Commun.Fac.Sci.Univ.Ank.Series A1 Volume 60, Number 2, Pages 11–19 (2011) ISSN 1303–5991

and

ON SOME NEW DOUBLE SEQUENCE SPACES OF INVARIANT MEANS DEFINED BY ORLICZ FUNCTIONS

and VAKEEL A. KHAN AND SABIHA TABASSUM

ABSTRACT. The sequence space BV_{σ} was introduced and studied by Mursaleen[14]. In this paper we extend BV_{σ} to ${}_{2}BV_{\sigma}(p,r,s)$ and study some properties and inclusion relations on this space.

1. Introduction

Let l_{∞} , and c denote the Banach spaces of bounded and convergent sequences $x=(x_i)$, with complex terms, respectively, normed by $\|x\|_{\infty}=\sup_i |x_i|$, where $i\in\mathbb{N}$. Let σ be an injection of the set of positive integers \mathbb{N} into itself having no finite orbits that is to say, if and only if, for all $i=0, j=0, \sigma^j(i)\neq i$ and T be the operator defined on l_{∞} by $(T(x_i)_{i=1}^{\infty})=(x_{\sigma(i)})_{i=1}^{\infty}$.

A continuous linear functional ϕ on l_{∞} is said to be an invariant mean or σ -mean if and only if

- (1) $\phi(x) \geq 0$, when the sequence $x = (x_i)$ has $x_i \geq 0$ for all i,
- (2) $\phi(e) = 1$, where $e = \{1, 1, 1, \dots \}$ and
- (3) $\phi(x_{\sigma(i)}) = \phi(x)$ for all $x \in l_{\infty}$.

If $x = (x_i)$ write $Tx = (Tx_i) = (x_{\sigma(i)})$. It can be shown that

$$V_{\sigma} = \left\{ x = (x_i) : \sum_{m=1}^{\infty} t_{m,i}(x) = L \text{ uniformly in i, } L = \sigma - \lim x \right\}$$
 (1)

where $m \ge o, i > 0$.

Received by the editors Agu. 01, 2011, Accepted: Dec. 26, 2011. 2000 Mathematics Subject Classification. 46E30, 46E40, 46B20.

Key words and phrases. Invariant means, double sequence spaces, Orlicz Function.

1

$$t_{m,i}(x) = \frac{x_i + x_{\sigma(i)} + \dots + x_{\sigma^m(i)}}{m+1}$$
 and $t_{-1,i} = 0$ (2)

. Where $\sigma^m(i)$ denote the mth iterate of $\sigma(i)$ at i. In the case σ is the translation mapping, $\sigma(i) = i + 1$ is often called a Banach limit and V_{σ} , the set of bounded sequences of all whose invariant means are equal, is the set of almost convergent sequence. Subsequently invariant means have been studied by Ahmad and Mursaleen[1], Mursaleen[12,13], Raimi[15] and many others.

The concept of paranorm is closely related to linear metric spaces. It is generalization of that of absolute value. Let X be a linear space. A Paranorm is a function $g:X\to\mathbb{R}$ which satisfies the following axioms: for any $x,y,x_0\in X$, $\lambda,\lambda_0\in\mathbb{C}$,

- (i) $g(\theta) = 0$;
- (ii) g(x) = g(-x);
- (iii) $g(x+y) \le g(x) + g(y)$
- (iv) the scalar multiplication is continuous, that is $\lambda \to \lambda_0$, $x \to x_0$ imply $\lambda x \to \lambda_0 x_0$.

Any function g which satisfies all the condition (i)-(iv) together with the condition

(v)
$$g(x) = 0$$
 if only if $x = \theta$,

is called a *Total Paranorm* on X and the pair (X, g) is called *Total paranormed space*. It is well known that the metric of any linear metric space is given by some total paranorm (cf.[18], Theorm 10.42,p183])

An Orlicz Function is a function $M:[0,\infty)\to [0,\infty)$ which is continuous, nondecreasing and convex with $M(0)=0,\ M(x)>0$ for x>0 and $M(x)\to\infty$, as $x\to\infty$. If convexity of M is replaced by $M(x+y)\leq M(x)+M(y)$ then it is called Modulus function.

