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ON QUASI-STATISTICAL CONVERGENCE

I. SAKAOGLU OZGUC AND T. YURDAKADIM

ABSTRACT. The sequence z = (zy) is quasi-statistically convergent to L pro-

vided that for each e > 0, lim — [{k < n: |z — L| > ¢}| = 0 where limc,, =0,
n cp n

c
¢n > 0 for each n € N and limsup — < oco. In this paper quasi-statistical

n n
convergence is compared with statistical convergence and other methods. Fur-
thermore a decomposition theorem is proved and a factorization result is also
given for quasi-statistical convergence.

1. INTRODUCTION

A number sequence x = (xy) is said to be statistically convergent to the number L

if for every € > 0, lim — [{k < n : |z — L| > €}| = 0 where the vertical bars indicate
n

the number of elements in the enclosed set. In this case we write st —limx = L or
x — L (st) ([1], [2] and [10]). By S we denote the set of all statistically convergent
sequences. This type of convergence method is quite effective, especially when the
classical limit does not exist.

In [7] Ganichev and Kadets have defined the quasi-statistical filter. Motivating
by their definition of quasi-statistical filter, we introduce quasi-statistical conver-
gence and study the relationship between quasi-statistical convergence and statisti-
cal convergence. A decomposition theorem is also proved along with a factorization
result for quasi-statistical convergence.

If K is a set of positive integers, |K| will denote the cardinality of K. The
natural density of K is given by

1
0(K)= lim —|{k<n: ke K},

n—oo M

if it exists.
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The number sequence z = (xzy) is statistically convergent to L provided that for
every € > 0 the set K, = {k € N: |z, — L| > ¢} has natural density zero. In this
case we write st —limxz = L.

Throughout the paper we assume that ¢ := (¢,) is a sequence of positive real
numbers such that

c
lime,, = co and limsup — < o0o. (1.1)
n n n

We define the quasi-density of E C N corresponding to the sequence (¢, ) by
1
0c(E) :=lim—|{k<n: ke FE}
n Ccp

if it exists.

The sequence x = (zy,) is called quasi-statistically convergent to L provided that
for every € > 0 the set E. = {k € N: |z — L| > €} has quasi-density zero. In this
case we write sty —limz = L or 2 — L (stq).

The next result establishes the relationship between quasi-statistical convergence
and statistical convergence.

Lemma 1.1. If x = (zy) is quasi-statistically convergent to L then it is statistically
convergent to L.

Proof. Let sty —limz = L and H := sup & Since
n N

1 H
~H{keN: |op—Ll e} < —{keN: |op— L] > e}
the proof follows immediately. O

We give an example in order to show that the converse of Lemma 1.1 does not
hold.

Example 1.2. Let ¢ := (¢,,) be the sequence of positive real numbers such that

. . n
lime, = oo, and hm£ = oo. We can choose a subsequence {cnp} such that
n n. Cp

Cn, > 1 for each p € N.
Consider the sequence x = (z},) defined by

¢, ; kissquare and ¢ € {cnp ip € N}
T = 2 ; kissquare and ¢ ¢ {cnp IpE N}
0 ; otherwise.

It is easy to see that x is statistically convergent to zero. Now we show that x
is not quasi-statistically convergent to zero.
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Let e = 1.

LikeN: ml 21l = = (VA (1.9)
1

c (\/ﬁ_ tn)

where 0 < t,, < 1 for each n € N. Letting n — oo in both sides of (1.2), we observe
that x is not quasi-statistically convergent to zero.

The following result relates the statistical convergence to quasi-statistical con-
vergence.

Lemma 1.3. Let ¢ := (¢,,) be the sequence of positive real numbers satisfying (1.1)
and

d:=inf < >0 (1.3)
n n

If © = (xy) is statistically convergent to L then it is quasi-statistically convergent
to L.

Proof. The result follows from the inequality:

1 1
EHkEN: |xk—L|25}|2dc—|{k€N: |z — L| > e}

O
Note that the condition given by (1.3) can not be omitted.
By Lemma 1.1 and Lemma 1.3, the next result follows immediately.
Theorem 1.4. Let ¢ := (c¢,) be the sequence of positive real numbers satisfying

(1.1) and (1.3). Then x = (xy) is statistically convergent to L if and only if x is
quasi-statistically convergent to L.

By S, we denote the set of all quasi-statistically convergent sequences.
It is easy to see that every convergent sequence is quasi-statistically convergent,
i.e., c C S, where c is the set of all convergent sequences.

2. STRONG QUASI-SUMMABILITY

In this section, introducing the strong quasi-summability, one of our purpose is to
study inclusion theorems between quasi-statistical convergence and strong quasi-
summability. From [3], [4] and [9] we know that there is a natural relationship
between statistical convergence, Cesaro summability and strong Cesaro summabi-
lity.

The sequence x = (xy) is said to be strongly quasi-summable to L if

n

1
lim — . — L] =0.
S’

=1
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The space of all strongly quasi-summable sequences is denoted by N,.

¢
Ny = {x:for some L, hrancfZ\l’k*M —O}'

=1

Theorem 2.1. Let ¢ := (c,) be the sequence of positive real numbers satisfying
(1.1). If = is strongly quasi-summable to L then it is quasi-statistically convergent
to L.

Proof. Let « = (x) such that st, —lima = L.

n

1< 1 €
— o —L>— Y |z L > —[{k<n:|e— L > e}
Ay L Cn

\wk—L|2£

which concludes the proof. ([l

Schoenberg showed that a bounded statistically convergent sequence is Cesaro
summable [9]. Combining this result with Lemma 1.1 the following corollary follows
easily.

