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COMPOSITE DUAL SUMMABILITY METHODS OF THE NEW
SORT*

MEDİNE YEŞİLKAYAGİL AND FEYZİ BAŞAR

Abstract. Following Altay and Başar [1], we define the duality relation of
the new sort between a pair of infinite matrices. Our focus is to study the
composite dual summability methods of the new sort and to give some inclusion
theorems.

1. Introduction

We denote the space of all sequences with complex entries by ω. Any vector
subspaces of ω is called a sequence space. We shall write `∞, c and c0 for the spaces
of all bounded, convergent and null sequences, respectively. A sequence space X
is called an FK−space if it is a complete linear metric space with continuous
coordinates pn : X → C for all n ∈ N with pn(x) = xn for all x = (xk) ∈ X and
every n ∈ N, where C denotes the complex field and N = {0, 1, 2, . . .}. A normed
FK−spaces is called a BK−space, that is, a BK − space is a Banach space with
continuous coordinates. The sequence spaces `∞, c and c0 are BK−spaces with
the usual sup-norm defined by ‖x‖∞ = supk∈N |xk|.
Let λ and µ be two sequence spaces, and A = (ank) be an infinite matrix of

complex numbers ank, where k, n ∈ N. Then, we say that A defines a matrix
mapping from λ into µ, and we denote it by writing A : λ→ µ if for every sequence
x = (xk) ∈ λ, the sequence Ax = {(Ax)n}, the A-transform of x, is in µ; where

(Ax)n =

∞∑
k=0

ankxk for each n ∈ N.
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By (λ : µ), we denote the class of all matrices A such that A : λ → µ. Thus,
A ∈ (λ : µ) if and only if the series on the right side of (1.1) converges for each
n ∈ N and each x ∈ λ, and we have Ax = {(Ax)n}n∈N ∈ µ for all x ∈ λ. A sequence
x is said to be A-summable to α if Ax converges to α which is called the A-limit of
x. Also by (λ : µ; p), we denote the subset of (λ : µ) for which the limits or sums
are preserved whenever there is a limit or sum on the spaces λ and µ. The matrix
domain λA of an infinite matrix A in a sequence space λ is defined by

λA = {x = (xk) ∈ ω | Ax ∈ λ}

which is a sequence space.
Let t = (tk) be a sequence of non-negative numbers which are not all zero and

write Tn =
n∑
k=0

tk for all n ∈ N. Then the matrix Rt = (rtnk) of the Riesz mean

(R, tn) with respect to the sequence t = (tk) is given by

rtnk =

{ tk
Tn

, 0 ≤ k ≤ n,
0 , k > n

for all k, n ∈ N. It is well-known that the Riesz mean (R, tn) is regular if and only if
Tn →∞ as n→∞ (see [11, Theorem 1.4.4]). Let us define the sequence y = (yk),
which will be used throughout, as the Rt- transform of a sequence x = (xk), i.e.,

yk =
1

Tk

k∑
j=0

tjxj for all k ∈ N. (1.1)

2. The Dual Summability Methods of the New Sort

Lorentz introduced the concept of the dual summability methods for the limi-
tation methods dependent on a Stieltjes integral and passed to the discontinuous
matrix methods by means of a suitable step function,in [6]. After, several authors,
such as Lorentz and Zeller [8], Kuttner [5], Öztürk [10], Orhan and Öztürk [9],
Başar and Çolak [4], and the others, worked on the dual summability methods.
Başar [3] recently introduced the dual summability methods of the new type which
is based on the relation between the C1-transform of a sequence and itself; where
C1 denotes the Cesàro mean of order 1. Following Kuttner [5] and Lorentz and
Zeller [8] who defined the dual summability methods by using the relation between
an infinite series and its sequence of partial sums, we desire to base the similar
relation on (1.1) and call it as the duality of the new sort.
Let us suppose that the infinite matrix A = (ank) and B = (bnk) map the

sequences x = (xk) and y = (yk) which are connected with the relation (1.1) to the
sequences (un) and (vn), respectively, i.e.,

un = (Ax)n =

∞∑
k=0

ankxk for all n ∈ N, (2.1)
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vn = (By)n =

