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ON COMPLEX ¢—SZASZ-MIRAKJAN OPERATORS

DIDEM AYDIN

ABSTRACT. In this paper, we introduce and study complex g—Szdsz-Mirakjan
operators attached to analytic functions satisfying a suitable exponential type
growth condition. We give a Voronovskaja-type theorem in compact disks for
these new operators. Note that our results are different from the results given
for other type complex g—Szdsz-Mirakjan operators in [8].

1. INTRODUCTION

In 1996, Phillips defined a generalization of the Bernstein operators called
q—Bernstein operators by using the g—binomial coefficients and the g—binomial
theorem [9]. In 2008, Aral introduced g—Szdsz-Mirakjan operators and studied
some approximation properties of them [1]. In 2008, Gal studied some approxi-
mation results of the complex Favard-Szasz-Mirakjan operators on compact disks

In this work, we consider complex version of g—Szédsz-Mirakjan operators intro-
duced by Aral in [1].

Now, we give some notations on g—analysis given in [2],[5] and [9] .

The g—integer [n] is defined by

for ¢ > 0 and the g—factorial [n]! by

1. 12, ...[n],, n=1,2,..
| .— q“lq q
(]! { 1, n=0.
We give the following two g—analogues of the exponential function e® which is
appeared in the definition of the operator :
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Lo 1 e L

Eq(x) = HZZO [Tl]qlx - ((1 —q)x; q)oo7 | |< 1 _q? |q| < 17 (11)
oo  n(n—1)

Eq(””zz_%q[nTx": (<=0 oo, TER, Jl <1, (12)

where (z; @)oo = ]o_O[ (1 —2¢"1) (see [5]).

k=1
It is clear from (1.1) and (1.2) that e4(x)E,(—z) =1 and

lim g4(z) = lim Ey(x) = e".
—1- q—1-—

Suppose that R, , := [n](bli"_q), where (b,,) is a sequence of positive numbers such
that lim b, = oo and that Dp = {z € C: |z| < R}, 1 < R < R, 4. The complex

Szasz-Mirakjan operator based on g—integers is obtained directly from the real
version (see [1]) by taking z in place of z, namely

Si(fi2) = Sul(fiq;2) (1.3)

_ 2\ & (K ([n] 2)"

Fa ( e bn> kgof <[n] b"> (k]! (bo)*’
wheren € N, 0 < ¢ < 1,and f : [R,00)UDg — C has exponential growth and it has
an analytical continuation into an open disk centered at the origin. (see [1]). Note
that in the real case the ¢—Szdsz-Mirakjan operators are actually a g—extension
of the Szdsz-Chlodovsky operators constructed by Stypinsky in [10]. A different
type complex g—Szdsz-Mirakjan operator was introduced by Mahmudov in [8] for
q>1as

& n kzk
My (159 = £ 1 (1) bs Ut (et

for the functions which are continuous and bounded on [0, 00). In [8], the author
studied quantitative estimates for the convergence, Voronovskaja’s theorem and
saturation for convergence of the operators attached to analytic functions in suitable
compact disks. Moreover the rate of convergence is given.

In the present work, we study some approximation properties of complex ¢—Szdsz-
Mirakjan operators. Also, by using g—derivative, we give a Voronovskaja type result
with quantative estimate in the sense of Gal [4].

Notice that, the operator defined by (1.3) and the obtained results are completely
different from to that of studied in [8] by Mahmudov. In this paper, we give some
estimates on rate of convergence and Voronovskaja-type results with quantitative
estimates for the operators (1.3) by means of g—derivative. Note also that similar
results for complex Favard-Szdsz-Mirakjan operators was firstly studied by Gal [3]
using classical derivative.
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Throughout the paper we call the operator (1.3) as complex ¢—Szdsz-Mirakjan
operator.
It is clear that by using divided differences S4(f;z) can be expressed as
iG=1) by [1] by [4]

SU(fi2) = Sulfogz) = 3 ¢ T [0, 2l 2 (1)
) ] 7l

similar to the real version of the g—Szdsz-Mirakjan operators (see [1]), where
f10, bull] vy balil| denotes the divided difference of f on the knots 0, bull] balgl

[n] 2 (n] [n] 27 [n] -

2. Convergence of Si"(f;z)

Let g € (0,1) U (1, 00). The g—derivative of a function f (x) is defined as

D,f(z) = W for, z # 0.

D, f(0) = glcingqf(x), where D) f := f, D'f := Do(D; "' f), n=1,2,...

