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ON THE KOLMOGOROV-PETROVSKII-PISKUNOV EQUATION

ARZU ÖĞÜN ÜNAL

Abstract. We prove existence and uniqueness of the solutions of Kolmogorov-
Petrovskii-Piskunov (KPP) equation. We study asymptotic stability and in-
stability of the equilibrium solution u(x, t) ≡ 0 of KPP equation with subject
to the traveling wave solutions. We show that KPP equation has not got any
periodic traveling wave solution. Also, we obtain some exact traveling wave
solutions of KPP equation by the first integral method.

1. Introduction

In this paper, we are interested in the equation of Kolmogorov-Petrovskii-Piskunov

ut − uxx + µu+ νu2 + δu3 = 0, x ∈ R, t ∈ [0,∞) (1)

with the initial condition

u(0, x) = u0(x), x ∈ R. (2)

KPP equation first appeared in the genetics model for the spread of an advan-
tageous gene through a population [12]. Later, it has been applied to a number of
physics, biological and chemical models. KPP equation contains various well known
nonlinear equations in mathematical physics; In the case of µ = −1, ν = 0, δ = 1,
it reduces to the Newell-Whitehead equation, for µ = a, ν = −(a + 1), δ = 1, it
is called FitzHugh-Nagumo equation and for µ = −1, ν = 1, δ = 0, it is a special
case of Fisher equation ut − uxx = u− u2.
The reason for our interest in the KPP equation is that there exist solutions to the

KPP equation whose qualitative behavior resembles the traveling wave solutions.
In recent years, various techniques such as Bäcklund transformation method [10, 15,
17], tanh method [11], Adomian method [2], G

′

G -expansion method [8], numerical
methods [5] and as well a direct algebraic method [13] have been used to obtain
some exact traveling wave solutions of Eq. (1). Yet as we know, the first integral
method has not been applied to Eq. (1) for the same purpose. This method first
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introduced by Feng to solve the Burgers Korteweg-de Vries equation [9] and after
that it was applied to various types of nonlinear equations [1, 3, 7, 14, 18, 20].
Our aim is firstly to study the asymptotic stability and instability of zero so-

lution of KPP equation with subject to all traveling wave solutions by means of
qualitative theory of ordinary dfferential equations, secondly to explore the periodic
traveling wave solution of KPP equation and thirdly to find some exact traveling
wave solutions of KPP equation by using the first integral method. But, for all
these, it is necessary to guarantee the existence and uniqueness of solutions of IVP
(1)-(2). So, this paper is designed as follow:
In Section 2, the existence and uniqueness solutions of (1)-(2) is proved. In Section
3, asymptotic stability and instability of zero solution u(x, t) ≡ 0 of KPP equation
are studied. The stability regions of zero solution are sketched. Also, a negative
result is given for the periodicity. In Section 4, some exact traveling wave solutions
of KPP equation are obtained by the first integral method. In the final section, we
showed that if our conditions are satisfied, then a traveling wave solution that we
obtained can approach to zero.

2. Existence and Uniqueness of Solutions

Let us consider the initial value problem (IVP)

∂u

∂t
= f(u) +D

∂2u

∂x2
, x ∈ Ω, t ∈ (0,∞), (3)

u(x, 0) = u0(x), x ∈ Ω. (4)

where Ω ⊂ R and D is a diffusion coeffi cient. Equation (3) is known as a reaction-
diffusion equation which includes the KPP equation. We first give the following
well known result about existence and uniqueness for the solution of (3)-(4). [4, 6,
16]

Theorem 1. Consider the IVP (3)-(4) problem. Suppose that u0(x) is continuous
for x ∈ Ω̄ or x ∈ R. In addition, suppose there exists constants a and b such that
a ≤ u0(x) ≤ b for x ∈ Ω̄, f(a) ≥ 0, f(b) ≤ 0, and f is uniformly Lipschitz
continuous, that is, there exists a constant c such that,

|f(y)− f(z)| ≤ c |y − z| (5)

for all values y, z ∈ [a, b]. Then the Cauchy problem (3)-(4) has a unique bounded
solution u(x, t) for x ∈ Ω or x ∈ R and t ∈ (0,∞). In addition, the solution
u(x, t) ∈ [a, b].

