider that the superconductor is
rectangular in shape. In this case our two-band GL model becomes two-dimensional
[16—19]. The order parameters Ψ1 and Ψ2 varies in the plane of the film, and



NUMERICAL STUDY OF VORTEX PATTERN IN FRAMEWORK 5

vector potential A has only two nonzero components, which lie in the plane of the
film. Therefore, we identify the compuational domain of the superconductor with a
rectangular region Ω ∈ R2, denoting the Cartesian coordinates by x and y, and the
x− and y− components of the vector potential by A(x, y) and B(x, y), recpectively.
Before modeling we use so-called bond variables [20,21] for the discretization of
time-dependent two-band G-L equations

W (x, y) = exp(iκ

x∫
A(ζ, y)dζ),

V (x, y) = exp(iκ

y∫
B(x, η)dη) (3.1)

Such variables make obtained discretized equations gauge-invariant. For spatially
discetization we use forward Euler method [22]. In this method we begin with
partitioning the computational domain Ω = [0, Nxp]× [0, Nyp] into two subdomains,
denoted by Ω2n and Ω2n+1 such that

Ω2n = Ωi+j=2n; Ω2n+1 = Ωi+j=2n+1 (3.2)

for i = 0, .....;Nxp, j = 0, .....;Nyp, where Nxp = Nx+1, Nyp = Ny+1. Schematical
presentation of such partition are shown in Fig. 1, in which Ω2n denoted by normal
cycles and Ω2n+1 denoted by full cycles. In calculations we could use two different
approach. The first approach (zero-field —cooled) is assume that sample that has
is initially in a perfect superconducting state is cooled to a temperature below the
critical Tc in the absence of applied magnetic field, and then a magnetic field of an
appropriate strength is suddenly turned out. The second approach (field-cooled) is
to assume that a sample that is cooled to a temperature at or above the critical
temperature is in a normal state under magnetic field of appropriate strength, and
then the temperature is suddenly decreased below the critical temperature.
For numerical calculations in two-band GL theory we assume that the size of

superconducting film is 40λ × 40λ, where λ London penetration depth of external
magnetic field on superconductor [16—19]:

λ−2(T ) =
4πe2

c2
(
n1(T )

m1
+ 2ε1(n1(T )n2(T ))0.5 +

n2(T )

m2
) (3.3)

Under modeling we also introduce another dimensionless parameters

~r′ =
~r

λ
; Ψ

′

1,2 =
Ψ1,2

Ψ(1,2)0
; ~A =

~A

λHc

√
2

;F ′(Ψ′1,2, A
′) =

F (Ψ1,2, A)

α2
0 |Ψ1,0|2 + α2

1 |Ψ2,0|2
(3.4)

Expressions for Ψ(1,2)0, and for thermodynamic magnetic field Hc are presented in
[16—19]. The calculations were performed for the following values of parameters:
Tc = 40 K; Tc1 =20.0 K; Tc2 = 10 K, ε2

γ1γ2T
2
c

= 3/8 ; η = Tcm2ε1γ2
}2ε = −0.016. This
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parameters was used for the calculation another physical properties of two-band
superconductor MgB2 [16—19].
For solving of corresponding discretized GL equations we will use method of

adaptive grid [22]. Results of numerical modelling in the case of zero-field-cooled
process presented in Fig. 2. We assume that the sample, which is initially in
a perfect superconducting state, is cooled through Tc in the absence of applied
magnetic field, and then a magnetic field of an appropriate strenght is suddenly
turned out. Mathematically it means that, the initial state is achieved by letting|
Ψ

′

1,2(~x) | = 1, A0(~x) = 0 for all ~x ∈ Ω.
In figure 2, we present a a contour plot of superconducting electrons. GL para-

meter for sample is the κ = 5 . We can observe a partial hexagonal pattern , yet we
do not observe the physically exact hexagonal pattern, as expected of homogeneous
samples with uniform thickness.
Secondly we simulate the field cooled case. In (x0, y0)a temperature at or above

the critical temperature, is in a normal state under a magnetic field of appropriate
strenght, and then the temperature is suddenly reduced to below Tc. In matematical
denotes, the initial states is achieved by letting

A0(x, y) = (0, xH, 0), | Ψ
′

1,2 (x, y)| =
{

0, if(x, y) 6= (x0, y0)
c1,2 , f(x, y) = (x0, y0)

,

where c
1,2
is a small constant representing the magnitude of the seed, and (x0, y0)

is the location of a seed in the sample. We can conclude that (Fig. 3) the result
vortex pattern depends upon where and how many seeds are placed into the sample.
Existence of Meissner state is shown by numerical calcutions using both (zero-
field-cooled and field cooled) approachs. It means that at fixed Ginzburg-Landau
parameter κ and external magnetic field H < Hc1 no nucleation of vortexes of
external magnetic field.
As shown in [23] structure of magnetic field in section of vortex in two-band

superconductor differs from single-band superconductor. Nonsymmetric angular
magnetic field distriburion in vortex change their interaction force between them
and total energy of superconductor with such vortexes differs from single band
one. In high density vortex pattern effects of influence of nonsymmetric angular
dependence becomes crusial. Detail analysis of influence of asymmetric character of
sectional magnetic field distribution on the parameters of hexagonal vortex pattern
is the object of future investigations.

4. Conclusions

In this study we obtain time-dependent GL equations taking into account two-
band character of the superconducting state, which was originally developed by
Schmid for single band superconductors. Furthermore, we perform numerical mod-
eling of vortex nucleation in external magnetic field in two-band superconducting
filmsMgB2 using two-band Ginzburg-Landau theory. It was shown that the vortex
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configuration in the mixed state depends upon initial state of the sample and that
the system does not seem to yield hexagonal pattern for finite size homogeneous
samples of uniform thickness with the natural boundary conditions. On the other
hand, the time-dependent two-band GL equations leads to the expected hexagonal
pattern, i.e. global minimizer of the energy functional.

Fig. 1: A partition of Ω into two subdomains; Ω2n(normal cicles), and Ω2n+1

(full cicles)

Fig. 2: A hexagonal vortex pattern in the case of zero-field-cooled process
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Fig. 3: A hexagonal vortex pattern in the field cooled case

ÖZET: Modife olunmuş Ginzburg-Landau teorisi kapsamında dı̧s
manyetik alana yerleştirilmi̧s süper iletkenlerde girdap örgüsünün
oluşması sayısal olarak modellenmi̧stir. Kritik sıcaklık civarında
manyetik alana dik yönde yerleştitrilmi̧s MgB2 ince filmi için sayısal
deneylerin sonuçu verilmektedir. Elde edilen sonuçlar basit ol-
mayan düzlenme parametreli sistemlerde girdap dinamiğinin özel-
liklerinin araştırılmasıve diğer mümkün uygulamalar için önem-
lidir.
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