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Reversal effect of quercetin on talazoparib resistance in
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ABSTRACT

Objectives: Poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated an outstanding activity in
patients with BRCA-mutated and wild-type breast cancer. However, the identification of resistance mechanisms
to PARP inhibitors is a significant clinical challenge in effective treatment. Thus, new therapeutic strategies
are urgently needed to overcome resistance. The aim of the current study was to explore the potential effect of
quercetin on HCC1937 (BRCAI mutant) and talazoparib (BMN 673), a PARP inhibitor, resistant HCC1937
(HCC1937-R) triple negative breast cancer cells (TNBC).

Methods: We firstly generated BMN 673 resistance HCC1937 cells by continuous exposure to BMN 673
during 6 months. Then, cells were exposed to the different concentration (0-100 uM) of quercetin and the
cytotoxic and apoptotic effects of quercetin on these cells were evaluated by WST-1, Annexin V and dual
acridine orange-ethidiumbromide (Et-BR) staining.

Results: The cell viability of HCC1937 and HCC1937-R cells reduced to 37.1% and 44.2% at a concentration
of 100 uM, respectively for 48 h (p < 0.01). Apoptotic rates of HCC1937 and HCC1937-R cells treated with
100 uM quercetin were nearly 56.0% and 46.0%, respectively (p < 0.01). Additionally, theapoptotic
morphologicalchanges were observed in these cells.

Conclusions: In conclusion, the obtained results suggest that quercetin could potentially be used as an
alternative therapeutic strategy in BRCA 1 mutant TNBC to overcome acquired BMN 673-resistance.
Keywords: Triple negative breast cancer, PARP inhibitors, talazoparib (BMN 673), quercetin, apoptosis,
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oly (ADP-ribose) polymerase (PARP) inhibitors

have shown promising clinical activity in patients
with BRCA-mutated and wild-type breast and ovarian
cancer. Several PARP inhibitors [iniparib, talozoparib,
veliparib, rucaparib and niraparib] currently being in-
vestigated in late stage (phase II-1II) clinical trials and
olaparib is currently approved by FDA for the treat-
ment of BRCA-mutated breast cancer patients with a
deficient homologous recombination (HR) pathway

through synthetic lethality [1-6]. However, recogniz-
ing the role of resistance mechanisms (altered HR and
nonhomologous recombination (NHEJ) capacity,
changes in PARP1 activity, multiple drug resistance
(MDR) and epigenetic changes) to PARP inhibitors is
a major clinical challenge in successful treatment [7-
9].

BMN 673 (Talozoparib) is a novel and the most
potent PARP inhibitorin phase II/III clinical trials for
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BRCA1/2 mutation-associated advanced breast can-
cersdue to the potency in PARP-trapping[10-13].
However, some studies have revealed that acquired re-
sistance to BMN 673 is limiting the success of future
treatment options [14-16]. Thus, novel approaches are
required to restore sensitivity to BMN 673.

Quercetin is a polyphenolic flavonoidwidely found
in many fruits (apple, blueberries, broccoli, grape,
leek), vegetables, nuts, and red wine. Quercetin exerts
anti-inflammatory, anti-diabetic, anti-allergic, anti-
viral, anti-fungal and significant anti-carcinogenic ac-
tivities. It has been reported that quercetin has a
potential anticancer effect in different cancer cell lines
(breast, prostate, osteosarcoma, colon, gastric,
esophageal, ovarian cancer and hepatocellular carci-
noma) through the induction of apoptosisboth in vitro
and in vivo [17-25]. However, limited studies have
shown the reversal effect of quercetin in resistance-
cancer cells [26-30].

Here, for the first time, we investigated the rever-
sal effect of quercetin on BMN 673 resistance. This
study assessed the cytotoxic and apoptotic effects of
quercetin on HCC1937 (BRCAI mutant), BMN 673-
resistant HCC1937 (HCC1937-R) triple negative
breast cancer (TNBC) and MCF-10A human mam-
mary epithelial cell lines.

METHODS

HCC1937 and MCF-10A were purchased from
ATCC (Manassas, VA, USA). HCC1937 and
HCC1937-R cells were cultured in 5% CO2 at 37°C
in RPMI medium supplemented with 10% fetal bovine
serum (FBS) and 100 U/ml penicillin and 10 mg/ml
streptomycin. HCC1937-R cells were generated by
continuous exposure to 0.01 nM BMN 673 during 6
months. MCF-10A cells were grown in Dulbecco's
Modified Eagle Medium: Nutrient Mixture F-12
(DMEM/F-12) medium supplemented with 100
mg/ml EGF, 1 mg/ml hydrocortisone, 10 mg/ml
insulin, 10% FBS, penicillin and streptomycin (100
units/ml) at 37° in a humidified atmosphere.