Now, it is easy to prove that there exists a unique bounded solution of the IVP
(1)-(2).

Theorem 2. Suppose that u0(x) is continuous and 0 ≤ u0(x) ≤ β for x ∈ R such
that β satisfies µ + νβ + δβ2 = 0, β ∈ R. Then there is a unique solution of IVP
(1)-(2) defined on x ∈ R, t ∈ [0,∞). Moreover, u(x, t) ∈ [0, β].
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Proof. Eq. (1) is a special case of Eq. (3). The function f(u) = −µu− νu2 − δu3

is Lipschitz continuous on the interval [0, β] and the Lipschitz constant is c =∣∣µ+ 2βν + 3β2δ
∣∣ . So, due to Theorem 1, the Cauchy problem (1)-(2) has a unique

bounded solution u(x, t) defined on x ∈ R and t ∈ [0,∞). Also u(x, t) ∈ [0, β].

3. Stability and Periodicity

Definition 1. Let u(x, t) be the solution of IVP (3)-(4). Then u(x, t) is said to be
a stable solution if given an ε > 0, there exists a δ > 0 such that whenever ū0(x)
satisfies

||ū0(x)− u0(x)|| < δ,

the solution ū(x, t) with ū(x, 0) = ū0(x) of equation (1) satisfies

||ū(x, t)− u(x, t)|| < ε

for all t ≥ 0. If the solution u(x, t) is not stable, then it is said to be unstable.
The solution u(x, t) is said to be locally asymptotically stable if it is stable and, in
addition,

||ū(x, t)− u(x, t)|| → 0, as t→∞.

To study the asymptotic stability and instability of the equilibrium solution
u(x, t) ≡ 0 of KPP equation with subject to traveling wave solutions of KPP equa-
tion, we first of all have to find these kinds of solutions. To do this, we apply the
wave transform

u(x, t) = U(ξ), ξ = x− ωt (6)

to Equation (1), where ω represent the wave speed. Then we obtain second order
nonlinear ordinary differential equation

U ′′ + ωU ′ − µU − νU2 − δU3 = 0. (7)

If ω > 0 (ω < 0), then U(x− ωt) represents a wave traveling to the right (left). If
we introduce the new dependent variables X(ξ) and Y (ξ) as

X(ξ) = U(ξ), Y (ξ) = U ′(ξ), (8)

then Eq. (7) reduce to the first-order system of ordinary differential equations in
X and Y as follow {

X ′ = Y,
Y ′ = −ωY + µX + νX2 + δX3.

(9)

So, the stability of (7) is equivalent to the stability of the system (9).

Remark 1. We note that system (9) has at most three critical (equilibrium) points.
If ν2 < 4δµ, then (0,0) is only critical point. If ν2 = 4δµ, then there are two critical
points: (0,0) and (− ν

2δ , 0). If ν2 > 4δµ, then there are three equilibrium points:

(0,0), (
−ν−
√
ν2−4δµ

2δ , 0) and (
−ν+
√
ν2−4δµ

2δ , 0). Hence the possible equilibrium solu-

tions of Eq. (1) are u = 0, u = − ν
2δ , u =

−ν±
√
ν2−4δµ

2δ .
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Now we can prove the following results.

Theorem 3. The equilibrium point (0, 0) of system (9) is locally asymptotically
stable iff ω > 0 and µ < 0.
Proof. Since

lim
(X,Y )→(0,0)

0√
X2 + Y 2

= lim
(X,Y )→(0,0)

νX2 + δX3

√
X2 + Y 2

= 0,

(0,0) is a simple critical point of system (9). On the other hand, (0,0) is also the
unique equilibrium point of the linear system{

X ′ = Y
Y ′ = µX − ωY. (10)

The characteristic equation of linear system (10) is

λ2 + ωλ− µ = 0. (11)