As a consequence of the definition of D, f, we find

Dyeq(ax) = agq(ax),
D,E,(azx) = aE,(qaz).

Also, the formula for the ¢g—differential of a product is

Dy (u(z)v(z)) = Dq(u(z))v(z) + ulqe)Dq(v(z)).
‘We know that

(Dy(t;2)y) (8) = [n], (t2)5 7",
n—1

where (t;2)7 = ] (t — zq") (see [2]).
k=0
Now, we give remark and lemma which we use in the proof of Theorem 2.3.
Remark 2.1. Tt is known that for a fixed value of ¢ with 0 < ¢ < 1, since ﬁ —1—gq
as n — o0o. To ensure the convergence properties of SZ(f;z), we will assume
q = g as a sequence such that 0 < ¢, < 1 and g, — 1 as n — oo so that [n]qn — 00
as n — 0o. On the other hand, for the sequence (b,,) is of positive numbers satisfying

: _ _ b .
lim b, = 00, Ry 4, = WL (=g — o0 asn — 0. Indeed, for example, if we choose
n—oo an
a sequence ¢, such that ¢, = niﬂ, then we have q]; — é as n — 00, which gives
bn — _ba
= = — — 00.
that R, 4, W, (—an) = T-a o0 as n — oo
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Lemma 2.2. Let Dp={z € C:|z| <R}, 1 < R< R, 4, where
by,
Rn7q = [’I’L]q(lfq) and

f:[R,0c0)UDR — C

be continuous in [R,00) U Dg, analytic in Dy, namely f(z) = 3. ci2* for all
k=0

z € Dg and there exist M, C, B> 0 and A € (%, 1), with the property |cx| < Mk’?k
for all k = 0,1, ... (which implies | f(z)| < Me??! for all z € Dy and | f(z)| < CeB®
for all x € [R,00)). Then SI(f;z) is well defined and analytic as function of z in
Dg.

Proof. Passing to modulus we have from (1.3)

1S5(f32)]

A
=
_Q
/T\
=
=}
SR
——

: clamg)

By using the ratio test, we obtain

[k+1]4 k],
ap (g, 2] B (Y, o
lim + _ q [nly nlqy

k—oo Q bn [k + l]q €

k b
[n] re " Pl 2]

1—gk+1
1—q

= < lim
bn k—o0

= Mg,

which shows that the series is convergent for |z| < R, by the hypothesis
R<R, = [n](bl+q)’ and therefore, SI(f; z) is well defined and analytic as function
of z. O

We note here that from the hypothesis on f, the analyticity of SZ(f;z) can be
seen also from [6].

Theorem 2.3. Suppose that the conditions of Lemma 2.2 are satisfied. Suppose

also that ¢ = q, is a sequence such that 0 < g, <1 and ¢, — 1 as n — oo and
bn

— 0 as n — oo.
(n]q,,
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(i) Let 1 <r < % be arbitrary fized. There exist ng such that for all n > ng and
all |z| < r, we have

1S3 (f32) = f(2)] < Cra

where

by \ MA =
Cra=|1-qu+ —— S (k+ 1) (rd)* < oc.
[n]q" 2 =

(ii) For the simultaneous approximation by complex q—Szdsz-Mirakjan operator, we
have

Crl,Abn p!7’1

. (r—r)PT

D (530 (1:2)) ~ DY £(2)] <

where Cy, 4 is given as in the case (i) .

Proof. (i) By taking ex(2) = 2, it is clear that T}, (2) := S (e; 2) is a polynomial
of degree< k, k=0,1,2,... and

Tho(z)=1,T,1(2) =z forall zeC
Also, using g—derivative of T,, ;(z) for z # 0, we get

Dan,k(z)

=0

y k n n< ’
o (b 0) § () L],

forall z € C, k=0,1,2,.... Therefore, we obtain

zb,,
Toi(2) = 2Ty k—1(qnz) + ] D, (T k-1(2)).
dn
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The last equality implies that

Top(z) — 28 = me (T1(2) = 2571 + 2 [To 1 (gn2) — (002)" 7]
+ [Z?: h— 1], 2 g
- [Z}th (T—1(2) = 2571 + 2 [To i1 (gn2) — (002)" 7]
+[k[;]jq"bnzkl +2M gt - 1)
- [ZT;D(I (Tn,k—1(z) — zkfl) + 2z [ka_l(qnz) _ (qnz)k—l]
+[k[;]i‘1"bnzk—1 — g k1], - (2.2)

From the Bernstein inequality in D, = {z € C: |z| <7}, we have
, k
1Dq(Pr(2)] < 1Pl < NI Bxll, (2.3)

where ||.||,, = max |f(z)| (see [4, p. 55]). From (2.2) and (2.3), we obtain that

zeD,
| Tk (2) — 2]
b'fL _ B
< [77;] |Dy (T i—1(2) = 25 )| + 7| Tap—1(qnz) — (¢a2)" 7|
dn
k-1
+[[n]}‘f"bnr’“1 +rt ke —1] [1— g
dn
by iy k-1
L CEE
qn

[n r

k—1
an—i—rk (k—1], [1—anl.