An Orlicz function M satisfies the Δ_2 – condition ($M \in \Delta_2$ for short) if there exist constant $k \geq 2$ and $u_0 > 0$ such that

$$M(2u) \leq KM(u)$$

whenever $|u| \leq u_0$.

 $^{^1}$ The second author is supported by Maulana Azad National Fellowship under the University Grants Commision of India.

An Orlicz function M can always be represented in the integral form $M(x) = \int\limits_0^x q(t)dt$, where q known as the kernel of M, is right differentiable for $t \geq 0, q(t) > 0$ for t > 0, q is non-decreasing and $q(t) \to \infty$ as $t \to \infty$.

Note that an Orlicz function satisfies the inequality

$$M(\lambda x) \leq \lambda M(x)$$
 for all λ with $0 < \lambda < 1$,

since M is convex and M(0) = 0.

W.Orlicz used the idea of Orlicz function to construct the space (L^M) . Lindesstrauss and Tzafriri [9] used the idea of Orlicz sequence space;

$$l_M := \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

which is Banach space with the norm the norm

$$||x||_M = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

The space l_M is closely related to the space l_p , which is an Orlicz sequence space with $M(x) = x^p$ for $1 \le p < \infty$.

Orlicz functions have been studied by V.A.Khan[3,5,6,7,8] and many others.

Throughout a double sequence is denoted by $x=(x_{ij})$. A double sequence is a double infinite array of elements $x_{ij} \in \mathbb{R}$ for all $i,j \in \mathbb{N}$. Let $2l_{\infty}$ and 2c denote the Banach spaces of bounded and convergent double sequence $x=(x_{i,j})$ respectively. Double sequence spaces have been studied by Moricz and Rhoads[11], E.Savas and R.F.Patterson[16], V.A.Khan[4] and many others.

Let σ be an injection having no finite orbits and T be the operator defined on $2l_{\infty}$ by

$$T((x_{i,j})_{i,j=1}^{\infty}) = (x_{\sigma(i,j)})_{i,j}^{\infty}$$

The idea of σ -convergence for double sequences has recently been introduced in [2] and further studied by Mursaleen and Mohiuddine [12]. For double sequences,

$${}_{2}V_{\sigma} = \left\{ x = (x_{i,j}) : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} t_{mnpq}(x) = L \text{ uniformly in } p, q, L = \sigma - \lim x \right\} \text{ see}[16]$$
(3)

$$t_{mnpq}(x) = \frac{1}{(m+1)(n+1)} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_{\sigma^{i}(p),\sigma^{j}(q)}, \ p,q = 0, 1, 2...$$
 (4)

$$\begin{array}{lcl} t_{0,0,p,q}(x) & = & x_{pq}, t_{-1,0,p,q}(x) = x_{p-1,q}(x), t_{0,-1,p,q}(x) \\ & = & x_{p,q-1}, t_{-1,-1,p,q}(x) = x_{p-1,q-1}, \end{array}$$

and $x_{\sigma^i(p),\sigma^j(q)} = 0$ for all i or j or both negative.

A double sequence space E is said to be *solid* if $(\alpha_{i,j}x_{i,j}) \in E$, whenever $(x_{i,j}) \in E$, for all double sequences $(\alpha_{i,j})$ of scalars with $|\alpha_{i,j}| \leq 1$, for all $i, j \in \mathbb{N}$.

Let

 $K = \{(n_i, k_j) : i, j \in \mathbb{N}; n_1 < n_2 < n_3 < \dots \text{ and } k_1 < k_2 < k_3 < \dots\} \subseteq N \otimes N$ and E be a double sequence space. A K-step space of E is a sequence space

$$\lambda_K^E = \{ (\alpha_{i,j} x_{i,j}) : (x_{i,j}) \in E \}.$$

A canonical pre-image of a sequence $(x_{n_i,k_j}) \in E$ is a sequence $(b_{n,k}) \in E$ defined as follows:

$$b_{nk} = \begin{cases} a_{nk} & \text{if } (n,k) \in K, \\ 0 & \text{otherwise} \end{cases}$$

A canonical pre-image of step space λ_K^E is a set of canonical pre-images of all elements in λ_K^E .

