Available online: July 29, 2019

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 2, Pages 2209–2215 (2019) DOI: 10.31801/cfsuasmas.598192 ISSN 1303-5991 E-ISSN 2618-6470



 $http://communications.science.ankara.edu.tr/index.php?series{=}A1$ 

# PROPERTIES OF $\Delta^*$ -CLOSED MAPS IN TOPOLOGICAL SPACES

### K.MEENA, D.ARIVUOLI, AND K.SIVAKAMASUNDARI

ABSTRACT. This paper is concerned with the introduction of a new notion of closed maps namely,  $\Delta^*$ -closed maps using  $\Delta^*$ -closed sets and the analysis of their significant properties in topological spaces. Also the nature of  $\Delta^*$ -closed maps under composition mappings and their applications are explored in this paper.

## 1. INTRODUCTION AND NOTATION

The concept of closed maps plays a vital role in the development of the nature of topological spaces. The notion of  $\delta$ -closed functions was introduced by T.Noiri [7] in the year 1978. The idea of generalised closed functions was initiated and investigated by S.R. Malghan [2] in 1982. Julian Dontchev [1] introduced  $\delta g$ -closed maps in 1996. Since then several types of closed functions were studied by many authors. In the year 2013, R.Sudha [8] described  $\delta g^*$ -closed maps. In this article a new class of closed maps called,  $\Delta^*$ -closed maps via  $\Delta^*$ -closed sets are established and their significant characterizations, behaviour under composition mappings and applications are exhibited. In this paper  $(X, \tau)$  and  $(Y, \tau)$  denote non empty topological spaces with no separation axioms are imposed on them if it is not stated specifically.

**Remark:** In 2014, a new class of closed sets namely,  $\Delta^*$ -closed sets [6] were introduced and initially denoted by  $\delta(\delta \mathbf{g})^*$ -closed sets by the authors.

©2019 Ankara University

Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

Received by the editors: February 05, 2018; Accepted: May 17, 2019.

<sup>2010</sup> Mathematics Subject Classification. 54A05, 54C10.

Key words and phrases.  $\Delta^*$ -closed sets,  $\Delta^*$ -continuous map,  $\Delta^*$ -irresolute map,  $\delta g$ -irresolute map,  $\Delta_* T_{\delta}$ -space and  $\Delta_* T_{\delta g^*}$ -space.

Submitted via International Conference on Current Scenario in Pure and Applied Mathematics [ICCSPAM 2018].

#### 2. Preliminaries

**Definition 1.** A subset A of a topological space  $(X, \tau)$  is called a  $\Delta^*$ -closed set [3] if  $\delta cl(A) \subseteq U$  whenever  $A \subseteq U, U$  is  $\delta g$ -open in  $(X, \tau)$ . The class of all  $\Delta^*$ -closed sets of  $(X, \tau)$  is denoted by  $\Delta^*C(X, \tau)$ . The complement of a  $\Delta^*$ -closed set is called a  $\Delta^*$ -open set.

**Definition 2.** A space  $(X, \tau)$  is said to be a  $_{\Delta^*}T_{\delta}$ -space [4] if every  $\Delta^*$ -closed subset of  $(X, \tau)$  is  $\delta$ -closed in  $(X, \tau)$ .

**Definition 3.** A space  $(X, \tau)$  is said to be a  $_{\Delta^*}T_{\delta g^*}$ -space [4] if every  $\Delta^*$ -closed subset of  $(X, \tau)$  is  $\delta g^*$ -closed in  $(X, \tau)$ .

**Definition 4.** A space  $(X, \tau)$  is said to be a  $_{\delta g^*}T_{\delta}$ -space [8] if every  $\delta g^*$ -closed subset of  $(X, \tau)$  is  $\delta$ -closed in  $(X, \tau)$ .

**Definition 5.** A mapping  $f : (X, \tau) \to (Y, \sigma)$  is said to be  $\Delta^*$ -continuous [5] if the inverse image of every closed set in  $(Y, \sigma)$  is  $\Delta^*$ -closed in  $(X, \tau)$ .