∞∑
k=0

bnkyk for all n ∈ N. (2.2)

It is clear here that the method B is applied to the Rt-transform of the sequence
x = (xk), while the method A is directly applied to the entries of the sequence
x = (xk). So, the methods A and B are essentially different.
Let us assume that the usual matrix product BRt exists which is a much weaker

assumption than the conditions on the matrix B belonging to any class of matrices,
in general. We shall say in this situation that the matrices A and B in (2.1) and
(2.2) are the dual matrices of the new sort if un reduces to vn (or vn reduces to
un) under the application of the formal summation by parts. This leads us to the
fact that BRt exists and is equal to A and Ax = (BRt)x = B(Rtx) = By formally
holds, if one side exists. This statement is equivalent to the relation between the
entries of the matrices A = (ank) and B = (bnk):

ank :=

∞∑
j=k

tk
Tj
bnj or bnk :=

(
ank
tk
− an,k+1

tk+1

)
Tk = ∆

(
ank
tk

)
Tk. (2.3)

for all k, n ∈ N. Now, we may give a short analysis on the dual summability
methods of the new sort. One can see that vn reduces to un, as follows: Since the
equality

m∑
k=0

bnkyk =

m∑
k=0

bnk

k∑
j=0

tj
Tk
xj =

m∑
j=0

m∑
k=j

tj
Tk
bnkxj

holds for all m,n ∈ N one can obtain by letting m→∞ that

vn =

∞∑
k=0

bnkyk =

∞∑
j=0

∞∑
k=j

tj
Tk
bnkxj =

∞∑
j=0

anjxj = un for all n ∈ N.

But the order of summation may not be reversed. So, the matrices A and B are
not necessarily equivalent.
Let us suppose that the entries of the matrices A = (ank) and B = (bnk) are

connected with the relation (2.3) and C = (cnk) be a strongly regular lower triangle
matrix. Suppose also that the C−transforms of u = (un) and u = (vn) be t = (tn)
and z = (zn), respectively, i.e.,

tn = (Cu)n =

n∑
k=0

cnkuk for all n ∈ N, (2.4)

zn = (Cv)n =

n∑
k=0

cnkvk for all n ∈ N. (2.5)
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Define the matrices D = (dnk) and E = (enk) by

dnk :=

n∑
j=0

cnjajk and enk :=

n∑
j=0

cnjbjk for all n ∈ N.

For short, here and after, we call the methods A and B as "original methods" and
call the methods D and E as "composite methods". Now, we can give the first
theorem:

Theorem 2.1. The original methods are dual of the new sort if and only if the
composite methods are dual of the new sort.

Proof. Suppose that the relation (2.3) exists between the elements of the original
matrices A = (ank) and B = (bnk). This means that A = BRt or equivalently B =
A(Rt)−1. Therefore, by applying the strongly regular triangle matrix C = (cnk) to
(un) and (vn) in (2.1) and (2.2), we obtain that

Cu = C(Ax) = (CA)x = Dx

Cv = C(By) = (CB)y = Ey

Then, we have Cu = Cv whenever u = v which gives that Ey = Dx. Therefore,
we derive that

Ey = E(Rtx) = (ERt)x = Dx.

This shows that the composite methods D and E are dual of the new sort.
Conversely, suppose that the duality relation of the new sort exists between the

elements of D = (dnk) and E = (enk), i.e., D = ERt or equivalently E = D(Rt)−1.
Then, by applying the inverse matrix C−1 to the sequences t = (tn) and z = (zn)
in (2.4) and (2.5), we observe that

C−1z = C−1(Dx) = (C−1D)x = Ax,

C−1v = C−1(Ey) = (C−1E)y = By.

Hence, By = Ax. Therefore, we get B(Rtx) = (BRt)x = Ax which means that the
original matrices A and B are dual of the new sort. �

Theorem 2.2. Every A−summable sequence is D−summable. However, the con-
verse of this fact does not hold, in general.

Proof. Suppose that x = (xk) is A−summable to a ∈ C, i.e.,
lim
n→∞

(Ax)n = lim
n→∞

un = a.