+7 | T k=1(qn2) = (qn2)" |+ 571 o
nqn
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By passing to norm we reach to

[T i(2) = 2]
k—1b, B )
< ([n]) | T—1(2) = 27|+ 7 || Tnr—1(anz) — (gn2)" 1||T
qn
k—1
+[[n]]q"bnrk—l +rk [kj — 1]% |1 _ Qn‘
q’ﬂ
k—1b, B )
< ([n]) [T e—1(2) = 2572| +7 ||Tope1(2) — 27|+
qn
b
+ * k-1 1- n + .

(Wn + r> ||Tn,k71(2) - Zk_l”r + Tkk (1 Ot [nb]n> .

By using mathematical induction with respect to k, the above recurrence formula

gives that
E+ D)lrk by,
[ Tnte) — 24 < EED (g 4
r 2 [n]qn

for all £ > 2 and fixed an arbitrary n > ng. There exists an ng such that for all

n > ng, then [Tf’]—" < 1. Assume that it is true for k. Since [k], < (k+1) is satisfied
o n

for all 0 < ¢, < 1, the recurrence formula reduces to

T (2) = 2|
.

< (r + [n’]“bn> [T (z) = 2°||, + 7" K], (1 —qn + [nb]">

. k (k+nWwk [ by, b B by
< ( + . bn) 5 <1 qn + [n]qn> + (k+1) (1 an + [”]qn)
<

b rhtl b
(1—qn+[n”) — {(k—l—l)!k[ z +(k+1)!+2(k+1)}

]qn 2 n]Qn
for all k£ > 2 and for all n > ny. By this inequality, it follows

2)!
S (k + ) 'I"k+1 1— In + bn ]
T2 [,

T () = 25

for £ > 2 and for all n > nyg.
Now, we show that

o0 o0

Sar(fi2) = > eSir(exs 2) = 32 Ty i(2) (2.4)

k=0 k=0
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for all z € Dg. For any m € N let us define
fn(2) = X ¢j2? if 2| <r < Rand f,,(z) = f(z) if x € (r,00).
§=0

From the hypthesis on f, it is clear that for any m € N, |f,,(z)| < Cp,ePn® for all
x € [0,00). Ratio test implies that for each fixed m, n € N and z,

z

koo
= ([n]Q) 2] Bm<[k]q" bn)
1S (fm; 2)] < Crm ’Eq (— . 5 > St "\ " <oo

k=0 [k],, ! (bn)"

Therefore, S ( f,,; z) is well defined. Now, we set

f(z)

Sk (2) = crer(2) if |z| <rand f,k(z) = 1

if x € (r, 00).

It is clear that each fi, ; is of exponential growth on [0, 00) and that
fm(z) = Z fm,k(z)'
k=0
Since Sl is linear, we have
S (fms z) = 30 crSir(ex; 2) for all |z| <,
k=0

which proves that
Hm 57 (fms; 2) = Sir (f; 2)

m—00

for any fixed n € N and |z| < r. But this is immediate from

ﬂ}i_{noo ”fm - f”r =0

‘Eq ( [n],. bi)‘ Eq <[n]qn |bzn|) U f — £l

>~ Mr,n Hfm - f”rv

and from the inequality

1S5 (fm) = S5 ()]

IN

A

for all |z| < r. Consequently the statement (2.4) is satisfied.
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In this way, from the hypothesis on ¢y, this implies for all |z| <r

1S (f52) = f(2)]

0 < MAF (k+1)! b
< el [Tor(2) — 2% < R 1= gy + —"
k§2 el [T (2) | =2 k! 2 [nl,,
by, MA k
= (1-gnt+ )| =2 S (k+1)(rA
( [n]q) 5 2 (k4 1) ()
by
= I_Q7L+7 CT,Aa
],
where
MA

(k+1)(rA)F!