A double sequence space E is said to be monotone if it contains the canonical pre-images of all its step spaces.

A double sequence space E is said to be symmetric if $(x_{i,j}) \in E$ implies $(x_{\pi(i),\pi(j)}) \in E$, where π is a permutation of \mathbb{N} .

2. Main Results

Lemma 1 A sequence space E is solid implies E is monotone.

Mursaleen[14] defined the sequence space

$$BV_{\sigma} = \{ x \in l_{\infty} : \sum_{m} |\phi_{m,i}(x)| < \infty, \text{ uniformly in } i \},$$
 (5)

where
$$\phi_{m,i}(x) = t_{m,i}(x) - t_{m-1,i}(x)$$

assuming that $t_{m,i}(x) = 0$ for m = -1

A straightforward calculation shows that

$$\phi_{m,n}(x) = \begin{cases} \frac{1}{m(m+1)} \sum_{n=1}^{m} n[x_{\sigma}^{n}(i) - x_{\sigma}^{n-1}(i)] \ (m \ge 1) \\ x_{i} \ (m = 0). \end{cases}$$
 (6)

We define

$$_{2}BV_{\sigma} = \{x \in {}_{2}l_{\infty} : \sum_{m,n} |\phi_{mnpq}(x)| < \infty, \text{ uniformly in } p \text{ and } q\},$$
 (7)

where

$$\phi_{mnpq}(x) = \begin{cases} \frac{1}{m(m+1)n(n+1)} \sum_{i=1}^{m} \sum_{j=1}^{n} ij[x_{\sigma^{i}(p),\sigma^{j}(q)} - x_{\sigma^{i-1}(p),\sigma^{j}(q)} \\ -x_{\sigma^{i}(p),\sigma^{j-1}(q)} + x_{\sigma^{i-1}(p),\sigma^{j-1}(q)}] \ (m,n \ge 1) \end{cases}$$
 (see[12]) (8)

Let M be an Orlicz function, $p = (p_i)$ be any sequence of strictly positive real numbers and $r \ge 0$. V.A.Khan[5] defined the following sequence space:

$$BV_{\sigma}(M, p, r) = \left\{ x = (x_i) : \sum_{m=1}^{\infty} \frac{1}{m^r} \left[M\left(\frac{|\phi_{m,i}(x)|}{\rho}\right) \right]^{p_i} < \infty, \right\}$$

uniformly in
$$i$$
 and for some $\rho > 0$.

Let $p = (p_{ij})$ be any double sequence of strictly positive real numbers and $r, s \ge 0$. We define the following double sequence spaces as:

$${}_{2}BV_{\sigma}(M,p,r,s) = \left\{ x = (x_{ij}) : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}} \left[M \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{p_{ij}} < \infty, \right.$$

uniformly in p, q and for some $\rho > 0$.

For M(x) = x, we get

$${}_{2}BV_{\sigma}(p,r,s) = \left\{ x = (x_{ij}) : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}} |\phi_{mnpq}(x)|^{p_{ij}} < \infty, \text{ uniformly in } p,q \right\}.$$

For $p_{i,j} = 1$ for all i, j we get

$${}_{2}BV_{\sigma}(M,r,s) = \left\{ x = (x_{ij}) : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{r} n^{s}} \left[M\left(\frac{|\phi_{mnpq}(x)|}{\rho}\right) \right] < \infty, \right.$$

uniformly in p, q and for some $\rho > 0$.

For r, s = 0, we get

$${}_{2}BV_{\sigma}(M,p) = \left\{ x = (x_{ij}) : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left[M\left(\frac{|\phi_{mnpq}(x)|}{\rho}\right) \right]^{p_{ij}} < \infty, \right.$$

uniformly in p, q and for some $\rho > 0$.

