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EXACT SOLUTIONS OF THE ZAKHAROV EQUATIONS BY
USING THE FIRST INTEGRAL METHOD

ARZU OGUN UNAL

ABSTRACT. In this paper some traveling wave solutions of the Zakharov equa-
tions are obtained by using the first integral method. The first integral method
is a powerful an effective method for solving nonlinear partial differential equa-
tions.

1. Introduction

Nonlinear evolution equations (such as KdV, Burgers, Bousinesq, etc.) are
widely used to describe nonlinear phenomena in physics fields like the fluid me-
chanics, plasma physics, optics. In recent years various techniques have been devel-
oped to obtain exact solutions of nonlinear evolution equations such as Bécklund
transformation method [13,10], Painlevé method [16,21], inverse scattering method
[2,20], Hirota’s bilinear method [9], tanh method [8,12] and the first integral method
[1,3,4,6,7,11,14,17,19].

The first integral method used in the theory of commutative algebra was first
proposed by Feng to solve the Burgers Korteweg-de Vries equation [6]. Recently,
many authors has applied this method to various types of nonlinear problems
[1,3,4,7,11,14,17,18,19]. In this paper, we use the first integral method to find
the exact solutions of the Zakharov equations.

Zakharov equations are the coupled nonlinear partial differential equations as
follow

Wy + Upy = UV (1)
2
Vit — Uz = (Ju]")ze- (2)
Here, u is the slow variation amplitude of the electric field intensity and v is the
perturbed number density of the media or ions in media. The Zakharov equations

has various applications in physics such as theory of deep-water waves, nonlinear
pulse propogation in optical fibers and interaction of laser plasma [15].
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2. The First Integral Method
Consider the general second order autonomus partial differential equation
P(uvuhuxvuxxvuxt»utt) = 0 (3)

Assume that the equation (3) has the travelling wave solutions in the form

wla, ) = U(€), €= — wt ()
where w represent the wave speed; if w > 0 (w < 0), then U(z — wt) represents a

wave traveling to the right (left) [22]. Then the Eq. (3) is reduced to the autonomus
ordinary differential equation

QU(E),U'(£),U"(€)) =0 ()
Next, we introduce new dependent variables X (&) and Y () as
X(©)=U(&), Y(§)=U'(§) (6)
which leads Eq. (5) to the system of ODE
X'(€) = Y (), .

Y(§) = F(X(£),Y(E))-

According to the qualitative theory of differential equations [5] if we can find two
first independent integrals of system (7), then the general solutions of (7) can be
expressed explicitly and so can all kind of travelling wave solutions of Eq. (3).
However, it is generally difficult to find even one of the first integrals. Because
there is not any systematic way to tell us how to find these integrals. So, our aim
is to obtain at least one first integral of system (7). To do this, we will apply the
Division Theorem which is based on the Hilbert-Nullsellensatz Theorem [6]. Now,
we recall the Division Theorem for two variables in the complex domain C.

Division Theorem. Suppose that P(w,z) and Q(w,z) are polynomials in
Clw, z] and P(w, z) is irreducible in Clw, z|; if Q(w,z) vanishes at all zero points
of P(w,z), then there exist a polynomial H(w,z) in Clw, z] such that,

Q(w, z) = P(w, z)H(w, z)

3. Zakharov equation

In this section we study the (1)-(2) Zakharov equations. Applying the transfor-
mations

u(z,t) = eU(), v(z,t) = V(E), 0 =cx+t, {=x—2ct (8)
to the Eq. (1)-(2), we obtain the system of ordinary differential equations
U'—(E+10)U = UV (9)
62
(4 - N)V" = —(U?) (10)

ol
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Integrating Eq. (10) twice with respect to &, we have
(4> = 1)V =U? 4 ¢, (11)

where ¢ is second integration constant and first one is taken to zero. Inserting (11)
into Eq (9), we have

Iy g— 24 1)U — U3 =0 12
(402—1+C+) 4c? — 1 (12)
Using (6), we get the following system which is equivalent to (12)
X =Y, (13a)
co
Y = (——+F+1)X X3 13b
7 Ve (13b)

