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A NEIGHBOURHOOD SYSTEM OF FUZZY NUMBERS AND ITS
TOPOLOGY*

SALIH AYTAR

Abstract. The neighbourhood system obtained by the neighbourhoods (whose
radii are positive fuzzy numbers) in a fuzzy number-valued metric space is a
basis of a topology for the set of all fuzzy numbers. In this paper, the conver-
gence with respect to this topology is introduced and its basic properties are
studied.

1. Introduction

In most of the situations in real world problems, the data obtained for decision
making are only approximately known. To meet such problems, Zadeh [24] intro-
duced the concept of fuzzy set in 1965. Later, Chang and Zadeh [3] defined the
concept of a fuzzy number as a fuzzy subset of the real line. A fuzzy number is a
quantity whose value is imprecise, rather than exact as in the case of crisp, single-
valued numbers. Any fuzzy number can be thought of as a function whose domain
is a specified set (usually the set of real numbers).
In fact, there is a wide range of possibilities to define a fuzzy number. However,

many of these definitions are not particularly amenable to practical manipulations.
In many cases, exact computations or comparisons of fuzzy numbers, and repre-
sentation of ill-defined magnitudes are diffi cult by using those definitions of fuzzy
numbers. With this in mind, in this paper, we adopt a widely accepted and practical
definition of a fuzzy number encountered in the literature of fuzzy set theory.
Fuzzy numbers allow us to make the mathematical models of linguistic quantities

and fuzzy environments. In many respects, fuzzy numbers depict the physical
world more realistically than the real numbers do. Fuzzy numbers are used in
statistics, computer programming, engineering (especially in communications), and
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experimental science. They are also important for the study of fuzzy integrals,
fuzzy control problems and fuzzy optimization problems which are widely used in
fuzzy information theory and fuzzy signal systems (see [5, 8, 23]). Therefore, a
careful and scientific mathematical analysis of fuzzy numbers is very important for
the theoretical background of applied studies. In this context, the distance between
two fuzzy numbers and the convergence of a sequence of fuzzy numbers with respect
to this distance plays a key role in the analysis of fuzzy numbers.
In 1991 Fuller [9] calculated the membership function of the product-sum of

triangular fuzzy numbers. Later Hong and Hwang [13] determined the exact mem-
bership function of the t-norm-based sum of fuzzy numbers. In 1997 Hwang and
Hong [14] have studied the membership function of the t-norm-based sum of fuzzy
numbers on Banach spaces, which generalizes earlier results Fuller [9] and Hong and
Hwang [13]. These papers are important ones related to the theory of convergence.
Recently, many authors have discussed the convergence of a sequence of fuzzy

numbers and obtained many important results (see [1, 2, 7, 12, 22]). The first
steps towards constructing such convergence theories go back to Matloka’s [16]
and Kaleva’s [15] works. To this end, they used the supremum metric that gives
a real (crisp) value for the distance between two fuzzy numbers. On the other
hand, via positive fuzzy numbers, it is also possible to define a fuzzy (non-crisp)
distance between two fuzzy numbers (as is exemplified by Guangquan [10]), because
it is more natural that the distance between two fuzzy numbers is a fuzzy number
rather than this distance is a real number. Nevertheless, although a fuzzy distance
is used in Guangquan’s studies [10, 11], the convergence of a sequence of fuzzy
numbers discussed in these studies somehow depends on the supremum metric, since
characteristic functions of positive numbers are used as radii of open neighborhoods
of fuzzy numbers. In this case, the convergence with respect to the supremummetric
and the convergence with respect to the fuzzy distance turn out to be equivalent.
We think that it will be a good step to examine the convergence of a sequence of

fuzzy numbers from different perspectives to explore the boundaries of these con-
vergence theories related to fuzzy numbers. In this context, we introduce a new
type of convergence by using more positive fuzzy numbers, instead of just the posi-
tive characteristic functions used in Guangquan’s [10, 11] definition of convergence.
We note that this convergence should not be perceived as a generalization of ordi-
nary convergence. Throughout the text, we also compare these different types of
convergences of a sequence of fuzzy numbers.

