
Commun.Fac.Sci.Univ .Ank.Series A1
Volum e 61, Number 2, Pages 51—66(2012)
ISSN 1303—5991

ON COMPLEX q−SZÁSZ-MIRAKJAN OPERATORS

DIDEM AYDIN

Abstract. In this paper, we introduce and study complex q−Szász-Mirakjan
operators attached to analytic functions satisfying a suitable exponential type
growth condition. We give a Voronovskaja-type theorem in compact disks for
these new operators. Note that our results are different from the results given
for other type complex q−Szász-Mirakjan operators in [8].

1. Introduction

In 1996, Phillips defined a generalization of the Bernstein operators called
q−Bernstein operators by using the q−binomial coeffi cients and the q−binomial
theorem [9]. In 2008, Aral introduced q−Szász-Mirakjan operators and studied
some approximation properties of them [1]. In 2008, Gal studied some approxi-
mation results of the complex Favard-Szász-Mirakjan operators on compact disks
[3].
In this work, we consider complex version of q−Szász-Mirakjan operators intro-

duced by Aral in [1].
Now, we give some notations on q−analysis given in [2],[5] and [9] .

The q−integer [n] is defined by

[n] := [n]q =

{
1−qn
1−q , q 6= 1
n, q = 1

for q > 0 and the q−factorial [n]! by

[n]! :=

{
[1]q [2]q ... [n]q , n = 1, 2, ...

1, n = 0.

We give the following two q−analogues of the exponential function ex which is
appeared in the definition of the operator :
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εq(x) =

∞∑
n=0

1

[n]q!
xn =

1

((1− q)x; q)∞
, |x| < 1

1− q , |q| < 1, (1.1)

Eq(x) =

∞∑
n=0

q
n(n−1)

2

[n]q!
xn = (−(1− q)x ; q)∞ , x ∈ R, |q| < 1, (1.2)

where (x; q)∞ =
∞∏
k=1

(1− xqk−1) (see [5]).

It is clear from (1.1) and (1.2) that εq(x)Eq(−x) = 1 and
lim
q→1−

εq(x) = lim
q→1−

Eq(x) = ex.

Suppose that Rn,q := bn
[n](1−q) , where (bn) is a sequence of positive numbers such

that lim
n→∞

bn = ∞ and that DR = {z ∈ C : |z| < R} , 1 < R < Rn,q. The complex

Szász-Mirakjan operator based on q−integers is obtained directly from the real
version (see [1]) by taking z in place of x, namely

Sqn(f ; z) = Sn(f ; q; z) (1.3)

= : Eq

(
− [n] z

bn

) ∞∑
k=0

f

(
[k]

[n]
bn

)
([n] z)

k

[k]! (bn)
k
,

where n ∈ N, 0 < q < 1, and f : [R,∞)∪DR → C has exponential growth and it has
an analytical continuation into an open disk centered at the origin. (see [1]). Note
that in the real case the q−Szász-Mirakjan operators are actually a q−extension
of the Szász-Chlodovsky operators constructed by Stypinsky in [10]. A different
type complex q−Szász-Mirakjan operator was introduced by Mahmudov in [8] for
q > 1 as

Mn,q (f ; z) =
∞∑
k=0

f

(
[k]

[n]

)
1

qk(k−1)/2
[n]

k
zk

[k]!
εq
(
− [n] q−kz

)
(1.4)

for the functions which are continuous and bounded on [0,∞). In [8], the author
studied quantitative estimates for the convergence, Voronovskaja’s theorem and
saturation for convergence of the operators attached to analytic functions in suitable
compact disks. Moreover the rate of convergence is given.
In the present work, we study some approximation properties of complex q−Szász-

Mirakjan operators. Also, by using q−derivative, we give a Voronovskaja type result
with quantative estimate in the sense of Gal [4].
Notice that, the operator defined by (1.3) and the obtained results are completely

different from to that of studied in [8] by Mahmudov. In this paper, we give some
estimates on rate of convergence and Voronovskaja-type results with quantitative
estimates for the operators (1.3) by means of q−derivative. Note also that similar
results for complex Favard-Szász-Mirakjan operators was firstly studied by Gal [3]
using classical derivative.
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Throughout the paper we call the operator (1.3) as complex q−Szász-Mirakjan
operator.
It is clear that by using divided differences Sqn(f ; z) can be expressed as

Sqn(f ; z) = Sn(f, q, z) =
∞∑
j=0

q
j(j−1)

2 f

[
0,
bn [1]

[n]
, ...,

bn [j]

[n]

]
zj , (1.5)

similar to the real version of the q−Szász-Mirakjan operators (see [1]), where
f
[
0, bn[1][n] , ...,

bn[j]
[n]

]
denotes the divided difference of f on the knots 0, bn[1][n] , ...,

bn[j]
[n] .