For M(x) = x and r, s = 0, we get

$$_{2}BV_{\sigma}(p) = \left\{ x = (x_{ij}) : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |\phi_{mnpq}(x)|^{p_{ij}} < \infty, \text{ uniformly in } p, q \right\}.$$

For $p_{i,j} = 1$ for all i, j and r, s = 0, we get

$$_{2}BV_{\sigma}(M) = \left\{ x = (x_{ij}) : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left[M\left(\frac{|\phi_{mnpq}(x)|}{\rho}\right) \right] < \infty, \text{ uniformly in } p, q \right\}$$

and for some
$$\rho > 0$$
.

For $M(x) = x, p_{i,j} = 1$ and r, s = 0, we get

$$_{2}BV_{\sigma} = \left\{ x = (x_{ij}) : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |\phi_{mnpq}(x)| < \infty, \text{ uniformly in } p, q \right\}.$$

Theorem 1 The sequence space ${}_{2}BV_{\sigma}(M,p,r,s)$ is a linear space over the field \mathbb{C} of complex numbers.

Proof Let $x = (x_{i,j})$ and $y = (y_{i,j}) \in {}_{2}BV_{\sigma}(M, p, r, s)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_{1} and ρ_{2} such that

$$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{1}{m^{r}n^{s}}\bigg[M\bigg(\frac{|\phi_{mnpq}(x)|}{\rho_{1}}\bigg)\bigg]^{p_{ij}}<\infty$$

and

$$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{1}{m^{r}n^{s}}\bigg[M\bigg(\frac{|\phi_{mnpq}(y)|}{\rho_{2}}\bigg)\bigg]^{p_{ij}}<\infty$$

uniformly in p and q and $r, s \ge 0$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since M is non decreasing and convex we have,

$$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{1}{m^{r}n^{s}}\bigg[M\bigg(\frac{|\alpha\phi_{mnpq}(x)+\beta\phi_{mnpq}(y)|}{\rho_{3}}\bigg)\bigg]^{p_{ij}}<\infty$$

$$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{1}{m^{r}n^{s}}\bigg[M\bigg(\frac{|\alpha\phi_{mnpq}(x)|}{\rho_{3}}+\frac{|\beta\phi_{mnpq}(y)|}{\rho_{3}}\bigg)\bigg]^{p_{ij}}<\infty$$

$$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{1}{m^{r}n^{s}}\frac{1}{2}\bigg[M\bigg(\frac{\phi_{mnpq}(x)}{\rho_{1}}\bigg)+M\bigg(\frac{\phi_{mnpq}(y)}{\rho_{2}}\bigg)\bigg]<\infty$$

uniformly in p and q and $r, s \ge 0$.

This proves that ${}_2BV_{\sigma}(M,p,r,s)$ is a linear space over the field $\mathbb C$ of complex numbers.

Theorem 2 For any Orlicz function M and a bounded sequence $p = (p_{i,j})$ of strictly positive real numbers, ${}_{2}BV_{\sigma}(M,p,r,s)$ is a paranormed space with paranorm

$$g((x_{ij})) = \sup_{i} |x_{i,1}| + \sup_{j} |x_{1,j}| + \inf \left\{ \rho^{\frac{p_{ij}}{H}} : \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left[M \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{p_{ij}} \right)^{\frac{1}{H}} \le 1$$

uniformly in
$$p$$
 and q

where $H = \max(1, \sup_{i,j} p_{i,j})$.

Proof Clearly g(0) = 0, $g(-(x_{ij})) = g((x_{i,j}))$. Using Theorem[1], for $\alpha = \beta = 1$, we get

$$g(x+y) \le g(x) + g(y).$$

For continuity of scalar multiplication let $\eta \neq 0$ be any complex number. Then by definition we have

$$g(\eta(x_{ij})) = \sup_{i} |\eta x_{i,1}| + \sup_{j} |\eta x_{1,j}| + \inf \left\{ \rho^{\frac{p_{ij}}{H}} : \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left[M \left(\frac{|\phi_{mnpq}(\eta x)|}{\rho} \right) \right]^{p_{ij}} \right)^{\frac{1}{H}} \le 1$$