According to the first integral method, we assume that X (£), Y'(£) is a nontrivial
solution of (13) and

QX.Y) = a(X)Y (14)
i=0
is an irreducible polynomial in the complex domain C such that
QX(),Y(€) =Y ai(X ()Y (&) =0 (15)
i=0

where a;(X) (i =0,1,...,m) are polynomials of X and a,,(X) # 0. Equation (14)
is called the first integral of (13). According to the Division Theorem, there exist
a polynomial g(X) + h(X)Y in the complex domain C such that

dQ 0QdX  0QdY

— = e+ e = (9(X) + R(X)Y (XY 16
O o g = 00 HHN Y aix) (16)
We consider two different cases for (14) m =1 and m = 2.

Case1l. m=1

Equating the coefficients of Y on both sides of equation (16), we have

aj(X) = h(X)ai(X), (17a)
ap(X) = g(X)ai1(X)+ h(X)ao(X), (17b)
(Ol + ¢+ DX + 46217 X% = g(X)ao(X). (17¢)

Since a;(X) are polynomials, from (17a) we deduce that a;(X) is constant and
h(X) = 0. For simplification we take a;(X) = 1. Hence (17) can be rewriten as

ap(X) = g(X), (18a)
(1557 +E+ DX + 5 XP =g(X)ao(X) (180

Balancing the degrees of ag(X) and g(x), we conclude that degg(X) = 1 only.
Assume that
9(X)=AX+B (19)
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where A, B € C. Then, from (18a)
A
ap(X) = 5)(2 +BX +C (20)

where C is an arbitrary integration constant. Substituting (19) and (20) into (18b)
and setting all coefficients of X* (i = 0,1,2,3) to be zero, we obtain the following
two solutions

2 4¢?2 -1 Cy
4c2 -1’ 0, ¢ 2 (4c2

Using the conditions (21) in equation (15), we have

1 4c2 — 1 Co
Y+ (o X2y 1)) =0 22
Wagz—pX * T GE )= (22)

Solving Eq (22) with subject to the Y and substituting them into Eq. (13a), we
obtain the exact solution of (13) and then the exact solutions of Zakharov equations
can be written as

+324+1) (21

s (1) = 6% /o7 T (@ F DA - 1”&“%(43_ e R
2
v t) = 5o + (g + ¢+ Dtan? \/2(4;_ iyt : +1(§+§o) (24)

where 0 = cx +t, £ = x — 2ct and £, is an arbitrary constant.
Case 2. m = 2.
By equating the coefficients of Y* on both sides of (16) we have

as(X) = h(X)az(X) (25a)

0y (X) = g(X)as(X) + h(X a1 (X) (25b)

ap(X) = —2as[(7845 + A+ DX + 125X (25¢)
+9(X)a1(X) + h(X)ao(X)

a1 (X)[(£525 + A+ DX + 75 X3] = g(X)ao(X) (25d)

Since a;(X) are polynomials, from (25a), we deduce that as(X) is constant and
h(X) = 0. Again, let us take a2(X) = 1. Thus the system can be rewriten as follow

ay(X) = g(X) (26a)
ap(X) = =2[(g5%5 + ¢ + 1)X + 1z X7+ g(X)ai (X)  (260)
ar(X)[(g557 + E + DX + 175 X°] = g(X)ao(X) (26¢)

Balancing the terms of ag(X), a1(X) and g(X), we conclude that either
degg(X) =0 or degg(X) = 1.
Let us consider the case of deg g(X) = 0, that is,

g(z)=A (27)
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where A # 0. Then, from (26a-b), we get

a1(X) = AX + B, (28)
X eo b xR e ey iaBx 4o (29)
WO = T ) 2 ‘a2 —1 ¢

where B and C are integration constants. Let us substitute ao(X), a1(X) and
g(X) into (26c) and equate the all coefficients of X* (i = 0,1,2,3,4) to the zero.
Therefore, it follows