2. Convergence of Sqnn (f ; z)

Let q ∈ (0, 1) ∪ (1,∞). The q−derivative of a function f (x) is defined as

Dqf(x) :=
f(x)− f(qx)
(1− q)x for, x 6= 0.

Dqf(0) = lim
x→0

Dqf(x), where D0
qf := f, Dn

q f := Dq(D
n−1
q f), n = 1, 2, ...

As a consequence of the definition of Dqf, we find

Dqx
n = [n]q x

n−1,

Dqεq(ax) = aεq(ax),

DqEq(ax) = aEq(qax).

Also, the formula for the q−differential of a product is

Dq(u(x)v(x)) = Dq(u(x))v(x) + u(qx)Dq(v(x)).

We know that (
Dq(t;x)

n
q

)
(t) = [n]q (t;x)

n−1
q ,

where (t;x)nq =
n−1∏
k=0

(t− xqk) (see [2]).

Now, we give remark and lemma which we use in the proof of Theorem 2.3.

Remark 2.1. It is known that for a fixed value of q with 0 < q < 1, since 1
[n] → 1−q

as n→∞. To ensure the convergence properties of Sqn(f ; z), we will assume
q = qn as a sequence such that 0 < qn < 1 and qn → 1 as n→∞ so that [n]qn →∞
as n→∞. On the other hand, for the sequence (bn) is of positive numbers satisfying
lim
n→∞

bn =∞, Rn,qn = bn
[n]qn (1−qn)

→∞ as n→∞. Indeed, for example, if we choose
a sequence qn such that qn = n

n+1 , then we have q
n
n → 1

e as n → ∞, which gives
that Rn,qn =

bn
[n]qn (1−qn)

= bn
1−qnn

→∞ as n→∞.
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Lemma 2.2. Let DR = {z ∈ C : |z| < R} , 1 < R < Rn,q, where
Rn,q =

bn
[n]q(1−q)

and

f : [R,∞) ∪DR → C

be continuous in [R,∞) ∪DR, analytic in DR, namely f(z) =
∞∑
k=0

ckz
k for all

z ∈ DR and there exist M, C, B > 0 and A ∈
(
1
R , 1

)
, with the property |ck| ≤ MAk

k!

for all k = 0, 1, ...(which implies |f(z)| ≤MeA|z| for all z ∈ DR and |f(x)| ≤ CeBx
for all x ∈ [R,∞)). Then Sqn(f ; z) is well defined and analytic as function of z in
DR.

Proof. Passing to modulus we have from (1.3)

|Sqn(f ; z)| ≤
∣∣∣∣Eq (− [n]q z

bn

)∣∣∣∣ ∞∑
k=0

(
[n]q

)k
|z|k

[k]q! (bn)
k

∣∣∣∣∣f
(
[k]

[n]q
bn

)∣∣∣∣∣
≤ C

∣∣∣∣Eq (− [n]q z

bn

)∣∣∣∣ ∞∑
k=0

(
[n]q

)k
|z|k

[k]q! (bn)
k
e
B
(
[k]q
[n]q

bn
)
.

By using the ratio test, we obtain

lim
k→∞

ak+1
ak

=
[n]qn |z|
bn [k + 1]

q

e
Bm

(
[k+1]q
[n]q

bn−
[k]

q
[n]q

bn

)

=
[n]

q

bn
lim
k→∞

e
Bmq

k bn
[n]

q |z|
[k + 1]q

=
[n]

q

bn
lim
k→∞

re
Bmq

k bn
[n]

q |z|
1−qk+1
1−q

=
[n]

q

bn
(1− q) |z| ,

which shows that the series is convergent for |z| < R, by the hypothesis
R < Rn,q :=

bn
[n](1−q) , and therefore, S

q
n(f ; z) is well defined and analytic as function

of z. �

We note here that from the hypothesis on f , the analyticity of Sqn(f ; z) can be
seen also from [6].