uniformly in
$$p$$
 and q

$$= \sup_{i} |\eta| |x_{i,1}| + \sup_{j} |\eta| |x_{1,j}| + \inf \left\{ (|\eta|r)^{\frac{p_{ij}}{H}} : \left(\sum_{n=1}^{\infty} \sum_{r=1}^{\infty} \left[M \left(\frac{|\phi_{mnpq}(x)|}{r} \right) \right]^{p_{ij}} \right)^{\frac{1}{H}} \le 1$$

uniformly in
$$p$$
 and q

where
$$\frac{1}{r} = \frac{|\eta|}{\rho} = \max(1, |\eta|^H g((x_{i,j})))$$

where $\frac{1}{r} = \frac{|\eta|}{\rho} = \max(1, |\eta|^H g((x_{i,j}))$ and therefore $g(\eta(x_{ij}))$ converges to zero when $g((x_{ij}))$ converges to zero in $_{2}BV_{\sigma}(M,p,r,s).$

Now let x be fixed element in ${}_{2}BV_{\sigma}(M,p,r,s)$. There exist $\rho > 0$ such that

$$g((x_{ij})) = \sup_{i} |x_{i,1}| + \sup_{j} |x_{1,j}| + \inf \left\{ \rho^{\frac{p_{ij}}{H}} : \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left[M \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{p_{ij}} \right)^{\frac{1}{H}} \le 1$$

uniformly in
$$p$$
 and q

Now
$$g(\eta(x_{ij})) = \sup_{i} |\eta x_{i,1}| + \sup_{j} |\eta x_{1,j}|$$

$$+ \inf_{i} \left\{ \rho^{\frac{p_{ij}}{H}} : \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^r n^s} \left[M \left(\frac{|\phi_{mnpq}(\eta x)|}{\rho} \right) \right]^{p_{ij}} \right)^{\frac{1}{H}} \le 1$$
uniformly in p and $q \right\} \to 0$ as $\eta \to 0$.

This copmletes the proof.

Theorem 3 Suppose that $0 < p_{ij} \le q_{ij} < \infty$ for each $m \in \mathbb{N}$ and $r, s \ge 0$. Then

- (i) $_2BV_{\sigma}(M,p)\subseteq {_2BV_{\sigma}(M,q)}.$ (ii) $_2BV_{\sigma}(M)\subseteq {_2BV_{\sigma}(M,r,s)}.$

Proof(i) Suppose $x \in {}_{2}BV_{\sigma}(M,p)$. This implies that

$$\left[M\left(\frac{|\phi_{mnpq}(x)|}{\rho}\right)\right]^{p_{ij}} \le 1$$

for sufficiently large values m, n say $m \ge m_0, n \ge n_0$ for some fixed $m_0, n_0 \in \mathbb{N}$.

$$\sum_{m=m_0}^{\infty} \sum_{n=n_0}^{\infty} \left[M \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{q_{ij}} \leq \sum_{m=m_0}^{\infty} \sum_{n=n_0}^{\infty} \left[M \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{p_{ij}} \leq \infty.$$

uniformy in p, q. Hence $x \in {}_{2}BV_{\sigma}(M, q)$.

The second proof is trivial.

The following result is a consequence of the above result.

Corollary 1 If $0 \le p_{ij} \le 1$ for each i and j, then ${}_{2}BV_{\sigma}(M,p) \subseteq {}_{2}BV_{\sigma}(M)$. If $0 \le p_{ij} \le 1$ for all i, j then ${}_{2}BV_{\sigma}(M) \subseteq {}_{2}BV_{\sigma}(M, p)$.

Theorem 4 The sequence space ${}_{2}BV_{\sigma}(M, p, r, s)$ is solid.