Since ω > 0 and µ < 0, both characteristic roots of (11) have negative real parts.
So, it is clear that the equilibrium point (0,0) of system (10) is asymptotically stable
as ξ → +∞. Due to the qualitative theory of ordinary differential equation, there
is an asymptotical equivalance between linear system (10) and perturbed system
(9). Therefore the zero solution of (9) is also asymptotically stable as ξ → +∞.
Theorem 4. Under the conditions of Theorem 3, the zero solution of KPP equation
u(x, t) ≡ 0 is asymptotically stable.
Proof Repeating the proof of Theorem 3 and considering (6) and (8), the proof is
completed.
Theorem 5. The equilibrium point (0, 0) of system (10) is unstable iff either ω < 0
or µ > 0.
Proof From (11), at least one eigenvalue of (11) is positive or has positive real part
iff either ω < 0 or µ > 0. Thus the proof is completed.
Remark 2. Due to the above study, certain stability and instability regions for the
zero solution of KPP equation and as well as the types of it can be given in the
ωµ− plane. For this, in Fig. 1 the ωµ− plane is divided into six subregions as
follows:
In Fig. 1, shaded regions show that the zero solution u(x, t) ≡ 0 of KPP equation

is asymptotical stable. In other regions, u(x, t) ≡ 0 is unstable. On the other hand,
the types of the equilibrium point u(x, t) ≡ 0 can be identified as in ordinary
differential equations: It is called a saddle point in regions I and II, a node point
in regions III and VI, a spiral point in regions IV and V.
Now, we can state a negative criter for the periodicity of Eq. (1).
Theorem 6. KPP equation has no periodic traveling wave solution.
Proof. We have already showed that all traveling wave solutions of KPP equation
come from system (9). Now, let us demonstrate the second hands of system (9) as

F (X,Y ) = Y, G(X,Y ) = −ωY + µX + νX2 + δX3
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respectively. Then,
∂F

∂X
+
∂G

∂Y
= −ω.

Since ω 6= 0, ∂F
∂X + ∂G

∂Y is always positive or negative for all X, Y. Therefore,
due to well known Bendixon theorem [19], system (9) has no closed trajectory in
XY−phase plane. This means that Eq. (7) does not have any periodic solutions.
So, KPP equation has no periodic traveling wave solutions.
Remark 3. Due to Theorem 6, there is no periodic solution of KPP equation. But,
in paper [8], the traveling wave solutions that obtained in [15]

u(ξ) = ∓
√
−2δ∆

2δ
tan

1

2

√
−∆ξ − ν

2δ

and

u(ξ) = ±
√
−2δ∆

2δ
cot

1

2

√
−∆ξ − ν

2δ
have been refered as periodic solutions of KPP equation. As a matter of the fact
that, they can not be solutions of KPP equation for everywhere. Because, they are
not defined at the points ξ = π√

−∆
+ 2kπ√

−∆
, and ξ = 2kπ√

−∆
, k ∈ Z, respectively.

4. Traveling Wave Solutions of KPP Equation

In Section 3, we showed that all traveling wave solutions of KPP equation are
equivalent to the solutions of system (9). Because the component X(ξ) of any
solution (X(ξ), Y (ξ)) of (9) is equal to U(ξ) which indicates the traveling wave
solutions of KPP equation.
According to the qualitative theory of differential equations if we can find two

first independent integrals of system (9), then the general solutions of (9) can be
expressed explicitly and so can all kinds of traveling wave solutions of KPP equation.
However, it is generally diffi cult to find even one of the first integrals. Because there
is not any systematic way to tell us how to find these integrals. So, our aim is to
obtain at least one first integral of system (9). To do this, we will apply the Division
Theorem which is based on the Hilbert-Nullsellensatz Theorem [10]. Now, we recall
the Division Theorem for two variables in the complex domain C.
Division Theorem. Suppose that P(w,z) and Q(w,z) are polynomials in C[w, z]
and P(w,z) is irreducible in C[w, z]; if Q(w,z) vanishes at all zero points of P(w,z),
then there exist a polynomial H(w,z) in C[w, z] such that,

Q(w, z) = P (w, z)H(w, z).