Theorem 2.3. Suppose that the conditions of Lemma 2.2 are satisfied. Suppose
also that q = qn is a sequence such that 0 < qn < 1 and qn → 1 as n → ∞ and
bn
[n]qn

→ 0 as n→∞.
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(i) Let 1 ≤ r < 1
A be arbitrary fixed. There exist n0 such that for all n > n0 and

all |z| ≤ r, we have

|Sqnn (f ; z)− f(z)| ≤ Cr,A

where

Cr,A =

(
1− qn +

bn
[n]qn

)
MA

2

∞∑
k=2

(k + 1)(rA)k <∞.

(ii) For the simultaneous approximation by complex q−Szász-Mirakjan operator, we
have ∣∣∣D(p)

qn (S
qn
n (f ; z))−D(p)

qn f(z)
∣∣∣ ≤ Cr1,Abn

[n]qn

p!r1

(r1 − r)p+1
,

where Cr1,A is given as in the case (i) .

Proof. (i) By taking ek(z) = zk, it is clear that Tn,k(z) := Sqnn (ek; z) is a polynomial
of degree≤ k, k = 0, 1, 2, ... and

Tn,0(z) = 1, Tn,1(z) = z for all z ∈ C

Also, using q−derivative of Tn,k(z) for z 6= 0, we get

DqTn,k(z)

= −
[n]qn
bn

Eq

(
− [n]qn qn

z

bn

) ∞∑
j=0

(
[j]

qn

[n]qn
bn

)k ([n]qn qnz)j
[j]

qn
! (bn)

j

+Eq

(
− [n]qn

z

bn

) ∞∑
j=0

(
[j]

qn

[n]qn
bn

)k ([n]qn)j [j]
qn

zj−1

[j]
qn
! (bn)

j

z

z

[n]qn
bn

bn
[n]qn

=
[n]qn
zbn

Tn,k+1(z)

−
[n]qn
bn

Eq

(
− [n]qn qn

z

bn

) ∞∑
j=0

(
[j]

qn

[n]qn
bn

)k ([n]qn qnz)j
[j]

qn
! (bn)

j
(2.1)

for all z ∈ C, k = 0, 1, 2, .... Therefore, we obtain

Tn,k(z) = zTn,k−1(qnz) +
zbn
[n]qn

Dq (Tn,k−1(z)) .
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The last equality implies that

Tn,k(z)− zk =
zbn
[n]qn

Dq

(
Tn,k−1(z)− zk−1

)
+ z

[
Tn,k−1(qnz)− (qnz)k−1

]
+
zbn
[n]qn

[k − 1]qn z
k−2 + zk−1qk−1n z − zk

=
zbn
[n]qn

Dq

(
Tn,k−1(z)− zk−1

)
+ z

[
Tn,k−1(qnz)− (qnz)k−1

]
+
[k − 1]

qn

[n]qn
bnz

k−1 + zk(qk−1n − 1)

=
zbn
[n]qn

Dq

(
Tn,k−1(z)− zk−1

)
+ z

[
Tn,k−1(qnz)− (qnz)k−1

]
+
[k − 1]

qn

[n]qn
bnz

k−1 − zk(1− qn) [k − 1]qn . (2.2)

From the Bernstein inequality in Dr = {z ∈ C: |z| ≤ r} , we have

|Dq(Pk(z)| ≤ ‖P ′k‖ ≤
k

r
‖Pk‖r , (2.3)

where ‖.‖r = max
z∈Dr

|f(z)| (see [4, p. 55]). From (2.2) and (2.3), we obtain that

∣∣Tn,k(z)− zk∣∣
≤ rbn

[n]qn

∣∣Dq

(
Tn,k−1(z)− zk−1

)∣∣+ r ∣∣Tn,k−1(qnz)− (qnz)k−1∣∣
+
[k − 1]qn
[n]qn

bnr
k−1 + rk [k − 1]

qn
|1− qn|

≤ rbn
[n]qn

∥∥Tn,k−1(z)− zk−1∥∥r k − 1r
+r
∣∣Tn,k−1(qnz)− (qnz)k−1∣∣+ rk−1 [k − 1]qn

[n]qn
bn + r

k [k − 1]qn |1− qn| .
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By passing to norm we reach to∥∥Tn,k(z)− zk∥∥
r

≤ (k − 1)bn
[n]qn

∥∥Tn,k−1(z)− zk−1∥∥r + r ∥∥Tn,k−1(qnz)− (qnz)k−1∥∥r
+
[k − 1]qn
[n]qn

bnr
k−1 + rk [k − 1]qn |1− qn|

≤ (k − 1)bn
[n]qn

∥∥Tn,k−1(z)− zk−1∥∥r + r ∥∥Tn,k−1(z)− zk−1∥∥r +
+rk [k − 1]

qn

(
1− qn +

bn
[n]qn

)

=

(
(k − 1)bn
[n]qn

+ r

) ∥∥Tn,k−1(z)− zk−1∥∥r + rkk
(
1− qn +

bn
[n]qn

)
.