Corollary 1. Let x be a bounded sequence and a quasi-statistically convergent to
L. Then z is Cesaro summable to L.

Theorem 2.2. Let x be a bounded sequence and a quasi-statistically convergent to
L, and let (1.1) and (1.3) hold. Then x is strongly quasi-summable to L.

Proof. The result follows from the inequality:

1 « 1
=3 ok — Ll <o+ M—|{k <n: oy — L[ > &}
L n n

where |z, — L| < M, for every k € N since z is bounded. O

The next result is the decomposition theorem for quasi-statistical convergence
which is an anolog of the decomposition theorem on statistical convergence ([2], [3],

[8])-

Theorem 2.3. If x is quasi-statistically convergent to L, then there is a sequence
y which converges to L and quasi-statistically null sequence z such that x =y + z.

Proof. Let x be a quasi-statistically convergent sequence.
We can find an increasing sequence of positive integers (N;) such that

1
{k<n:|mk—L|>.}
J

Let us define y = (y) and z = (z) as follows;

1
Ny =0and —

Cn

1
<=in>N; (j=1,2..).
J
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2z, =0 and yp=zp ;ifNg<k<MNM
1

2z =0 and yr=wx, ;if [zx—L| <= , Nj <k<Njy, forj>1
]
1

zp=ar—L and yp,=L ;if |ty —L|>~- , N;j <k<Njpq, forj>1
J

It is easy to see that z =y + 2.
Now we show that y is convergent to L.
Given ¢ > 0. Let j such that ¢ > % If |z, —L| > %; k> Nj,
then |yx — L| = |L — L| = 0. If |z — L| < %, then |y, — L| = |z, — | < } <e.
Therefore
Jm e = L
To show that z is quasi-statistically null sequence; it is enough to prove

1
lim — |{k<n:z #0}=0.

n—oo CTL
We know, for € > 0, that
{k<n:|z|>e} C{k<n:z #0}.
Thus
Hk <mn:lzi| > e} < {k<n:z #0}.
If% < éfor § > 0 and j € N, we show that = [{k <n:z, #0}| < ¢ for all
’I’L>Nj.
In this case z, # 0 if and only if |z, — L] > %, N; <k < Njji.
If Nj <k< Nj+17 then

{kﬁnizk#o}—{kﬁn:mk—L|2;},

Thus if N, < k < Nyy1 and v > j, then

1 1
— <n:z < —
—{k<nin £ 0} <

n

1 1 1
{kgn:|xk—L|Z}'<<,<(5
v v

which concludes the proof. O
The following result is an immediate consequence of Theorem 2.3.

Corollary 2. If x is quasi-statistically convergent to L, then x has a subsequence
y such that y converges to L.

The following two Tauberian results follow from Theorems 3 and 5 of [2] and the
present Lemma 1.1:

Theorem 2.4. If x is a sequence such that x is quasi-statistically convergent to L
and Axj, = 0(%) then x is convergent to L where Axy = xp — Tpy1-
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Theorem 2.5. Let {k(i)};>, be an increasing sequence of positive integers such
k(i +1)

that lim inf > 1, and let x be a corresponding gap sequence: Az = 0
1

if k # k(i) for each i € N, if x is quasi-statistically convergent to L then x is
convergent to L.

3. MULTIPLIERS

This section is devoted to multipliers and factorization problem. Connor, Demirci
and Orhan ([5], [6]) studied multipliers for bounded statistically convergent se-
quences. Following their idea, we get similar results for quasi-statistically conver-
gent sequences.

Assume that two sequence spaces, E and F are given. A multiplier from E into
F is a sequence u such that uz = (u,x,) € F whenever 2 € E. The linear space of
such multipliers will be denoted by m(E, F).

Theorem 3.1. z € m(st,, sty) if and only if x € st,.

Proof. Necessity: Let u € m(stq, st,;). Then we have ux € st, for an arbitrary
x € stq. Hence we can choose v = x € sty then ur = u € st,.
Sufficiency: Let = € st,, y € st,. Considering the inequality

{keN: |opyel > el < {keN: |ap| > Ve}|+|[{keN: |y| > Ve}

we obtain zy € st,, i.e., x € m(stq, sty). O

)

Theorem 3.2. © € m(Ny, sty) if and only if x € st,.

Proof. Necessity: Let u € m(Ng, sty). Then we have uxr € st, for an arbitrary
2 € Ny. Hence we can choose x = xy € Vg then ur = u € st,.

Sufficiency: Let = € st; and y € N,. Using Theorem 2.1 and Theorem 3.1 we have
x € m(Ny, stq). O

We shall be interested in sequences x that admit a factorization
T =yz
in which
y € sty and z € N,.
Theorem 3.3. x is a quasi-statistically convergent sequence if and only if there is

a strongly quasi-summable sequence y and quasi-statistically convergent sequence z
such that © = yz.

Proof. Necessity: Let x € st,. Since xy € Ny, we have © = xyz € Ng.sty,.
Sufficiency: Let y € N, and z € st, such that = yz. It follows from Theorem 3.2
that = € st, which completes the proof. O
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OZET: Her n € N i¢in ¢, > 0, lime¢, = 0 ve limsupc—n < o0
n n n

1
olmak iizere her ¢ > 0 i¢in lim — [{ k<n:|zy —L| >} = 0
n Cp

ise (x) dizisi L sayisina quasi-istatistiksel yakinsaktir denir. Bu
caligmada quasi-istatistiksel yakinsaklik, istatistiksel yakinsaklik
ve diger metodlarla kargilagtirilmigtir. Ayrica quasi-istatistiksel
yakinsaklik i¢in bir ayrigtirma teoremi ve bir faktorizasyon prob-
lemi incelenmigtir.
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