WST-1 Assay

HCC1937, HCC1937-R and MCF-10A cells were
seeded at a density of 2x104 cells per well in 96-well
plates. After overnight incubationat 37°C, the cells

were treated with different concentration of quercetin
for 24 and 48 hours. At the end of the treatments, 10
ul WST-1 dye (Biovision, USA) was added to every
single well and plates were incubated for 1-3 hours at
37°C. Finally, the cell viability was measured at 450
nmwith a microplate reader (Tecan, Switzerland).

Annexin V and Dead Cell Assay

The apoptotic effect of quercetin on HCC1937 and
HCC1937-R cells was determined by Annexin V and
Dead Cell kit (Millipore, Germany). After treatment
with different concentrations (12.5, 25, 50 and 100
uM) of quercetin for 48 h, the collected cells were
rinsed with sterile phosphate-buffer saline (PBS). For
each sample of cells, 100 ul MUSE Annexin V and
dead cell reagent was added andsubsequently
incubated for 30 min at room temperature. Finally, the
cells were analyzed using a Muse Cell Analyzer
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Fig. 1. The cytotoxic effects of quercetin as measured by
WST-1on (A) HCC1937, (B) HCC1937-R and (C) MCF-10A
cells for 24 and 48 h. Data are the means of triplicate exper-
iments; error bars, SD (p < 0.05%, p <0.01%%).
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(MuseTM EMD Millipore Co., Hayward, CA, USA).

Dual Acridine Orange (AO)/Ethidium Bromide
(Et-BR) Staining

The morphological changes in quercetin-treated
HCC1937 and HCC1937-R cells were observed by
AO/Et-BR double staining. A total of 5x105
HCC1937 and HCC1937-R cells were seeded in 6
well plates and treated with 12.5, 25, 50 and 100
pMquercetin for 48 h. At the end of the treatments, the
cells were fixed in 4% paraformaldehyde (Merck,
Germany) for 30 min. After fixation, the cells were
rinsedthree times with PBS. Subsequently, the cells
were stained with AO/Et-BR solution (Sigma, USA)
and observed under an EVOS FL Cell Imaging System
(Thermo Fisher Scientific, USA).

Statistical Analysis

Statistical  analysis was  performedusing
SPSSversion 22.0 (SPSS Inc, Chicago, IL, USA). All
data analyzed were presented as mean value +
standard error of mean (SEM) (n = 3). A one-way
analysis of variance (ANOVA) with post-hoc Tukey
was used for comparison of multiple variables. p -
value of <0.05 was regarded as statistically significant
(*p <0.05, ** p<0.01).

RESULTS
Cytotoxic Effect of Quercetin in TNBC

The cytotoxic effect of UA on HCC1937,
HCC1937-R and MCF-10A cells wasassessed using
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Fig. 2. The apoptotic effects of quercetin on triple negative breast cancer cells for 48 h. (A) HCC1937 and HCC1937-R cells
were treated with (a) Control, (b) 12.5, (¢) 25, (d) 50 and (e) 100 uM quercetin, respectively. (B) A statistical graph of total
apoptotic cells after treatment with different concentration of quercetin (*p < 0.05, **p < 0.01).
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HCC1937

HCC1937-R

Fig. 3. AO and EtBr double-staining of HCC1937 and
HCC1937-R cells following treatment with (a) Control, (b)
12.5, (¢) 25, (d) 50 and (e) 100 pM quercetin, respectively for
48 h.

WST-1 assay as shown in Fig. 1. The HCC1937,
HCC1937-R and MCF-10A cell viability decreased by
53.7%, 78.5% and 85.8%, respectively at
concentration of 100 uM for 24 h (p <0.01). After 48
h incubation, quarcetin significantly reduced the
HCC1937, HCC1937-R and MCF-10A viability to
37.1%, 44.2% and 70.2%, respectively at 100 uM (p
< 0.01). The IC50 values for quercetin in HCC1937
and HCC1937-R cells were 52.9 uM and 44.2 uM,
respectively.As a result, quercetin had a considerable
cytotoxic effects on HCC1937 and HCC1937-R cells
and quercetin could potentially overcome BMN 673-

resistance. Additionally, no toxic effects were
observed with doses lower than 25 uMfor 48 h in
MCF-10A cells.

Apoptotic Effect of Quercetin in TNBC

The apoptotic effect of quercetin on HCC1937 and
HCC1937-R cells for 48 h was determined by Annexin
V analysis and the results were summarized in Fig. 2.
The percentage of late-apoptotic cells was 7.81 £ 1.9
% and 55.12 £2.8% at 12.5 and 100 uM of quercetin,
respectively compared with control (1.48 £ 0.7%) in
HCC1937 cells. Furthermore, the percentage of late-
apoptotic cells increased from (0.18 £ 0.4%) to 13.05
+ 1.0% and 45.45 + 1.7% at 12.5 and 100 uM,
respectively in HCC1937-R cells. Thus, quercetin
significantly induced apoptotic death in HCC1937 and
HCC1937-R cells in a dose-dependent manner (p <
0.01).