By using mathematical induction with respect to k, the above recurrence formula
gives that ∥∥Tn,k(z)− zk∥∥

r
≤ (k + 1)!r

k

2

(
1− qn +

bn
[n]qn

)
for all k ≥ 2 and fixed an arbitrary n ≥ n0. There exists an n0 such that for all
n > n0, then bn

[n]qn
< 1. Assume that it is true for k. Since [k]qn ≤ (k+1) is satisfied

for all 0 < qn < 1, the recurrence formula reduces to∥∥Tn,k+1(z)− zk+1∥∥
r

≤
(
r +

k

[n]qn
bn

)∥∥Tn,k(z)− zk∥∥r + rk+1 [k]qn
(
1− qn +

bn
[n]qn

)

≤
(
r +

k

[n]qn
bn

)
(k + 1)!rk

2

(
1− qn +

bn
[n]qn

)
+ rk+1(k + 1)

(
1− qn +

bn
[n]qn

)

≤
(
1− qn +

bn
[n]qn

)
rk+1

2

{
(k + 1)!k

bn
[n]qn

+ (k + 1)! + 2(k + 1)

}
for all k ≥ 2 and for all n > n0. By this inequality, it follows∥∥Tn,k+1(z)− zk+1∥∥

r
≤ (k + 2)!

2
rk+1

(
1− qn +

bn
[n]qn

)
.

for k ≥ 2 and for all n > n0.
Now, we show that

Sqnn (f ; z) =
∞∑
k=0

ckS
qn
n (ek; z) =

∞∑
k=0

ckTn,k(z) (2.4)
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for all z ∈ DR. For any m ∈ N, let us define

fm(z) =
m∑
j=0

cjz
j if |z| ≤ r < R and fm(x) = f(x) if x ∈ (r,∞).

From the hypthesis on f, it is clear that for any m ∈ N, |fm(x)| ≤ CmeBmx for all
x ∈ [0,∞). Ratio test implies that for each fixed m, n ∈ N and z,

|Sqnn (fm; z)| ≤ Cm
∣∣∣∣Eq (− [n]qn z

bn

)∣∣∣∣ ∞∑
k=0

(
[n]qn

)k
|z|k

[k]qn ! (bn)
k
e
Bm

(
[k]qn
[n]qn

bn

)
<∞.

Therefore, Sqnn (fm; z) is well defined. Now, we set

fm,k(z) = ckek(z) if |z| ≤ r and fm,k(x) =
f(x)

m+ 1
if x ∈ (r,∞).

It is clear that each fm,k is of exponential growth on [0,∞) and that

fm(z) =
m∑
k=0

fm,k(z).

Since Sqnn is linear, we have

Sqnn (fm; z) =
m∑
k=0

ckS
qn
n (ek; z) for all |z| ≤ r,

which proves that

lim
m→∞

Sqnn (fm; z) = Sqnn (f ; z)

for any fixed n ∈ N and |z| ≤ r. But this is immediate from

lim
m→∞

‖fm − f‖r = 0

and from the inequality

|Sqnn (fm)− Sqnn (f)| ≤
∣∣∣∣Eq (− [n]qn z

bn

)∣∣∣∣ εq ([n]qn |z|bn
)
‖fm − f‖r

≤ Mr,n ‖fm − f‖r ,

for all |z| ≤ r. Consequently the statement (2.4) is satisfied.
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In this way, from the hypothesis on ck, this implies for all |z| ≤ r

|Sqnn (f ; z)− f(z)|

≤
∞∑
k=2

|ck|
∣∣Tn,k(z)− zk∣∣ ≤ ∞∑

k=2

MAk

k!

(k + 1)!