**Definition 6.** A map  $f : (X, \tau) \to (Y, \sigma)$  is called a  $\Delta^*$ -irresolute map [6] if f(v) is a  $\Delta^*$ -open set in  $(X, \tau)$  for every  $\Delta^*$ -open set V in  $(Y, \sigma)$ .

**Definition 7.** A map  $f : (X, \tau) \to (Y, \sigma)$  is called a  $\delta g$ -irresolute map [1] if f(v) is a  $\delta g$ -open set in  $(X, \tau)$  for every  $\delta g$ -open set in  $(Y, \sigma)$ .

**Definition 8.** A mapping  $f : (X, \tau) \to (Y, \sigma)$  is called a  $\delta$ -closed map [7] if the image each closed set in  $(X, \tau)$  is a  $\delta$ -closed set in  $(Y, \sigma)$ .

**Definition 9.** A map  $f : (X, \tau) \to (Y, \sigma)$  is called a  $\delta g^*$ -closed map [1] if the image of each closed set in  $(X, \tau)$  is a  $\delta g^*$ -closed set in  $(Y, \sigma)$ .

### 3. Properties of $\Delta^*$ -Closed Maps

**Definition 10.** A map  $f : (X, \tau) \to (Y, \sigma)$  is called a  $\Delta^*$ -closed map if the image of each closed set in  $(X, \tau)$  is a  $\Delta^*$ -closed set in  $(Y, \sigma)$ .

**Proposition 1.** Every  $\delta$ -closed map is a  $\Delta^*$ -closed map but not conversely.

Proof. Let  $f: (X, \tau) \to (Y, \sigma)$  be a  $\delta$ -closed map. Let V be a closed set in  $(X, \tau)$ . Then its image f(V) is  $\delta$ -closed in  $(Y, \sigma)$ . Since every  $\delta$ -closed set is  $\Delta^*$ -closed [3], f(V) is  $\Delta^*$ -closed in  $(Y, \sigma)$ . Hence f is a  $\Delta^*$ -closed map.

**Counter example 1.** Let  $f : (X, \tau) \to (Y, \sigma)$  be a map such that f(a) = a, f(b) = c, f(c) = b where  $X = \{a, b, c\} = Y, \tau = \{\phi, X, \{a\}\}$  and  $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}$ . Then f is a  $\Delta^*$ -closed map but not a  $\delta$ -closed map as the image of the closed set  $\{b, c\}$  in  $(X, \tau)$  is not a  $\delta$ -closed set in  $(Y, \sigma)$ .

**Remark 1.** The following counter examples show that the  $\Delta^*$ -closed map is independent from a  $\delta g$ -closed map.

**Counter example 2.** Let  $X = \{a, b, c\} = Y$  with  $\tau = \{\phi, X, \{a\}\}$  and  $\sigma = \{\phi, Y, \{a\}, \{a, b\}, \{a, c\}\}$ . Let  $f : (X, \tau) \to (Y, \sigma)$  be a map defined by f(a) = c, f(b) = b, f(c) = a. Then f is a  $\Delta^*$ -closed map but not a  $\delta g$ -closed map as the image of the closed set  $\{b, c\}$  in  $(X, \tau), f[\{b, c\}] = \{a, b\}$  is not  $\delta g$ -closed in  $(Y, \sigma)$ .

**Counter example 3.** Let  $X = \{a, b, c\} = Y$  with  $\tau = \{\phi, X, \{a\}\}$  and  $\sigma = \{\phi, Y, \{a\}\}$ . Let  $f : (X, \tau) \to (Y, \sigma)$  be a map such that f(a) = c, f(b) = c, f(c) = a. Then f is a  $\delta g$ -closed map but not a  $\Delta^*$ -closed map since for the closed set  $\{b, c\}$  in  $(X, \tau), f[\{b, c\}] = \{a, b\}$  is not  $\Delta^*$ -closed in  $(Y, \sigma)$ .

**Remark 2.** The  $\Delta^*$ -closed map and  $\Delta^*$ -continuity are independent as shown by the following examples.

