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EXACT SOLUTIONS OF THE ZAKHAROV EQUATIONS BY
USING THE FIRST INTEGRAL METHOD

ARZU ÖĞÜN ÜNAL

Abstract. In this paper some traveling wave solutions of the Zakharov equa-
tions are obtained by using the first integral method. The first integral method
is a powerful an effective method for solving nonlinear partial differential equa-
tions.

1. Introduction

Nonlinear evolution equations (such as KdV, Burgers, Bousinesq, etc.) are
widely used to describe nonlinear phenomena in physics fields like the fluid me-
chanics, plasma physics, optics. In recent years various techniques have been devel-
oped to obtain exact solutions of nonlinear evolution equations such as Bäcklund
transformation method [13,10], Painlevé method [16,21], inverse scattering method
[2,20], Hirota’s bilinear method [9], tanh method [8,12] and the first integral method
[1,3,4,6,7,11,14,17,19].
The first integral method used in the theory of commutative algebra was first

proposed by Feng to solve the Burgers Korteweg-de Vries equation [6]. Recently,
many authors has applied this method to various types of nonlinear problems
[1,3,4,7,11,14,17,18,19]. In this paper, we use the first integral method to find
the exact solutions of the Zakharov equations.
Zakharov equations are the coupled nonlinear partial differential equations as

follow

iut + uxx = uν (1)

vtt − vxx = (|u|2)xx. (2)

Here, u is the slow variation amplitude of the electric field intensity and v is the
perturbed number density of the media or ions in media. The Zakharov equations
has various applications in physics such as theory of deep-water waves, nonlinear
pulse propogation in optical fibers and interaction of laser plasma [15].
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2. The First Integral Method

Consider the general second order autonomus partial differential equation

P (u, ut, ux, uxx, uxt, utt) = 0 (3)

Assume that the equation (3) has the travelling wave solutions in the form

u(x, t) = U(ξ), ξ = x− ωt (4)

where ω represent the wave speed; if ω > 0 (ω < 0), then U(x − ωt) represents a
wave traveling to the right (left) [22]. Then the Eq. (3) is reduced to the autonomus
ordinary differential equation

Q(U(ξ), U ′(ξ), U ′′(ξ)) = 0 (5)

Next, we introduce new dependent variables X(ξ) and Y (ξ) as

X(ξ) = U(ξ), Y (ξ) = U ′(ξ) (6)

which leads Eq. (5) to the system of ODE

X ′(ξ) = Y (ξ),
Y ′(ξ) = F (X(ξ), Y (ξ)).

(7)

According to the qualitative theory of differential equations [5] if we can find two
first independent integrals of system (7), then the general solutions of (7) can be
expressed explicitly and so can all kind of travelling wave solutions of Eq. (3).
However, it is generally diffi cult to find even one of the first integrals. Because
there is not any systematic way to tell us how to find these integrals. So, our aim
is to obtain at least one first integral of system (7). To do this, we will apply the
Division Theorem which is based on the Hilbert-Nullsellensatz Theorem [6]. Now,
we recall the Division Theorem for two variables in the complex domain C.
Division Theorem. Suppose that P(w , z ) and Q(w , z ) are polynomials in

C[w, z] and P(w , z ) is irreducible in C[w, z]; if Q(w , z ) vanishes at all zero points
of P(w , z ), then there exist a polynomial H (w , z ) in C[w, z] such that,

Q(w, z) = P (w, z)H(w, z)

3. Zakharov equation

In this section we study the (1)-(2) Zakharov equations. Applying the transfor-
mations

u(x, t) = eiθU(ξ), v(x, t) = V (ξ), θ = cx+ t, ξ = x− 2ct (8)

to the Eq. (1)-(2), we obtain the system of ordinary differential equations

U ′′ − (c2 + 1)U = UV (9)

(4c2 − 1)V ′′ =
∂2

∂ξ2
(U2) (10)
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Integrating Eq. (10) twice with respect to ξ, we have

(4c2 − 1)V = U2 + c2 (11)

where c2 is second integration constant and first one is taken to zero. Inserting (11)
into Eq (9), we have

U ′′ − ( c2
4c2 − 1 + c

2 + 1)U − 1

4c2 − 1U
3 = 0 (12)

Using (6), we get the following system which is equivalent to (12)

X ′ = Y, (13a)

Y ′ = (
c2

4c2 − 1 + c
2 + 1)X +

1

4c2 − 1X
3 (13b)

According to the first integral method, we assume that X(ξ), Y (ξ) is a nontrivial
solution of (13) and

Q(X,Y ) =

m∑
i=0

ai(X)Y
i (14)

is an irreducible polynomial in the complex domain C such that

Q(X(ξ), Y (ξ)) =

m∑
i=0

ai(X(ξ))Y (ξ)
i = 0 (15)

where ai(X) (i = 0, 1, ...,m) are polynomials of X and am(X) 6= 0. Equation (14)
is called the first integral of (13). According to the Division Theorem, there exist
a polynomial g(X) + h(X)Y in the complex domain C such that

dQ

dξ
=
∂Q

∂X

dX

dξ
+
∂Q

∂Y

dY

dξ
= (g(X) + h(X)Y )

m∑
i=0

ai(X)Y
i. (16)