2
rk

(
1− qn +

bn
[n]qn

)

=

(
1− qn +

bn
[n]qn

)
MA

2

∞∑
k=2

(k + 1) (rA)
k

=

(
1− qn +

bn
[n]qn

)
Cr,A,

where

Cr,A =
MA

2

∞∑
k=2

(k + 1) (rA)
k−1

is finite for all 1 ≤ r < 1
A . Note that the series

∞∑
k=2

uk+1 and its derivative

∞∑
k=2

(k+1)uk are uniformly and absolutely convergent in any compact disk included

in the open unit disk.
(ii) Let γ be the circle of radius r1 > r with centered 0, since for any |z| ≤ r

and v ∈ γ, we have |v − z| ≥ r1 − r, by Cauchy’s formulas it follows that for all
|z| ≤ r and n ∈ N

∣∣∣D(p)
qn
(Sqn
n (f ; z))−D(p)

qn
f(z)

∣∣∣ ≤ ∣∣∣Sq(p)n
n (f ; z)− f (p)(z)

∣∣∣
=

p!

2π

∣∣∣∣∣∣
∫
γ

Sqnn (f ; v)− f(v)
(v − z)p+1

dv

∣∣∣∣∣∣
≤ Cr1,Abn

[n]qn

p!

2π

2πr1

(r1 − r)p+1

=
Cr1,Abn
[n]qn

p!r1

(r1 − r)p+1
,

which gives (ii) . The proof is completed. �

Note that in case of qn = 1, the similar result for complex Favard-Szász-Mirakjan
operators has been obtained by Gal in ( [3, Theorem 2.1]).
In what follows, we give a Voronovskaja-type result for the complex q−Szász-

Mirakjan operators. A similar result for the real q−Szász-Mirakjan operators has
been given in [1].
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Theorem 2.4. Under the conditions of Theorem 2.3, suppose that 1 ≤ qnr < 1
A be

arbitrary fixed. Then the following Voronovskaja-type result holds.

∣∣∣∣∣Sqnn (f ; z)− f(z)− zbn
2 [n]qn

D2
qn(f(z))

∣∣∣∣∣
≤

{
rbn
[n]qn

(
1− qn +

bn
[n]qn

+ 2

)
+ 2

b2n
[n]2qn

}
MA2 |z|

r

∞∑
k=2

(k + 1)(qnAr)
k−2,

for all |z| ≤ r and n is large enough.

Proof. Set ek(z) = zk, k = 0, 1, ... and Tn,k(z) = Sqnn (ek; z), by the proof of The

orem 2.3 (i), we can write Sqnn (f ; z) =
∞∑
k=0

ckTn,k(z), and obtain that

∣∣∣∣∣Sqnn (f ; z)− f(z)− zbn
2 [n]qn

D2
q(f(z))

∣∣∣∣∣
≤

∞∑
k=0

|ck|
∣∣∣∣∣Tn,k(z)− ek(z)− zk−1 [k]qn [k − 1]qn bn

2 [n]qn

∣∣∣∣∣ ,
for all z ∈ DR. By the recurrence relationship in the proof of Theorem 2.3 (i),
satisfied by Tn,k(z), denoting

Ek,n(z) = Tn,k(z)− ek(z)−
zk−1 [k]qn [k − 1]qn bn

2 [n]qn
, (2.5)

we get that

Ek−1,n(z) = Tn,k−1(z)− ek−1(z)−
zk−2 [k − 2]

qn
[k − 1]

qn
bn

2 [n]qn

for all k ≥ 2, z ∈ DR. Using (2.5), we obtain the following recurrence for all k ≥ 2
and z ∈ DR. If we take the q−derivative of Ek−1,n(z), we have
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Dq(Ek−1,n(z))

= Dq(Tn,k−1(z))− [k − 1]qn z
k−2 −

zk−3 [k − 2]2qn [k − 1]qn bn
2 [n]qn

=
[n]qn
zbn

Tn,k(z)−
[n]qn
bn

Tn,k−1(qnz)− [k − 1]qn z
k−2 −

zk−3 [k − 2]2qn [k − 1]qn bn
2 [n]qn

=
[n]qn
zbn

{
Tn,k(z)− zTn,k−1(qnz)−

zk−1 [k − 1]qn bn
[n]qn

+
zk−1 [k]qn [k − 1]qn bn

2 [n]qn

−
zk−2 [k − 2]2qn [k − 1]qn b

2
n

2 [n]
2
qn

−
zk−1 [k]qn [k − 1]qn bn

2 [n]qn
+ qk−1n zk − qk−1n zk +

+zk − zk +
qk−2n zk−1 [k − 2]qn [k − 1]qn bn

2 [n]qn

−
qk−2n zk−1 [k − 2]qn [k − 1]qn bn

2 [n]qn

}

=
[n]qn
zbn

{
Tn,k(z)− ek(z)−

zk−1 [k]qn [k − 1]qn bn
2 [n]qn

− zTn,k−1(qnz)