Since C = (cnk) is a strongly regular triangle matrix, we have

lim
n→∞

un = lim
n→∞

(Cu)n = a.

That is to say that

lim
n→∞

(Cu)n = lim
n→∞

{C(Ax)}n = lim
n→∞

{(CA)x}n = lim
n→∞

(Dx)n = a.
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This shows that the sequence x = (xk) is summable D to the same point. Hence,
the inclusion cA ⊂ cD holds.
Let us choose the matrix C = (cnk) defined by

cnk =

{
2(k+1)

(n+1)(n+2) , 0 ≤ k ≤ n,
0 , k > n

for all k, n ∈ N. A short calculation gives the inverse matrix C−1 = (c−1nk ) as

c−1nk =

{
1+(−1)n−k(n+1)

2 , n− 1 ≤ k ≤ n,
0 , 0 ≤ k < n− 1 or k > n

for all k, n ∈ N. Let us also choose the matrix D = (dnk)

dnk =


1
2n , 0 ≤ k < n− 1,
−1
2n , k = n− 1,
1 , k = n,
0 , k > n

for all k, n ∈ N. Then, the matrix A = (ank) satisfying the equality D = CA is
obtained by a straightforward calculation as

ank =



2−n
2n+1 , 0 ≤ k < n− 2,
3n+2
2n+1 , k = n− 2,

−n2n+n+22n+1 , k = n− 1,
n+2
2 , k = n,
0 , k > n

for all k, n ∈ N. Therefore, ‖A‖ = sup
n∈N

∞∑
k=0

|ank| =∞. Hence, A does not even apply

to the points belonging to the space `∞. This shows that the inclusion cA ⊂ cD is
strict. �

Theorem 2.3. Every B−summable sequence is E−summable. However, the con-
verse of this fact does not hold, in general.

Proof. Suppose that y = (yk) is B−summable to b ∈ C, i.e.,
lim
n→∞

(By)n = lim
n→∞

vn = b.

Since C = (cnk) is a strongly regular triangle matrix, then we have

lim
n→∞

vn = lim
n→∞

(Cv)n = b

and this yields that

lim
n→∞

(Cv)n = lim
n→∞

{C(By)}n = lim
n→∞

{(CB)y}n = lim
n→∞

(Ey)n = b.

Hence, the sequence y = (yk) is E−summable to the value b which means that the
inclusion cB ⊂ cE holds.
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We choose the matrix C = (cnk) as in Theorem 2.2. Let us also choose the
matrix E = (enk) defined by

enk =

{
(−12 )n−k , n− 1 ≤ k ≤ n,

0 , k > n

for all k, n ∈ N. Then, the matrix B = (bnk) satisfying the matrix equality E = CB
is found by a routine calculation as

bnk =


n
4 , k = n− 2,

−( 3n+24 ) , k = n− 1,
n+2
2 , k = n,
0 , k > n

for all k, n ∈ N. Therefore, ‖B‖ = sup
n∈N

∞∑
k=0

|bnk| = ∞. Hence, B does not apply to

the sequences in the space `∞. This shows that the composite method E is stronger
than the original method B and this step completes the proof. �

Definition 2.4. A continuous linear functional φ on `∞ is called a Banach limit
(see Banach [2]) if the following statements hold:

(i) φ(x) ≥ 0, where x = (xk) with xk ≥ 0 for every k ∈ N,
(ii) φ(xk+1) = φ(xk),
(iii) φ(e) = 1, where e = (1, 1, 1, . . .).

A sequence x ∈ `∞ is said to be almost convergent to the generalized limit L if
all of its Banach limits equal to L (see Lorentz, [7]). We denote the set of all almost
convergent sequences by f , i.e.,

f :=
{
x = (xk) ∈ ω | ∃α ∈ C 3 lim

m→∞
tmn(x) = α uniformly in n

}
,

where

tmn(x) =

m∑
k=0

xk+n
m+ 1

with t−1,n = 0 and α = f − lim xk.