Morphological Observations

To investigate the morphological changes in
HCC1937 and HCC1937-R cells, AO/EtBr staining
was performed as summarized in Fig. 3. AO/EtBr
staining revealed a dose dependent apoptotic cell death
in HCC1937 and HCC1937-R cells when exposed to
quercetin for 48 h. Quercetin induced nuclear
condensation, cellshrinkage and rounding and
membrane blebbing in these cells. These findings were
confirmed by WST-1 and Annexin V analysis.

DISCUSSION

In the current study, we investigated the effect of
quercetin on the reversal of BMN 673-resistance in
TNBC cells. Our results demonstrated that quercetin
could potentially reverse BMN 673-resistance and
exerted therapeutic effects on HCC1937 and
HCC1937-R cells through induction of apoptosis.
PARP inhibitors have attracted attention in pre-clinic
and clinic to treat particularly BRCA /2 mutant breast
and over cancers due to inducing synthetic lethality.
Three PARP inhibitors (olaparib, rucaparib, and
niraparib) have now been approved by the FDA for
patients with BRCA-mutated ovarian cancer [5, 31,
32]. Additionally, The FDA has also approved olaparib
for patients with BRCA-mutated breast cancer.
However, phase II/III trial of olaparib and iniparib
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failed to show an improvement in disease-free survival
and/or overall survival (5.7 months) and significant
clinical responses in patients with TNBC [33-36].
Thus, novel PARP inhibitors including BMN 673 [13],
niraparib [37], rucaparib [38] and veliparib [39,40]
which exhibit synthetic lethality in patients with
BRCAI/2 mutation  have gained considerable
attention.

In vivo and in vitro studies of BMN 673
demonstrated excellent efficacy against breast, non-
small cell lung, chronic lymphocytic leukemia (CLL),
prostate, endometrial and ovarian cancer cells [10, 11,
41-44]. However, there are now several studies in the
literature stating that particular resistance mechanisms
could affect the clinical successes of PARP inhibitors
[8, 9, 45-48]. Previous studies from our lab
demonstrated that HR and multi-drug resistance
(MDR) mechanisms played a major role in the
development of resistance to BMN 673. Besides, we
found that HCC1937-R cells was almost 3.0-fold more
resistant to BMN 673 than HCC1937 parental cells
[49,50]. Therefore, development of new treatment
strategies to overcome resistance are important for
clinical utilityof PARP inhibitors.

Quercetin, a polyphenolic compound, has been
shown to induce cytotoxicity and apoptosis in different
cancer cells. Quercetin induces apoptosis in cancer
cell lines by the intrinsic pathway due to interaction
with DNA directly [18-20, 23-25].Furthermore, it has
been reported that quercetin could overcome the
acquired resistance to chemotherapeutic agents
(tamoxifen, 5-FU and enzalutamide) [26, 28, 30]. For
this purpose, the multi-drug resistance reversal activity
of quercetin was evaluated in the current study. Our
results showed that quercetin remarkably decreased
proliferation and induced apoptosis in HCC1937 and
HCC1937-R cells. These effects were enhanced with
increasing concentration and exposure time of
quercetin. However, we found no significant reduction
in MCF-10A cell viability evenat the lowest
concentration for 48 h or short-term exposure (24 h)
of quercetin.

Furthermore, previous report demonstrated that
quercetin displayed PARP inhibitory effects through
synthetic lethality to BRCAZ2-deficient cells and
induced significantly DNA damage on V79 Chinese
hamster lungwild-type cells, its BRCA2 mutant (V-C8)
and genetically complimented mutant with human

BRCA2 (V-C8 hBRCA2)[51,52]. Thus, one of the
possible mechanism is quercetin can interfere with
DNA and may be able to overcome BMN 673
resistance thanks to its PARP inhibitory effect.
However, the wunderlying mechanisms towards
overcoming BMN 673 resistance should be explored.
The preliminary results indicated that quercetin could
be a potent candidate and reverse BMN 673 resistance.

CONCLUSION

In conclusion, the present study indicated that
quercetin had a potential flavonoid to reverse BMN
673 resistance by inducing apoptosis. However,
quercetin-induced synthetic lethality and associated
mechanisms (homologous recombination, non-
homologous recombination and multi-drug resistance)
in BRCA1 mutant TNBC cells should be elucidated
by in vitro and in vivo experiments.
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