**Counter example 4.** Let  $X = \{a, b, c\} = Y$  with  $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ and  $\sigma = \{\phi, Y, \{a\}\}$ . Let  $f : (X, \tau) \to (Y, \sigma)$  be a map such that f(a) = c, f(b) = a, f(c) = c. Then f is  $\Delta^*$ -continuous but not a  $\Delta^*$ -closed map since for the closed set  $\{b, c\}$  in  $(X, \tau), f[\{b, c\}] = \{a, c\}$  is not  $\Delta^*$ -closed in  $(Y, \sigma)$ .

**Counter example 5.** Let  $X = \{a, b, c\} = Y$  with  $\tau = \{\phi, X, \{a\}\}$  and  $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}$ . Let  $f : (X, \tau) \to (Y, \sigma)$  be a map such that f(a) = a, f(b) = c, f(c) = b. Then f is a  $\Delta^*$ -closed map but not  $\Delta^*$ -continuous since for the closed set  $\{c\}$  in  $(Y, \sigma), f^{-1}\{c\} = \{b\}$  is not  $\Delta^*$ -closed in  $(X, \tau)$ .

**Theorem 11.** A map  $f : (X, \tau) \to (Y, \sigma)$  is  $\Delta^*$ -closed if and only if for each subset U of  $(Y, \sigma)$  and for each open set V of  $(X, \tau)$  containing  $f^{-1}(U)$  there exists a  $\Delta^*$ -open set G of  $(Y, \sigma)$  such that  $U \subseteq G$  and  $f^{-1}(G) \subseteq V$ . Proof. (Necessity): Suppose that  $f: (X, \tau) \to (Y, \sigma)$  is a  $\Delta^*$ -closed map and U be a subset of  $(Y, \sigma)$ . Let V be an open subset of  $(X, \tau)$  containing  $f^{-1}(U)$ . Then (X - V) is closed in  $(X, \tau)$ . Since f is  $\Delta^*$ -closed, f(X - V) is  $\Delta^*$ -closed in  $(Y, \sigma)$ . Hence Y - f(X - V) is a  $\Delta^*$ -open set in  $(Y, \sigma)$ . Take G = Y - f(X - V). Then G is  $\Delta^*$ -open in  $(Y, \sigma)$  containing U such that  $f^{-1}(G) \subseteq V$ .

**(Sufficiency):** Let H be a closed subset of  $(X, \tau)$ . Then  $f^{-1}[Y - f(H)] \subseteq (X - H)$ and X - H is open. By hypothesis there is a  $\Delta^*$ -open set G of  $(Y, \sigma)$  such that  $Y - f(H) \subseteq G$  and  $f^{-1}(G) \subseteq X - H$ . Therefore  $H \subseteq X - f^{-1}(G)$ . Hence  $Y - G \subseteq f(H) \subseteq f[X - f^{-1}(G)] \subseteq Y - G$  which implies that f(H) = Y - H and f(H) is  $\Delta^*$ -closed in  $(Y, \sigma)$ . Thus f is a  $\Delta^*$ -closed map.  $\Box$ 

**Theorem 12.** A bijection mapping  $f : (X, \tau) \to (Y, \sigma)$  is a  $\Delta^*$ -closed map if and only if f(U) is a  $\Delta^*$ -open set in  $(Y, \sigma)$  for every open set U in  $(X, \tau)$ .

Proof. Let  $f: (X, \tau) \to (Y, \sigma)$  be a  $\Delta^*$ -closed map and U be any open set in  $(X, \tau)$ . Then  $U^c$  is a closed set in  $(X, \tau)$ . Therefore by the hypothesis,  $f(U^c)$  is  $\Delta^*$ -closed in  $(Y, \sigma)$ . Since f is bijective,  $f(U^c) = [f(U)]^c$  is  $\Delta^*$ -closed in  $(Y, \sigma)$ . Hence f(U) is  $\Delta^*$ -open in  $(Y, \sigma)$ . Conversely, let U be a closed subset of  $(X, \tau)$ . Then  $U^c$  is a open set in  $(X, \tau)$ . By the hypothesis,  $f(U)^c$  is  $\Delta^*$ -open in  $(Y, \sigma)$ . Since f is a bijection map,  $f(U)^c = [f(U)]^c$ . Thus f(U) is  $\Delta^*$ -closed in  $(Y, \sigma)$ . Hence f is a  $\Delta^*$ -closed map.