We use the following notation in Theorem 2.5 and Theorem 2.6:

tmn(Ax) =
1

m+ 1

m∑
j=0

An+j(x) =

∞∑
k=0

a(n, k,m)xk,

where

a(n, k,m) =
1

m+ 1

m∑
j=0

an+j,k for all k,m, n ∈ N.

Theorem 2.5. The inclusion fD ⊃ fA strictly holds.
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Proof. Suppose that the sequence x = (xk) is almost A−summable to l ∈ C. That
is, f − lim(Ax)n = l. Since C = (cnk) is a strongly regular triangle matrix, we have

f − lim(Ax)n = f − lim{C(Ax)}n = f − lim{(CA)x}n = f − lim(Dx)n = l.

Then, the sequence x = (xk) is almost D−summable. This means that the compos-
ite method D is stronger than the original method A. Hence, the inclusion fD ⊃ fA
holds.
Let us choose the matrix C = (cnk) as C1, the Cesàro matrix of order one. Then,

a short calculation gives us the inverse matrix C−1 = (c−1nk ) as

c−1nk =

{
(−1)n−k(k + 1) , n− 1 ≤ k ≤ n,

0 , 0 ≤ k ≤ n− 2 or k > n

for all k, n ∈ N. Let us also choose the matrix D = (dnk) defined by

dnk =

{
1+(−1)n
(n+1) , 0 ≤ k ≤ n,

0 , k > n

for all k, n ∈ N. Then, the matrix A = (ank) satisfying the matrix equality D = CA
is obtained as

ank =

 2 , n is even and 0 ≤ k ≤ n,
−2 , n is odd and 0 ≤ k ≤ n− 1,

0 , otherwise

for all k, n ∈ N. Now, take x = (xk) =
{

k
(k+1)!

}
. Then,

1

m+ 1

m∑
i=0

(Dx)n+i =
1

m+ 1

m∑
i=0

n+i∑
k=0

dn+i,kxk

if n+ i is odd, dn+i,k will be zero. Therefore,

1

m+ 1

m∑
i=0

Dn+i(x) = 0.

if n+ i is even, we’ll have

1

m+ 1

m∑
i=0

Dn+i(x) =
1

m+ 1

m∑
i=0

1 + (−1)n+i

n+ i+ 1

n+i∑
k=0

k

(k + 1)!

=
1

m+ 1

m∑
i=0

2

n+ i+ 1

[
1− 1

(n+ i+ 1)!

]

=
2

m+ 1

m∑
i=0

1

n+ i+ 1
− 2

m+ 1

m∑
i=0

1

(n+ i+ 1)(n+ i+ 1)!

(2.6)
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which tends to zero, as m→∞. Because we know that

lim
m→∞

1
n+1 + 1

n+2 + · · ·+ 1
n+m+1

m+ 1
= lim

m→∞

1

n+m+ 1
= 0.

We can observe the second sum on the right hand side of (2.6) is zero, i.e., x ∈ fD.
Now, we derive for the matrix A = (ank) that

1

m+ 1

m∑
i=0

(Ax)n+i =
1

m+ 1

m∑
i=0

n+i∑
k=0

an+i,kxk for all m,n ∈ N.

If n+ i is even, then we have

1

m+ 1

m∑
i=0

(Ax)n+i =
1

m+ 1

m∑
i=0

2

n+i∑
k=0

k

(k + 1)!

=
2

m+ 1

m∑
i=0

[
1− 1

(n+ i+ 1)!

]

= 2− 2

m+ 1

m∑
i=0

1

(n+ i+ 1)!

which tends to 2, as m→∞. If n+ i is odd, then we have

1

m+ 1

m∑
i=0

(Ax)n+i =
1

m+ 1

m∑
i=0

(−2)

n+i∑
k=0

k

(k + 1)!

=
−2

m+ 1

m∑
i=0

[
1− 1

(n+ i+ 1)!

]

= −2 +
2

m+ 1

m∑
i=0

1

(n+ i+ 1)!

which tends to -2, as m→∞. Therefore, we have

lim
m→∞

1

m+ 1

m∑
i=0

(Ax)n+i =

 2 , n+i is even,
−2 , n+i is odd,

i.e., x /∈ fA, so the inclusion fD ⊃ fA strictly holds and this completes the proof. �

Theorem 2.6. The inclusion fE ⊃ fB strictly holds.