18

CT,A =

2

2

(o]
is finite for all 1 <r < %. Note that the series > u**! and its derivative

k=2
o0

3" (k+1)u* are uniformly and absolutely convergent in any compact disk included
k=2
in the open unit disk.

(ii) Let v be the circle of radius r1 > r with centered 0, since for any |z| < r
and v € v, we have [v— z| > r1 — r, by Cauchy’s formulas it follows that for all
|z2| <randneN

(p)

Sw (f32) — fP)(2)
_ /Szn(f;v)ff(v) 0

27 (’U — Z)P-‘rl

D) (Sg(f32) = DO f(2)] <

an

Crl,Abn pf‘ 27'('7"1

<
- [’n’]qn 27 (Tl - T)p+1
~ Chyaby plmy
P O
which gives (i7) . The proof is completed. O

Note that in case of g, = 1, the similar result for complex Favard-Szdsz-Mirakjan
operators has been obtained by Gal in ( [3, Theorem 2.1]).

In what follows, we give a Voronovskaja-type result for the complex ¢—Szdsz-
Mirakjan operators. A similar result for the real ¢—Szdsz-Mirakjan operators has
been given in [1].



60 DIDEM AYDIN

Theorem 2.4. Under the conditions of Theorem 2.3, suppose that 1 < g,r < % be
arbitrary fixed. Then the following Voronovskaja-type result holds.

by,
%%ﬁ@ﬂQQQ%D;uuw
2 2 z|l &°
< {§ﬁ1<l%1+¢T+2>+2£§}]”ﬁ"g%w+1x%Amk%
dn qn " =

for all |z| <r and n is large enough.

Proof. Set ex(z) = 2%, k=0,1,... and T, () = S%(ex; 2), by the proof of The
orem 2.3 (i), we can write SI"(f;2) = 3 ¢TIy x(2), and obtain that

510(£12) - £2) - 72 aﬂwﬂ

- VK], [k—1], b
< Z |Ck| Tn,k(z) - ek(z) - 2n[n] = )

k=0 an

for all z € Dg. By the recurrence relationship in the proof of Theorem 2.3 (4),
satisfied by T, (2), denoting

Bn(2) = Tk (2) — ex(2) Ty, et b (2.5)
kn\Z) = Ink(Z) —€plZ) — s .
2[n],,
we get that
222k —-2] [k—1] b,
Eyx_10(2) =Thp-1(2) —er-1(2) — in in

for all k > 2, z € Dg. Using (2.5), we obtain the following recurrence for all k > 2
and z € Dp. If we take the g—derivative of Ej_1.,(2), we have
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Dy(Eg-1,n(2))
k Zk_S [k - 2]2 [k - l]q” b'rL

D B CTe—1] A2 n
q(Tn,k) I(Z)) [k ]q" N 2 [n]lhl
], ] A0k =2 k=1, b
n T _ an T _ — — 1 k=2 - e o
e L 2[n],,
[, A1), by U, k1), b
=T, — 210 ki n<) = 5 .
R 17
_ 2 -
AﬁkQW—ﬂ%%—lhﬁiizkWM%W—H%@¢+¢4%4ﬂm%k+
2l 20l,, o
k=2 k-1
+Zk Zk + qn * [k 2}‘171 [k — 1]‘171 bn
2[nl,
qF=22k 1k - 2] k=1, b
2[nl,,
i, Sh—1 k], [k—1], by
n _ — n n — TTL — n
an Tnyk(Z) ek(Z) 2[n]qn ’ JC 1(q Z)

k—1_k—2 k-1
G 27" [k = 1]y, K], bn 4ghlh2 g 2 [k, R =1, bn _ g1k
2[n],, " [, "
__Q§712k72[k‘*?uq"[k}%lbn__ R —1], by
2 [n] qn [n] qn

APk —2 k1], ) }
2[nl;

dn
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If we make necessary arrangements, we reach to

Dy(Ex—1,n(2))