**Remark 3.** In the above proposition, bijection condition on f is necessary which is proved in the following example.

**Example 1.** Let  $X = \{a, b, c\} = Y$  with  $\tau = \{\phi, X, \{a\}\}$  and  $\sigma = \{\phi, Y, \{a\}, \{a, b\}\}$ . Let  $f : (X, \tau) \to (Y, \sigma)$  be a map such that f(a) = b, f(b) = a, f(c) = a. Then for the only open set  $\{a\}, f\{a\}$  is  $\Delta^*$ -open but not  $\Delta^*$ -closed as for the closed set  $\{b, c\}$  in  $(X, \tau), f(\{b, c\}) = \{a\}$  is not  $\Delta^*$ -closed in  $(Y, \sigma)$ .

**Proposition 2.** If  $f : (X, \tau) \to (Y, \sigma)$  is  $\delta g$ -irresolute and  $\Delta^*$ -closed map then f(A) is  $\Delta^*$ -closed subset of  $(Y, \sigma)$  where A is a  $\Delta^*$ -closed subset of  $(X, \tau)$ .

Proof. Let U be a  $\delta g$ -open set in  $(Y, \sigma)$  such that  $f(A) \subseteq U$ . Since f is  $\delta g$ -irresolute,  $f^{-1}(U)$  is a  $\delta g$ -open set containing A. That is  $A \subseteq f^{-1}(U)$ . Hence  $\delta cl(A) \subseteq f^{-1}(U)$ . since every  $\delta$ -closed set is closed [7],  $\delta cl(A)$  is closed. Since f is a  $\Delta^*$ closed map,  $f(\delta cl(A))$  is  $\Delta^*$ -closed contained in the  $\delta g$ -open set U which implies that  $\delta cl[f(\delta cl(A)] \subseteq U$  and hence  $\delta cl[f(A)] \subseteq U$ . Thus f(A) is a  $\Delta^*$ -closed subset of  $(Y, \sigma)$ .

#### 4. Composition of $\Delta^*$ -Closed Maps

**Proposition 3.** The composition mapping  $(g \circ f) : (X, \tau) \to (Z, \eta)$  of a closed map  $f : (X, \tau) \to (Y, \sigma)$  and a  $\Delta^*$ -closed map  $g : (Y, \sigma) \to (Z, \eta)$  is a  $\Delta^*$ -closed map.

*Proof.* The image f(U) of any closed subset U of X under the closed map  $f : (X, \tau) \to (Y, \sigma)$  is closed in  $(Y, \sigma)$ . Since  $g : (Y, \sigma) \to (Z, \eta)$  is a  $\Delta^*$ -closed map, g[f(U)] is  $\Delta^*$ -closed in  $(Z, \eta)$  and hence  $(g \circ f)$  is a  $\Delta^*$ -closed map.

**Remark 4.** The following example shows that the composition of a  $\Delta^*$ -closed map and a closed map is need not be a  $\Delta^*$ -closed map.

**Counter example 6.** Let  $X = \{a, b, c\} = Y$  with  $\tau = \{\phi, X, \{a\}, \{a, b\}\}, \sigma = \{\phi, Y, \{a, b\}\}$  and  $\eta = \{\phi, Z, \{a\}, \{b, c\}\}$ . Consider the  $\Delta^*$ -closed map  $f : (X, \tau) \rightarrow (Y, \sigma)$  defined as f(a) = a, f(b) = a, f(c) = c and a closed map  $g : (Y, \sigma) \rightarrow (Z, \eta)$  defined as g(a) = c, g(b) = b, g(c) = a. Then the composition map  $(g \circ f) : (X, \tau) \rightarrow (Z, \eta)$  is not a  $\Delta^*$ -closed map as the image of the closed set  $\{b, c\}$  in  $(X, \tau)$  is not  $\Delta^*$ -closed in  $(Z, \eta)$ .