Proof. Let y = (yk) be almost B−summable to r ∈ C. That is, f − lim(By)n = r.
Since C = (cnk) is a strongly regular triangle matrix, we have

f − lim(By)n = f − lim{C(By)}n = f − lim{(CB)y}n = f − lim(Ey)n = r.

Therefore, y = (yk) is almost E−summable to r. Hence, the inclusion fE ⊃ fB
holds.
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Let us choose the matrix C = (cnk) as in Theorem 2.5 and define the matrix
B = (bnk) by

bnk =


n+ 1 , k = n,

−(2n+ 1) , k = n− 1,
n , k = n− 2,
0 , otherwise

for all k, n ∈ N. Then, the matrix E = (enk) such that E = CB is obtained as

enk =

{
(−1)n−k , n− 1 ≤ k ≤ n,

0 , otherwise

for all k, n ∈ N. Now, take the sequence y = (yk) = {(−1)k}. Then, we have

1

m+ 1

m∑
i=0

(Ey)n+i =
1

m+ 1

m∑
i=0

n+i∑
k=0

en+i,kyk

=
1

m+ 1

m∑
i=0

(en+i,n+i−1yn+i−1 + en+i,n+iyn+i)

=
1

m+ 1

m∑
i=0

[−(−1)n+i−1 + (−1)n+i]

=
2(−1)n

m+ 1

m∑
i=0

(−1)i
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which gives by letting m→∞ that the sequence y is almost E−summable to zero,
that is, y ∈ fE . On the other hand, we have

1

m+ 1

m∑
i=0

(By)n+i (2.7)

=
1

m+ 1

m∑
i=0

n+i∑
k=0

bn+i,kyk

=
1

m+ 1

m∑
i=0

(bn+i,n+i−2yn+i−2 + bn+i,n+i−1yn+i−1 + bn+i,n+iyn+i)

=
1

m+ 1

m∑
i=0

[bn+i,n+i−2(−1)n+i−2 + bn+i,n+i−1(−1)n+i−1 + bn+i,n+i(−1)n+i]

=
1

m+ 1

m∑
i=0

(−1)n+i[(n+ i) + (2n+ 2i+ 1) + (n+ i+ 1)]

=
(−1)n

m+ 1

m∑
i=0

(−1)i(4n+ 4i+ 2)

=
4n(−1)n

m+ 1

m∑
i=0

(−1)i +
4(−1)n

m+ 1

m∑
i=0

(−1)ii+
2(−1)n

m+ 1

m∑
i=0

(−1)i

It is not hard to see that the first and third sums on the right hand side of (2.7)
tend to zero, as m → ∞ and since the second sum on the right hand side of (2.7)
is; if m is even,

4(−1)n

m+ 1

m∑
i=0

(−1)ii =
4(−1)n

m+ 1
[−(1 + 3 + · · ·+ (m− 1)) + (2 + 4 + · · ·+m)] =

m

2

and if m is odd,

4(−1)n

m+ 1

m∑
i=0

(−1)ii =
4(−1)n

m+ 1
[−(1+ 3+ · · ·+m)+ (2+4 + · · ·+(m−1))] = −m+ 1

2

which leads us by letting m→∞ that

lim
m→∞

4(−1)n

m+ 1

m∑
i=0

(−1)ii =

 2(−1)n , m is even
−2(−1)n , m is odd

This shows that y /∈ fB . Therefore, the inclusion fD ⊃ fA strictly holds and this
completes the proof. �

Theorem 2.7. The duality relation of the new sort is not preserved under the usual
inverse operation.
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Proof. Suppose that the relation (2.3) exists between the original matrices A =
(ank) and B = (bnk). Choose the matrix B as the identity matrix I. Then,
the dual matrix of the new sort corresponding to the matrix B = I is A = Rt.
Nevertheless, the inverses B−1 = I and A−1 = (Rt)−1 are not dual of the new sort.
This shows that there are dual matrices of the new sort while their usual inverses
are not dual of the new sort. This completes the proof. �
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