We consider two different cases for (14) m = 1 and m = 2.
Case 1. m = 1
Equating the coeffi cients of Y i on both sides of equation (16), we have

a′1(X) = h(X)a1(X), (17a)

a′0(X) = g(X)a1(X) + h(X)a0(X), (17b)

a1(X)[(
c2

4c2 − 1 + c
2 + 1)X +

1

4c2 − 1X
3] = g(X)a0(X). (17c)

Since ai(X) are polynomials, from (17a) we deduce that a1(X) is constant and
h(X) = 0. For simplification we take a1(X) = 1. Hence (17) can be rewriten as

a′0(X) = g(X), (18a)
( c2
4c2−1 + c

2 + 1)X + 1
4c2−1X

3 = g(X)a0(X) (18b)

Balancing the degrees of a0(X) and g(x), we conclude that deg g(X) = 1 only.
Assume that

g(X) = AX +B (19)
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where A, B ∈ C. Then, from (18a)

a0(X) =
A

2
X2 +BX + C (20)

where C is an arbitrary integration constant. Substituting (19) and (20) into (18b)
and setting all coeffi cients of Xi (i = 0, 1, 2, 3) to be zero, we obtain the following
two solutions

A = ±
√

2

4c2 − 1 , B = 0, C = ±
√
4c2 − 1
2

(
c2

4c2 − 1 + c
2 + 1) (21)

Using the conditions (21) in equation (15), we have

Y ± (
√

1

2(4c2 − 1)X
2 +

√
4c2 − 1
2

(
c2

4c2 − 1 + c
2 + 1)) = 0 (22)

Solving Eq (22) with subject to the Y and substituting them into Eq. (13a), we
obtain the exact solution of (13) and then the exact solutions of Zakharov equations
can be written as

u1(x, t) = ±eiθ
√
c2 + (c2 + 1)(4c2 − 1) tan

√
c2

2(4c2 − 1) +
c2 + 1

2
(ξ + ξ0) (23)

v1(x, t) =
c2

4c2 − 1 + (
c2

4c2 − 1 + c
2 + 1) tan2

√
c2

2(4c2 − 1) +
c2 + 1

2
(ξ + ξ0) (24)

where θ = cx+ t, ξ = x− 2ct and ξ0 is an arbitrary constant.
Case 2. m = 2.
By equating the coeffi cients of Y i on both sides of (16) we have

a′2(X) = h(X)a2(X) (25a)
a′1(X) = g(X)a2(X) + h(X)a1(X) (25b)
a′0(X) = −2a2[( c2

4c2−1 + c
2 + 1)X + 1

4c2−1X
3] (25c)

+g(X)a1(X) + h(X)a0(X)
a1(X)[(

c2
4c2−1 + c

2 + 1)X + 1
4c2−1X

3] = g(X)a0(X) (25d)

Since ai(X) are polynomials, from (25a), we deduce that a2(X) is constant and
h(X) = 0. Again, let us take a2(X) = 1. Thus the system can be rewriten as follow

a′1(X) = g(X) (26a)
a′0(X) = −2[( c2

4c2−1 + c
2 + 1)X + 1

4c2−1X
3] + g(X)a1(X) (26b)

a1(X)[(
c2

4c2−1 + c
2 + 1)X + 1

4c2−1X
3] = g(X)a0(X) (26c)

Balancing the terms of a0(X), a1(X) and g(X), we conclude that either
deg g(X) = 0 or deg g(X) = 1.
Let us consider the case of deg g(X) = 0, that is,

g(x) = A (27)
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where A 6= 0. Then, from (26a-b), we get

a1(X) = AX +B, (28)

a0(X) = −
1

2(4c2 − 1)X
4 + [

A2

2
− ( c2

4c2 − 1 + c
2 + 1)]X2 +ABX + C (29)

where B and C are integration constants. Let us substitute a0(X), a1(X) and
g(X) into (26c) and equate the all coeffi cients of Xi (i = 0, 1, 2, 3, 4) to the zero.
Therefore, it follows

A = 0, B = 0, C = arbitrary. (30)

Specialy if we choose C = 0, from (30), (14) and (13a) we find

X ′ = ±X
√

1

2(4c2 − 1)X
2 +

c2
4c2 − 1 + c

2 + 1 (31)

These equations have the following solutions;
if |c| > 1

2 , c2 > −(c
2 + 1)(4c2 − 1) then

X(ξ) = ∓
√
2c2 + 2(c2 + 1)(4c2 − 1) csch

[√
c2

4c2 − 1 + c
2 + 1(ξ + ξ0)

]
(32)

if |c| > 1
2 , c2 < −(c

2 + 1)(4c2 − 1) then

X(ξ) = ±
√
−2c2 − 2(c2 + 1)(4c2 − 1) cot[

√
− c2
4c2 − 1 − (c

2 + 1)(ξ + ξ0)]

x
√
1− tan[( c2

4c2 − 1 + c
2 + 1)(ξ + ξ0)