**Theorem 13.** Let  $f : (X, \tau) \to (Y, \sigma)$  and  $g : (Y, \sigma) \to (Z, \eta)$  be any two maps. *i)* If  $(g \circ f) : (X, \tau) \to (Z, \eta)$  is a  $\Delta^*$ -closed map and g is a  $\Delta^*$ -irresolute injective map then f is a  $\Delta^*$ -closed map. *ii)* If  $(g \circ f) : (X, \tau) \to (Z, \eta)$  is a  $\Delta^*$ -irresolute map and g is a  $\Delta^*$ -closed injective map then f is a  $\Delta^*$ -continuous map.

*Proof.* i) Let U be any closed set in  $(X, \tau)$ . Since  $(g \circ f)$  is  $\Delta^*$ -closed,  $(g \circ f)(U)$  is  $\Delta^*$ closed in  $(Z, \eta)$ . Therefore g[f(U)] is  $\Delta^*$ -closed in  $(Z, \eta)$ . Since g is  $\Delta^*$ -irresolute,  $g^{-1}[g(f(U)]]$  is  $\Delta^*$ -closed in  $(Y, \sigma)$ . Since g is injective,  $g^{-1}[g(f(U)]] = f(U)$  is  $\Delta^*$ -closed in  $(Y, \sigma)$ . Hence f is a  $\Delta^*$ -closed map.

ii) Let V be a closed set in  $(Y, \sigma)$ . Since g is  $\Delta^*$ -closed, g(V) is  $\Delta^*$ -closed in  $(Z, \eta)$ . Since  $(g \circ f)$  is  $\Delta^*$ -irresolute,  $(g \circ f)^{-1}[g(V)]$  is  $\Delta^*$ -closed in  $(X, \tau)$ . Therefore  $f^{-1}((g^{-1}[g(V)])$  is  $\Delta^*$ -closed in  $(X, \tau)$ . Since g is injective,  $g^{-1}[g(V)] = V$  and hence  $g^{-1}(V)$  is  $\Delta^*$ -closed  $(X, \tau)$ . Thus f is a  $\Delta^*$ -continuous map.

**Proposition 4.** The composition map  $(g \circ f) : (X, \tau) \to (Z, \eta)$  of the  $\Delta^*$ -closed maps  $f : (X, \tau) \to (Y, \sigma)$  and  $g : (Y, \sigma) \to (Z, \eta)$  is a  $\Delta^*$ -closed map if  $(Y, \sigma)$  is a  $\Delta^*T_{\delta g^*}$ -space.

*Proof.* Let  $f: (X, \tau) \to (Y, \sigma)$  be a  $\Delta^*$ -closed map. Then f(A) is a  $\Delta^*$ -closed in  $(Y, \sigma)$  and hence  $\delta$ -closed in  $(Y, \sigma)$  as  $(Y, \sigma)$  is a  $\Delta^* T_{\delta g^*}$ -space. Since every  $\delta$ -closed

set is closed [7], f(A) becomes closed in  $(Y, \sigma)$ . Thus  $g[f(A)] = (g \circ f)(A)$  is  $\Delta^*$ closed in  $(Z, \eta)$  as g is a  $\Delta^*$ -closed map. Hence the composition mapping  $(g \circ f)$  is a  $\Delta^*$ -closed map.

**Proposition 5.** Let  $f: (X, \tau) \to (Y, \sigma)$  and  $g: (Y, \sigma) \to (Z, \eta)$  be  $\Delta^*$ -closed maps. If  $(Y, \sigma)$  is a  $_{\Delta^*}T_{\delta g^*}$ -space and  $_{\delta g^*}T_{\delta}$ -space then their composition  $(g \circ f): (X, \tau) \to (Z, \eta)$  is a  $\Delta^*$ -closed map.