According to the first integral method, we assume that (X(ξ), Y (ξ)) is a non-
trivial solution of (9) and

Q(X,Y ) =

m∑
i=0

ai(X)Y i (12)
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is an irreducible polynomial in the complex domain C such that

Q(X(ξ), Y (ξ)) =

m∑
i=0

ai(X(ξ))Y (ξ)i = 0 (13)

where ai(X) (i = 0, 1, ...,m) are polynomials of X and am(X) 6= 0. Equation (12)
is called the first integral of (9). According to the Division Theorem, there exists a
polynomial g(X) + h(X)Y in the complex domain C such that

dQ

dξ
=
∂Q

∂X

dX

dξ
+
∂Q

∂Y

dY

dξ
= (g(X) + h(X)Y )

m∑
i=0

ai(X)Y i. (14)

We consider two different cases for (12) m = 1 and m = 2.
Case 1. m = 1

Equating the coeffi cients of Y i on both sides of equation (14), we have

a′1(X) = h(X)a1(X), (15a)

a′0(X) = (ω + g(X))a1(X) + h(X)a0(X), (15b)

a1(X)[µX + νX2 + δX3] = g(X)a0(X). (15c)

Since ai(X) are polynomials, from (15a) we deduce that a1(X) is constant and
h(X) = 0. For simplification we take a1(X) = 1. Hence (15) can be rewritten as

a′0(X) = ω + g(X), (16a)
µX + νX2 + δX3 = g(X)a0(X) (16b)

Balancing the degrees of a0(X) and g(x), we conclude that deg g(X) = 1 only.
Assume that

g(X) = AX +B (17)

where A, B ∈ C. Then, from (16a)

a0(X) =
A

2
X2 + (B + ω)X + C (18)

where C is an arbitrary integration constant. Substituting (17) and (18) into (16b)
and setting all coeffi cients of Xi (i = 0, 1, 2, 3) to be zero, we obtain

A1 =
√

2δ, B1 =
2ν

3
√

2δ
− 2ω

3
, C = 0, µ1 =

2ν2

9δ
− 2νω

9
√

2δ
− 2ω2

9
(19a)

A1 = −
√

2δ, B1 = − 2ν

3
√

2δ
− 2ω

3
, C = 0, µ2 =

2ν2

9δ
+

2νω

9
√

2δ
− 2ω2

9
. (19b)

Using the conditions (19a-b) in equation (13), we have

Y +

√
2δ

2
X2 + (

2ν

3
√

2δ
+
ω

3
)X = 0 (20a)
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and

Y −
√

2δ

2
X2 + (− 2ν

3
√

2δ
+
ω

3
)X = 0. (20b)

Solving Eqs. (20a) and (20b) with subject to Y and substituting them into Eq.
(9), we obtain the following exact solutions of KPP equation, respectively,

u1(x, t) = (
ν

3δ
+

ω

3
√

2δ
)[coth(

ν

3
√

2δ
+
ω

6
)(x− ωt+ ξ0)− 1] (21)

u2(x, t) = (
ν

3δ
− ω

3
√

2δ
)[coth(− ν

3
√

2δ
+
ω

6
)(x− ωt+ ξ0)− 1] (22)

where ξ0 is an arbitrary constant.
Case 2. m = 2.

By equating the coeffi cients of Y i on both sides of (14) we have

a′2(X) = h(X)a2(X), (23a)
a′1(X) = (2ω + g(X))a2(X) + h(X)a1(X), (23b)
a′0(X) = −2a2(µX + νX2 + δX3) + (ω + g(X))a1(X) + h(X)a0(X), (23c)
a1(X)[µX + νX2 + δX3] = g(X)a0(X). (23d)

Since ai(X) are polynomials, from (23a), we deduce that a2(X) is constant and
h(X) = 0. Again, let us take a2(X) = 1. Thus the system can be rewritten as
follow

a′1(X) = 2ω + g(X), (24a)
a′0(X) = −2(µX + νX2 + δX3) + (ω + g(X)a1(X), (24b)
a1(X)[µX + νX2 + δX3] = g(X)a0(X). (24c)

Balancing the terms of a0(X), a1(X) and g(X), we conclude that either deg g(X) =
0 or deg g(X) = 1.
Let us consider the case of deg g(X) = 0, that is,

g(x) = A (25)

where A 6= 0. Then, from (24a-b), we get

a1(X) = (2ω +A)X +B, (26)

a0(X) = −δ
2
X4− 2ν

3
X3 + [ω2 +

ωA

2
−µ+ωA+

A2

2
]X2 + (Bω+AB)X +C (27)

where B and C are integration constants. Let us substitute a0(X), a1(X) and
g(X) into (24c) and equate the all coeffi cients of Xi (i = 0, 1, 2, 3, 4) to the zero.
Therefore, it follows