Proof Let $x \in {}_2BV_{\sigma}(M, p, r, s)$ This implies $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^r n^s} \left[M \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{p_{ij}} < \infty.$

Let (α_{ij}) be sequence of scalars such that $|\alpha_{ij}| \leq 1$ for all $i, j \in \mathbb{N}$. Then the result follows from the following inequality

$$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{1}{m^{r}n^{s}}\bigg[M\bigg(\frac{|\alpha_{ij}\phi_{mnpq}(x)|}{\rho}\bigg)\bigg]^{p_{ij}}\leq \sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{1}{m^{r}n^{s}}\bigg[M\bigg(\frac{|\alpha_{ij}\phi_{mnpq}(x)|}{\rho}\bigg)\bigg]^{p_{ij}}<\infty.$$

Hence $\alpha x \in {}_{2}BV_{\sigma}(M, p, r, s)$, for all sequences of scalars (α_{ij}) with $|\alpha_{ij}| \leq 1$ for all $i, j \in \mathbb{N}$ whenever $x \in {}_{2}BV_{\sigma}(M, p, r, s)$.

From Theorem[4] and Lemma we have:

Corollary 2 The sequence space ${}_{2}BV_{\sigma}(M,p,r,s)$ is monotone.

Theorem 5 Let M_1, M_2 be Orlicz functions satisfying Δ_2 -condition and $r, r_1, r_2,$ $s, s_1, s_2 \geq 0$. Then we have

- (i) if r, s > 1 then ${}_{2}BV_{\sigma}(M, p, r, s) \subseteq {}_{2}BV_{\sigma}(M \circ M_{1}, p, r, s)$,
- (ii) ${}_{2}BV_{\sigma}(M_{1}, p, r, s) \cap {}_{2}BV_{\sigma}(M_{2}, p, r) \subseteq {}_{2}BV_{\sigma}(M_{1} + M_{2}, p, r, s),$ (iii) if $r_{1} \le r_{2}$ and $s_{1} \le s_{2}$ then ${}_{2}BV_{\sigma}(M, p, r_{1}, s_{1}) \subseteq {}_{2}BV_{\sigma}(M, p, r_{2}, s_{2}).$

Proof(i) Since M is continuous at 0 from right, for $\epsilon > 0$, there exists $0 < \delta < 1$ such that $0 \le c \le \delta$ implies $M(c) < \epsilon$. If we define

$$I_1 = \left\{ m \in \mathbb{N} : M_1 \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \le \delta \text{ for some } \rho > 0 \right\}.$$

$$I_2 = \left\{ m \in \mathbb{N} : M_1\left(\frac{|\phi_{mnpq}(x)|}{\rho}\right) > \delta \text{ for some } \rho > 0 \right\}.$$

then, when $M_1\left(\frac{|\phi_{mnpq}(x)|}{\rho}\right) > \delta$ we get

$$M\left(M_1\left(\frac{|\phi_{mnpq}(x)|}{\rho}\right)\right) \le \left\{2\frac{M(1)}{\delta}\right\}M_1\left(\frac{|\phi_{mnpq}(x)|}{\rho}\right)$$

Hence for $x \in {}_{2}BV_{\sigma}(M, p, r, s)$ and r, s > 1

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^r n^s} \left[M \circ M_1 \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{p_{ij}}$$

$$= \sum_{m \in I_1} \sum_{n \in I_1} \frac{1}{m^r n^s} \left[M \circ M_1 \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{p_{ij}}$$

$$+ \sum_{m \in I_2} \sum_{n \in I_2} \frac{1}{m^r n^s} \left[M \circ M_1 \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{p_{ij}}$$

$$\leq \sum_{m \in I_1} \sum_{n \in I_1} \frac{1}{m^r n^s} [\epsilon]^{p_{ij}} + \sum_{m \in I_2} \sum_{n \in I_2} \frac{1}{m^r n^s} \left[\left\{ 2 \frac{M(1)}{\delta} \right\} M_1 \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{p_{ij}}$$

$$\leq \max(\epsilon^h, \epsilon^H) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^r n^s} + \max\left(\left\{ 2 \frac{M(1)}{\delta} \right\}^h \left\{ 2 \frac{M(1)}{\delta} \right\}^H \right)$$
(where $0 < h = \inf p_{ij} \leq p_{ij} \leq H = \sup_{i,j} p_{ij} < \infty$.)