2] (33)

if |c| < 1
2 , c2 < −(c

2 + 1)(4c2 − 1) then

X(ξ) =
√
−2c2 − 2(c2 + 1)(4c2 − 1) sech

[√
c2

4c2 − 1 + c
2 + 1(ξ + ξ0)

]
(34)

if |c| < 1
2 , c2 > −(c2 + 1)(4c2 − 1) then

X(ξ) = ±
√
2c2 + 2(c2 + 1)(4c2 − 1) cot[

√
− c2
4c2 − 1 − (c

2 + 1)(ξ + ξ0)]

x
√
−1 + tan[( c2

4c2 − 1 + c
2 + 1)(ξ + ξ0)

2]. (35)

By combining (6), (8), (11) and above solutions, some exact solutions of Zakharov
equations are obtained as follow;



14 ARZU ÖĞÜN ÜNAL

if |c| > 1
2 , c2 > −(c

2 + 1)(4c2 − 1) then

u2(ξ) = ±eiθ
√
2[c2 + (c2 + 1)(4c2 − 1)] csch

[√
c2 + (c2 + 1)(4c2 − 1)

4c2 − 1 (ξ + ξ0)

]

v2(ξ) =
c2

4c2 − 1 + 2[
c2

4c2 − 1 + c
2 + 1] csch2

[√
c2

4c2 − 1 + c
2 + 1(ξ + ξ0)

]
(36)

if |c| > 1
2 , c2 < −(c

2 + 1)(4c2 − 1) then

u3(ξ) = ±eiθ
√
−2c2 − 2(c2 + 1)(4c2 − 1) cot

[√
− c2
4c2 − 1 − (c

2 + 1)(ξ + ξ0)

]
x
√
1− tan[( c2

4c2 − 1 + c
2 + 1)(ξ + ξ0)

2] (37)

v3(ξ) =
c2

(4c2 − 1)+[
−2c2

(4c2 − 1)−2(c
2
+1)] cot2

[√
− c2
4c2 − 1 − (c

2 + 1)(ξ + ξ0)

]
x
{
1− tan[( c2

4c2 − 1 + (c
2 + 1))(ξ + ξ0)

2]

}

if |c| < 1
2 , c2 < −(c

2 + 1)(4c2 − 1) then

u4(ξ) = eiθ
√
−2[c2 + (c2 + 1)(4c2 − 1)] sech

[√
c2 + (c2 + 1)(4c2 − 1)

4c2 − 1 (ξ + ξ0)

]

v4(ξ) =
c2

4c2 − 1 − 2[
c2

4c2 − 1 + c
2 + 1] sech2

[√
c2

4c2 − 1 + c
2 + 1(ξ + ξ0)

]
(38)

if |c| < 1
2 , c2 > −(c2 + 1)(4c2 − 1) then

u5(ξ) = ±eiθ
√
2c2 + 2(c2 + 1)(4c2 − 1) cot

[√
− c2
4c2 − 1 − (c

2 + 1)(ξ + ξ0)

]
x
√
−1 + tan[( c2

4c2 − 1 + c
2 + 1)(ξ + ξ0)

2] (39)

v5(ξ) =
c2

4c2 − 1+2[
c2

4c2 − 1+c
2 + 1] cot2

[√
− c2
4c2 − 1 − (c

2 + 1)(ξ + ξ0)

]
x
{
−1 + tan[( c2

4c2 − 1 + c
2 + 1)(ξ + ξ0)

2]

}
where θ = cx+ t, ξ = x− 2ct and ξ0 is an arbitrary constant.
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Now we assume that deg g(X) = 1; that is, g(X) = AX+B, where A 6= 0. Then,
from (26a-b) we find

a1 =
A

2
X2 +BX + C,

a0 = [
A2

8
− 1

2(4c2 − 1) ]X
4 +

AB

2
X3

+[
AC

2
+
B2

2
− ( c2

4c2 − 1 + c
2 + 1)]X2 +BCX +D

where C, D are arbitrary integration constants. Substituting a0(X), a1(X) and
g(X) into (26c) and setting all the coeffi cients of powers X to be zero, we obtain

A = ± 2
√
2√

4c2 − 1
, B = 0, C = ±

√
2√

4c2 − 1
[c2 + (4c

2 − 1)(c2 + 1)],

D =
[c2 + (4c

2 − 1)(c2 + 1)]2
2(4c2 − 1) (40)

Putting (40) into (15), we obtain the same equations as (22). So we have the same
exact solutions as (23)-(24).

Özet: Bu çalı̧smada ilk integral metodu yardımıyla Zakharov den-
kleminin bazıhareketli dalga çözümleri elde edilmi̧stir. İlk inte-
gral metodu, lineer olmayan kısmi türevli denklemleri çözmek için
oldukça güçlü ve etkili bir yöntemdir.
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