A = −6ω

5
, B = 0, µ = −6ω2

25
, δ = 0, C = 0. (28)
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Combining (28), (12) and (9), we find two differential equations as

X ′ +
2ω

5
X +

√
2ν

3
X3/2 = 0, (29a)

X ′ +
2ω

5
X −

√
2ν

3
X3/2 = 0. (29b)

These equations have the following solutions, respectively,

X(ξ) =
4ω2

25ν

(−
√

2ν
3 + e

2ω
5 (ξ+ξ0))2

, (30a)

X(ξ) =
4ω2

25ν

(
√

2ν
3 + e

2ω
5 (ξ+ξ0))2

. (30b)

By
eη

1 + eη
=

1

2
[tanh

η

2
+ 1] and

eη

1− eη = −1

2
[coth

η

2
+ 1],

the above solutions (30a) and (30b) that are the solitary wave solutions of KPP
equation with δ = 0 can be rewritten as, respectively,

u3(x, t) =
3ω2

50ν
(coth

ω

10
(x− ωt+ ξ0)− 1)2 (31a)

u4(x, t) =
3ω2

50ν
(tanh

ω

10
(x− ωt+ ξ0)− 1)2 (31b)

where ξ0 is an arbitrary constant.
We note that in the case of δ = 0, µ = −1, ν = 1, the KPP equation reduces to
Fisher equation. Hence from (31a-b), some exact solutions of Fisher equation are
obtained as follows

u(x, t) =
1

4
[coth(

x

2
√

6
± 5

12
t+ ξ0)± 1]2

u(x, t) =
1

4
[tanh(

x

2
√

6
± 5

12
t+ ξ0)± 1]2.

Now we assume that deg g(X) = 1; that is, g(X) = AX+B. Then, from (24a-b)
we find

a1 =
A

2
X2 + (B + 2ω)X + C, (32a)

a0 = (
A2

8
− δ

2
)X4 + (

5Aω

6
− 2ν

3
+
AB

2
)X3 (32b)

+(
3Bω

2
+ ω2 − µ+

AC

2
+
B2

2
)X2 + (Cω +BC)X +D
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where C, D are arbitrary integration constants. Substituting a0(X), a1(X) and
g(X) into (24c) and setting all the coeffi cients of powers X to be zero, we obtain
the following nonlinear algebraic system

Aδ
2 = A3

8 −
Aδ
2

Aν
2 + (B + 2ω) = A( 5Aω

6 −
2ν
3 + AB

2 ) +B(A
2

8 −
δ
2 )

Aµ
2 + (B + 2ω)ν + Cδ = A( 3Bω

2 + ω2 − µ+ AC
2 + B2

2 ) +B( 5Aω
6 −

2ν
3
AB
2 )

(B + 2ω)µ+ Cν = AC(ω +B) +B( 3Bω
2 + ω2 − µ+ AC

2 + B2

2 )
Cµ+AD +BC(ω +B) = 0
BD = 0

which has the solution

A = ±2
√

2δ, B =
νA

3δ
− 4ω

3
, C = 0, D = 0, µ =

2ν2

9δ
− 2ω2

9
− 2νω

9A
. (33)

Putting (33) into (13), we obtain the same equations as (20a) and (20b). So we
have the same exact solutions as (21) and (22).

5. Conclusion

In this work, we showed that the zero solution u(x, t) = 0 of KPP equation is
asymptotically stable if ω > 0 and µ < 0 and it is unstable if either ω < 0 or
µ > 0. After that we proved that KPP equation has no periodic solution. Finally,
we obtained some new exact traveling wave solutions of KPP equation that are
different from those in [5-8]. For a verification of Theorem 4, let us choose the
parameters ω, ν, δ and µ as ω = 1, ν = 1, δ = 2, µ = − 2

9 . Then from (21), we
have the solution u1(x, t) = − 1

3 + 1
3 coth(x−t3 ) which is plotted in Fig. 2. This

solution goes to the zero as x − t → ∞. This case is agree with the asymptotic
stability of the zero solution. Indeed, the values ω = 1, µ = − 2

9 come from the
asymptotic stability region VI.

Fig.1 Regions of stability
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