[n]‘bl Zk71 [k]Qn [k: B 1]Qn bn k—1_k
B 17 R
(gn2)F2[k—2], [k—1], by
_ _ k—1 _ qn qn
Z (Tn7k1(qnz) (an) 2 [n]q”
_q,,kb_2zk_1 k—2], [k—1], b,
2[n},,
AUk =1, by 22 k—20 [k—1], b2
2 [n] qn 2 [n] 37,,
(], k k—1 25 [k~ 1, bn
= b, Bin(2) = 2Bein(@n2) + 27 (1—aa™) + 2[n],
2 [n] 0 qn n qn 2 [n]zn
[n]
= B~ 2Bicia(en) T (L) - 1], +
21k —1], b, A2k =2 [k—1], b
+ dn k' _ 2—2 k _ 2 _ 2 _ qn qn T
o (M - k-2, —2) S
Hence
bn,
[fl]—Dq(Ek_l,n@)) = Einl(2) — 2Bi_1a(@nz) + 2* (1= qa) [k — 1],
qn
k- 22 [k—1], b2
2[n;,
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From the last equality, we can write

zb,

Epn(z) = ——D¢(Er-1n(2)) + 2Er—1,n(qn2) — (1 —=qn) [k~ an

[n]Qn
k—2 2 2
2k —2 [k—1], B2

2[nl;

qdn

e (W, -2 - -2, )

By passing to modulus, it follows that

2] b
< _
Frall] S 5o 1D Eeaa(e)l,
2
|2[by | o B =21 [K—1], by
FE @)l g - 21,
k
1L gl (-1,
e g, (-2, 0k - (H,, ~2)
2[”]% dn qn 1N dn
z| by k—1
< r|Er1n(gn2)] + 12 {2< " >||Ek1,n)||r

2[n]

Adn

63
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for all k > 2 and for all |z| < r. This gives that

z| by _
Bon(@)] < 1Beorn(gen)] + 2200 (051 1 ) — e,
2[nl,,
k—2 2
25 20, tr o

+ 2o —1),, (|Ik -2, a2+ |, - 2))}

Elrk—1 by,
< 7| Biotn(gn?)] + afare { 2521 1— gy +
2[ ]qn 2 [n]q"
(b=D)r*3k=2]  [k=1], bn | p_3 k=22 [k=1], bn
+ 3, +r I,
2 (k1] 2[k - 2]%}
by
< 7 |Ek—1n(gnz)| + 2|[Zn|]b” {(k + 1)!27“’“‘2 (1 —qn + W)
an Gn
_ 2
+(k — k3 k=2, [k—1], ba i3 k=2, [k—1], ba
2[n],, [n],,
+ 2R 2 k- 1), [k 2}%}
<

P |Ek1,n(a22)| + 2'1!?” {(k + 1122 <1 gt > }

n g,

|Z| b 2Tk—3(k+1)lb

2[nf,, Il

n bn _
+ ,Z'[Zn']qn (k + 1)12rk=2

n
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. _ bn
= B 1) + 2t 2<k+1>’{1‘q"+[n] +2}
qn

2
+ Bk + 1)!

= 7[E1,n(gn2)|

1)lphk=3
+|z|(k+ )Nr by, I by, vo) ot
2 [n [n (1o,

} dn ] dn

for all |z| <.

Taking k = 2,3, ... step by step, we find

13! [ b b, :
|E2,n(Z)| < r |E1n(qn2)| + L " 1—q,+ +214+2 bg ,
2 [TL] dn [n] qn [n] an
n ! ! bn bn
Ban(ge2) < 2 |Z|2T : { : (1 — o+ —— +2> +2[nb}% }
[n]qn [n]qn an
k—2 k—3 b1
e L b, Py
|Ern(2)] < l—gn+-—— 42| +223 S 4!
é [n]Qn [n]qn [n]in j=3

bn, b,
= e ) S (1 2 ) 2
[n] dn [n] dn qan

for k > 2. The last inequality gives that

zbn, o ;
i DS >>‘

n

St (f32) = f(z) =

IN

2 ekl | Ern(2)]
k=0

bn by 2 X gk=2 M AF k=3 (k 4+ 1)
< {T<1—qn+[ +2>+2[:33}Zq” 2| (k4 1)

7, nlg,, o k!
by, b, b2 MA?|z| & k—2
1—gn+ +2 | +2- k+ 1)(qgnAr ;
{ o ( o ) o } PR

for all |z| < r, where ¢,7A < 1 we have Y (k+1)(g,7A)*~2 < 0o, which completes
k=2
the proof. O
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Ozet: Bu calismada, uygun iistel tipten biiyiime kogulunu saglayan
analitik fonksiyonlar igin kompleks g—Szédsz-Mirakjan operatorleri
caligilmigtir. Bu operatorler i¢in kompakt disklerde bir Voronovskaja-
tipi teorem verilmigtir. Ayrica, burada elde edilen sonuglar [8] nolu
referanstaki farkli tipten kompleks g—Szdsz-Mirakjan operatorleri
igin verilen sonucglardan farklidir.
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