+
qk−1n zk−2 [k − 1]qn [k]qn bn

2 [n]qn
+ qk−1n zk−2 +

zk−1 [k]qn [k − 1]qn bn
[n]qn

− qk−1n zk−2

−
qk−1n zk−2 [k − 1]qn [k]qn bn

2 [n]qn
−
zk−1 [k − 1]qn bn

[n]qn

−
zk−2 [k − 2]2qn [k − 1]qn b

2
n

2 [n]
2
qn

}
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If we make necessary arrangements, we reach to

Dq(Ek−1,n(z))

=
[n]qn
zbn

{Ek,n(z) +
zk−1 [k]qn [k − 1]qn bn

2 [n]qn
− qk−1n zk

−z
(
Tn,k−1(qnz)− (qnz)k−1 −

(qnz)
k−2 [k − 2]qn [k − 1]qn bn

2 [n]qn

)

−
qk−2n zk−1 [k − 2]qn [k − 1]qn bn

2 [n]qn

−
zk−1 [k − 1]qn bn

2 [n]qn
−
zk−2 [k − 2]2qn [k − 1]qn b

2
n

2 [n]
2
qn

}

=
[n]qn
zbn

{
Ek,n(z)− zEk−1,n(qnz) + zk

(
1− qk−1n

)
+
2zk−1 [k − 1]qn bn

2 [n]qn

+
zk−1 [k − 1]qn bn

2 [n]qn

(
[k]qn − q

k−2
n [k − 2]qn

)
−
zk−2 [k − 2]2qn [k − 1]qn b

2
n

2 [n]
2
qn

}

=
[n]qn
zbn

{
Ek,n(z)− zEk−1,n(qnz) + zk (1− qn) [k − 1]qn +

+
zk−1 [k − 1]qn bn

2 [n]qn

(
[k]qn − q

k−2
n [k − 2]qn − 2

)
−
zk−2 [k − 2]2qn [k − 1]qn b

2
n

2 [n]
2
qn

}
.

Hence

zbn
[n]qn

Dq(Ek−1,n(z)) = Ek,n(z)− zEk−1,n(qnz) + zk (1− qn) [k − 1]qn

−
zk−2 [k − 2]2qn [k − 1]qn b

2
n

2 [n]
2
qn

+
zk−1 [k − 1]qn bn

2 [n]qn

(
[k]qn − 2− q

k−2
n [k − 2]qn

)
.
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From the last equality, we can write

Ek,n(z) =
zbn
[n]qn

Dq(Ek−1,n(z)) + zEk−1,n(qnz)− zk (1− qn) [k − 1]qn

+
zk−2 [k − 2]2qn [k − 1]qn b

2
n

2 [n]
2
qn

−
zk−1 [k − 1]qn bn

2 [n]qn

(
[k]qn − 2− q

k−2
n [k − 2]qn

)
.

By passing to modulus, it follows that

|Ek,n(z)| ≤
|z| bn
2 [n]qn

2 ‖Dq(Ek−1,n(z))‖r

+ |z| |Ek−1,n(qnz)|+
|z| bn
2 [n]qn

|z|k−2
[k − 2]2qn [k − 1]qn bn

2 [n]qn

+ |z|k |1− qn| [k − 1]qn

+
|z| bn
2 [n]qn

|z|k−2 [k − 1]qn
(
[k − 2]qn q

k−2
n − ([k]qn − 2)

)

≤ r |Ek−1,n(qnz)|+
|z| bn
2 [n]qn

{
2

(
k − 1
r

)
‖Ek−1,n)‖r

+rk−2 [k − 1]qn
∣∣∣[k − 2]qn qk−2n − ([k]qn − 2)