(ii) The proof follows from the following inequality
$$\frac{1}{m^r n^s} \left[(M_1 + M_2) \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{p_{ij}} \leq \frac{C}{m^r n^s} \left[M_1 \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{p_{ij}} + \frac{C}{m^r n^s} \left[M_2 \left(\frac{|\phi_{mnpq}(x)|}{\rho} \right) \right]^{p_{ij}}$$

(iii) The proof is trivial.

Corollary 3 Let M be an Orlicz function satisfying Δ_2 -condition. Then we have.

- (i) if r, s > 1 then ${}_{2}BV_{\sigma}(p, r, s) \subseteq {}_{2}BV_{\sigma}(M, p, r, s)$,
- (ii) $_2BV_{\sigma}(M,p) \subseteq {}_2BV_{\sigma}(M,p,r,s),$
- (iii) $_2BV_{\sigma}(M) \subseteq {_2BV_{\sigma}(M, r, s)}.$

Acknowledgments. The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

 $\ddot{\mathbf{O}}\mathbf{ZET}$: BV_{σ} dizi uzayı, Mursaleen tarafından tanımlanmış ve incelenmiştir. Bu makalede ise BV_{σ} uzayı, ${}_{2}BV_{\sigma}(p,r,s)$ uzayına genişletilmiş ve bazı özellikleri ile içerme bağıntıları incelenmiştir.

References

- Ahmad Z.U.and Mursaleen M. An application of banach limits. Proc. Amer. Math. Soc., 1983,103, 244-246.
- [2] Çacan C., Altay and Mursaeen. The σ-convergence and σ-core of doube sequences. Appl. Math. Lett., 2006, 19, 1122-1128.
- [3] Khan V.A. On a new sequence spaces defined by Musielak Orlicz Functions. Studia Math., 2010, LV-2, 143-149.
- [4] Khan V.A. Quasi almost convergence in a normed space for double sequences. Thai J.Math., 2010, 8(1), 227-231.
- [5] Khan V.A. On a new sequence space defined by Orlicz Functions. Commun. Fac. Sci. Univ. Ank. Series Al, 2008, 57(2), 25-33.
- [6] Khan V.A. On a new sequence space related to the Orlicz sequence space. J. Mathematics and its applications, 2008, 30, 61-69.
- [7] Khan V.A. On Riesz-Musielak Orlicz sequence spaces. Numerical Functional Analysis and Optimization, 2007, 28(7-8), 883-895.
- [8] Khan V.A. and Lohani Q.M.D. Statistically Pre-Cauchy sequence and Orlicz Functions. Southeast Asian Bull.Math., 2007, 31, 1107-1112.
- [9] Lindenstrauss J. and Tzafiri L. On Orlicz Sequence Spaces. Israel J.Math., 1971, 10, 379-390.
- [10] Lorentz G.G. A contribution to the theory of divergent series. Acta Math., 1948,80, 167-190.
- [11] Moricz F. and Rhoades B.E. Almost Convergence of double sequences and strong regularity of summability matrices. Math. Proc. Camb. Phil. Soc., 1987, 104, 283-294.
- [12] Mursaleen M. and Mohiuddine S.A. Some new double sequences of invariant-means. Glasnik Mathemtički, 2010, 45(65), 139-153.
- [13] Mursaleen M. Matrix transformation between some new sequence spaces. Houston J.Math., 1983, 9, 505-509.
- [14] Mursaleen M. On some new invariant matrix methods of summability. Quart.J. Math. Oxford, 1983. 34(2), 77-86.
- [15] Raimi R.A. Invariant means and invariant matrix method of summmability. Duke Math. J., 1963,30, 81-94.
- [16] Savas E. and Patterson R.F. Some σ -double sequence spaces defined and its applications. J.Mathematical Analysis and its Applications, 2006, **324(1)**, 525-531.
- [17] Schfer P. Infinite matrices and invariant means. Proc. Amer. Math. Soc., 1972, 36, 104-110.
- [18] Wilansky A. Summability through functional analysis. North-Holland Mathematical Studies, 1984, 85.

Current address: Department of Mathematics, A.M.U. Aligarh-202002 INDIA

 $E\text{-}mail\ address: wakhan@math.com, sabihatabassum@math.com,}$

 URL : http://communications.science.ankara.edu.tr