A=0, B=0, C=arbitrary. (30)
Specialy if we choose C' = 0, from (30), (14) and (13a) we find
X' =+X L oy 24y (31)
2(4¢? - 1) 4c2 — 1

These equations have the following solutions;

if [c| > 3, c2 > —(c? +1)(4c* — 1) then

C2
4c2 -1

X(©) = /20 + 2@ T (A2~ Desch | rariere)] e

if [¢| > 1, co < —(c® +1)(4c* — 1) then

X(© = 4/ 20 FE DS - Deotly -1 - @+ D(E+6)

x\/l - tan[(4c;2_ T + e+ 1)(€+&o)?] (33)

if [¢| < 1, ca < —(c® +1)(4c* — 1) then

X(©) = V2 - HEF DAE - Dsech |\ [ + @1+ &) (9

if [ < 3, ca > —(c? +1)(4c* — 1) then

X(©) = /20 +2(c+1)(4A 1) cot[\/— 46202_ T~ (@ DE+E&)]
x\/—l + tan[(4c2ci 1 +c2+1)(E+ &2 (35)

By combining (6), (8), (11) and above solutions, some exact solutions of Zakharov
equations are obtained as follow;
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if [¢| > 1, co > —(c® +1)(4c* — 1) then

co+ (2 +1)(4e? - 1)
\/ 4c2 — 1 (f + €0)
C2

W@ = g e e[ re i re)| @0

if [¢| > 1, co < —(c® +1)(4c* — 1) then

us(€) = +e/2[co + (2 +1)(4c® — 1)] esch

uz(€) = +e\/—2co —2(c2 +1)(4c2 — 1) cot {\/ 2 (1) go)}

42 -1
X\/l - tan[(402€i Tt 2+ 1)(&+&)?] (37)
@ = gaitgaey el |- - @ e+ )

cf1- i @ )E+ 60

if [c| < 3, co < —(c? +1)(4c* — 1) then

ug(§) = €9/ =2[co + (2 +1)(4c2 — 1)]sech

(€ +¢&0)

\/02 + (2+1)(4c2 - 1)
4c¢? -1

ca
4c2 — 1

Ca
4c2 — 1

ca
4c2 — 1

v4(€) 2| + ¢? 4 1] sec h? { +c2+1(§+§0)] (38)

if [c] < 3, c2 > —(c? +1)(4c* — 1) then

us(€) = +e'\/2co +2(c? + 1)(4c% — 1) cot {\/— 402‘% T (E+DEF 50)}

/=1 tanl( g e D6+ )7 (39)

C2

vs(&) = ga- 1+2[4c262— e+ Heot? {\/_ 4c262— (@ HDE 60)}

C2
4c2 — 1

x{1+tan[( +c2+1)(§+§0)2]}

where 0 = cx +t, £ = x — 2ct and &, is an arbitrary constant.
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Now we assume that deg g(X) = 1; that is, g(X) = AX + B, where A # 0. Then,
from (26a-b) we find

A

ar = §X2+BX+C,
A? 1 AB
— 7_7)(4 7X3
0 5 2@ T
AC B2 Co 2 2
— = (= D]X*+BCX +D
+[2 + 35 (402_1+c+)] + BCX +

where C, D are arbitrary integration constants. Substituting ao(X), a1(X) and
g(X) into (26¢) and setting all the coefficients of powers X to be zero, we obtain

2V/2 V2

A = + , B=0, C=+4+——o=]co+ (4 —1)(+1)],
42 — 1 4c2 — 1[62 (4e (e )
[ca + (4c? — 1)(c* +1)]2
b 24 — 1) (40)

Putting (40) into (15), we obtain the same equations as (22). So we have the same
exact solutions as (23)-(24).

Ozet: Bu calismada ilk integral metodu yardimiyla Zakharov den-
kleminin bazi hareketli dalga ¢oziimleri elde edilmistir. ilk inte-
gral metodu, lineer olmayan kismi tiirevli denklemleri ¢6zmek igin
oldukga giiclii ve etkili bir yontemdir.
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