∣∣∣

+
rk−3 [k − 2]2qn [k − 1]qn bn

2 [n]qn
+ rk (1− qn) [k − 1]qn

}
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for all k ≥ 2 and for all |z| ≤ r. This gives that

|Ek,n(z)| ≤ r |Ek−1,n(qnz)|+
|z| bn
2 [n]qn

{
2k−1r ‖Tk−1,n(z)− ek−1‖r

+2k−1r
rk−2[k−2]qn [k−1]qnbn

2[n]qn
+ rk−3

[k−2]2qn [k−1]qnbn
[n]qn

+ rk−2 [k − 1]qn
(∣∣∣[k − 2]qn qk−2n

∣∣∣+ ∣∣∣[k]qn − 2)∣∣∣)}

≤ r |Ek−1,n(qnz)|+ |z|bn
2[n]qn

{
2k−1r

(
k!rk−1

2

(
1− qn +

bn
[n]qn

))

+
(k−1)rk−3[k−2]qn [k−1]qnbn

2[n]qn
+ rk−3

[k−2]2qn [k−1]qnbn
[n]qn

+rk−2 [k − 1]qn 2 [k − 2]qn
}

≤ r |Ek−1,n(qnz)|+ |z|bn
2[n]qn

{
(k + 1)!2rk−2

(
1− qn +

bn
[n]qn

)

+
(k − 1)rk−3 [k − 2]qn [k − 1]qn bn

2 [n]qn
+ rk−3

[k − 2]2qn [k − 1]qn bn
[n]qn

+ 2rk−2 [k − 1]qn [k − 2]qn
}

≤ r |Ek−1,n(qnz)|+
|z| bn
2 [n]qn

{
(k + 1)!2rk−2

(
1− qn +

bn
[n]qn

)}

+
|z| bn
2 [n]qn

2rk−3(k+1)!bn
[n]qn

+ |z|bn
2[n]qn

(k + 1)!2rk−2
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= r |Ek−1,n(qnz)|+ |z|bn
2[n]qn

rk−2(k + 1)!

{
1− qn +

bn
[n]qn

+ 2

}

+
|z|b2n
[n]2qn

rk−3(k + 1)!

= r |Ek−1,n(qnz)|

+
|z| (k + 1)!rk−3

2

(
rbn
[n]qn

(
1− qn +

bn
[n]qn

+ 2

)
+ 2

b2n
[n]2qn

)
for all |z| ≤ r.

Taking k = 2, 3, ... step by step, we find

|E2,n(z)| ≤ r |E1,n(qnz)|+
|z| r−13!

2

{
rbn
[n]qn

(
1− qn +

bn
[n]qn

+ 2

)
+ 2

b2n
[n]2qn

}
,

|E2,n(qnz)| ≤
qn |z| r−13!

2

{
rbn
[n]qn

(
1− qn +

bn
[n]qn

+ 2

)
+ 2

b2n
[n]2qn

}
,

...

|Ek,n(z)| ≤
qk−2n |z| rk−3

2

{
rbn
[n]qn

(
1− qn +

bn
[n]qn

+ 2

)
+ 2

b2n
[n]2qn

}
k+1∑
j=3

j!

= qk−2n |z| rk−3(k + 1)!
{
rbn
[n]qn

(
1− qn +

bn
[n]qn

+ 2

)
+ 2

b2n
[n]2qn

}

for k ≥ 2. The last inequality gives that∣∣∣∣∣Sqnn (f ; z)− f(z)− zbn
2 [n]qn

D2
q(f(z))

∣∣∣∣∣
≤

∞∑
k=0

|ck| |Ek,n(z)|

≤
{
rbn
[n]qn

(
1− qn +

bn
[n]qn

+ 2

)
+ 2

b2n
[n]2qn

}
∞∑
k=2

qk−2n MAk |z| rk−3 (k + 1)!
k!

≤
{
rbn
[n]qn

(
1− qn +

bn
[n]qn

+ 2

)
+ 2

b2n
[n]2qn

}
MA2 |z|

r

∞∑
k=2

(k + 1)(qnAr)
k−2;

for all |z| ≤ r, where qnrA < 1 we have
∞∑
k=2

(k+1)(qnrA)
k−2 <∞, which completes

the proof. �
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Özet: Bu çalı̧smada, uygun üstel tipten büyüme koşulunu sağlayan
analitik fonksiyonlar için kompleks q−Szász-Mirakjan operatörleri
çalı̧sılmı̧stır. Bu operatörler için kompakt disklerde bir Voronovskaja-
tipi teorem verilmi̧stir. Ayrıca, burada elde edilen sonuçlar [8] nolu
referanstaki farklıtipten kompleks q−Szász-Mirakjan operatörleri
için verilen sonuçlardan farklıdır.
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