Proof. Let A be a closed set in  $(X, \tau)$ . Then f(A) is  $\Delta^*$ -closed in  $(Y, \sigma)$ . Since  $(Y, \sigma)$  is a  $_{\Delta^*}T_{\delta g^*}$ -space and  $_{\delta g^*}T_{\delta}$ -space, f(A) is  $\delta g^*$ -closed and hence it is  $\delta$ -closed in  $(Y, \sigma)$ . Since every  $\delta$ -closed set is closed [7], f(A) is closed in  $(Y, \sigma)$ . Since g is a  $\Delta^*$ -closed map,  $g[f(A)] = (g \circ f)(A)$  is  $\Delta^*$ -closed in  $(Z, \eta)$ . Hence the composition map  $(g \circ f)$  is  $\Delta^*$ -closed.

**Remark 5.** The composition of two  $\Delta^*$ -closed maps need not be a  $\Delta^*$ -closed map as seen from the following examples.

**Counter example 7.** Let  $X = \{a, b, c\} = Y$  with  $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ ,  $\sigma = \{\phi, Y, \{a, b\}\}$  and  $\eta = \{\phi, Z, \{a\}, \{b, c\}\}$ . Let  $f : (X, \tau) \to (Y, \sigma)$  be a map such that f(a) = a, f(b) = a, f(c) = c. Let  $g : (Y, \sigma) \to (Z, \eta)$  be a map such that g(a) = c, g(b) = b, g(c) = a. Then both f and g are  $\Delta^*$ -closed maps. But their composition map  $(g \circ f) : (X, \tau) \to (Z, \eta)$  is not a  $\Delta^*$ -closed map since for the closed set  $\{b, c\}$  in  $(X, \tau), (g \circ f)[\{b, c\}] = \{a, c\}$  is not  $\Delta^*$ -closed in  $(Z, \eta)$ .

### 5. Conclusion

The properties of newly defined  $\Delta^*$ -closed maps are analysed in this paper. Also it is shown that Composition two  $\Delta^*$ -closed maps is not a  $\Delta^*$ -closed map. In continuation of this work we have extended this concept to  $\Delta^*$ -Homeomorphisms in topological spaces.

#### References

- Dontchev, Julian, On δ-generalised closed sets and T<sub>3/4</sub> spaces, Mem. Fac .Sci. Kochi. Univ. Math., vol 17,(1996), 15-31.
- [2] Malghan, S.R., Generalised closed maps, Journal of Karnataka Univ.Sci., vol 18, (1982), 82-88.
- [3] Meena, K. and Sivakamasundari, K., δ(δg)\*-closed Sets in topological spaces, Int. Journal of Innovative Research in Science, Engineering and Technology, vol 3, 2014, 14749–14754.
- [4] Meena, K. and Sivakamasundari, K., Separation axioms by Δ\*-closed Sets in topological spaces, Int. Journal of Mathematical Analysis, vol 9(19), (2015), 927-934.
- [5] Meena, K. and Sivakamasundari, K., Δ\*-continuous functions in topological spaces, Int. Journal of Science Technology and Management, vol 4(01), (2015), 182-190.

2214

- [6] Meena, K. and Sivakamasundari, K., Δ\*-irresolute maps in topological spaces, Int. Journal of Applied Engineering Research, vol 11(01), (2016), 320-323.
- [7] Noiri, T., A generalization of closed perfect functions, *Journal of Korean Mathematical Society*, vol 17, (1978), 540-544.
- [8] Sudha, R. A study on some generalizations of δ-closed sets in topological spaces, Ph.D. Thesis Avinashilingam University, Coimbatore, TamilNadu, 540-544, 2014.

*Current address*: K.Meena: Department of Mathematics, Kumaraguru College of Technology, Coimbatore, TamilNadu, India.

 $E\text{-}mail\ address:$  meenarajarajan@yahoo.in

ORCID Address: http://orcid.org/0000-0002-5371-175X

Current address: D.Arivuoli: Department of Mathematics,Kumaraguru College of Technology, Coimbatore, TamilNadu, India.

 $E\text{-}mail \ address:$  arivuolisundar@yahoo.in

ORCID Address: http://orcid.org/0000-0003-1490-2788

Current address: K.Sivakamasundari: Department of Mathematics, Avinashilingam University, Coimbatore, TamilNadu, India

E-mail address: sivanath2011@gmail.com