2. Preliminaries

First we recall some of the basic concepts and notations in the theory of fuzzy
numbers, and we refer to [4, 6, 11, 15, 16, 17, 18, 19, 20, 21] for more details.
A fuzzy number is a function X from R to [0, 1], satisfying:

(i) X is normal, i.e., there exists an x0 ∈ R such that X(x0) = 1;
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(ii) X is fuzzy convex, i.e., for any x, y ∈ R and λ ∈ [0, 1], X(λx+ (1− λ)y) ≥
min{X(x), X(y)};

(iii) X is upper semi-continuous;
(iv) the closure of {x ∈ R : X(x) > 0}, denoted by X0, is compact.

These properties imply that, for each α ∈ (0, 1], the α− level set Xα := {x ∈
R : X(x) ≥ α} =

[
Xα, X

α
]
is a non-empty compact convex subset of R, as is

the support X0. We denote the set of all fuzzy numbers by F(R). Note that the
function a1 defined by

a1 (x) :=

{
1 , if x = a,
0 , otherwise,

where a ∈ R, is a fuzzy number. By the decomposition theorem of fuzzy sets, we
have

X = sup
α∈[0,1]

αχ[Xα,Xα]

for every X ∈ F(R), where each χ[Xα,Xα] denotes the characteristic function of the

subinterval
[
Xα, X

α
]
.

Now we recall the partial order relation on the set of fuzzy numbers. For X,Y ∈
F(R), we write X � Y, if for every α ∈ [0, 1], the inequalities

Xα ≤ Y α and X
α ≤ Y α

hold. We write X ≺ Y, if X � Y and there exists an α0 ∈ [0, 1] such that

Xα0 < Y α0 or X
α0
< Y

α0
.

If X � Y and Y � X, then X = Y. Two fuzzy numbers X and Y are said to be
incomparable and denoted by X � Y, if neither X � Y nor Y � X holds. When
X � Y or X � Y , then we can write X ⊀ Y.
Now let us briefly review the operations of summation and subtraction on the

set of fuzzy numbers. For X,Y, Z ∈ F (R) , the fuzzy number Z is called the sum

of X and Y, and we write Z = X + Y, if Zα =
[
Zα, Z

α
]
:= Xα + Y α for every

α ∈ [0, 1]. Similarly, we write Z = X − Y, if Zα =
[
Zα, Z

α
]
:= Xα − Y α for every

α ∈ [0, 1].
We define the set of positive fuzzy numbers by

F+(R) :=
{
X ∈ F (R) : X � 01 and X

1
> 0
}
.

A subset E of F(R) is said to be bounded from above if there exists a fuzzy number
µ, called an upper bound of E, such that X � µ for every X ∈ E. µ is called
the least upper bound (sup) of E if µ is an upper bound and µ � µ′ for all upper
bounds µ′. A lower bound and the greatest lower bound (inf) are defined similarly.
E is said to be bounded if it is both bounded from above and below. A sequence
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of fuzzy numbers (briefly, SFN henceforth) X = {Xn} is said to be bounded if the
set {Xn : n ∈ N} of fuzzy numbers is bounded.
If Xn � Xn+1 for all n ∈ N, then X = {Xn} is said to be a monotone increasing

SFN. A monotone decreasing SFN can be defined similarly.

Definition 2.1. The map dM : F (R)×F(R)→ R+ ∪ {0} defined as

dM (X,Y ) := sup
α∈[0,1]

max
{
|Xα − Y α| ,

∣∣∣Xα − Y α
∣∣∣}

is called the supremum metric on F (R).
An SFN X = {Xn} is said to beM−convergent to the fuzzy number X0, written

as M − limXn = X0, if for every ε > 0 there exists a positive integer n0 = n0 (ε)

such that

dM (Xn, X0) < ε for every n > n0.

A fuzzy number λ is called an M−limit point of the SFN X = {Xn} provided
that there is a subsequence of X that M−converges to λ. We will denote the set
of all M−limit points of X = {Xn} by LMX .

3. τF−convergence of a sequence of fuzzy numbers

Guangquan [10] introduced the concept of fuzzy distance between two fuzzy
numbers as in Definition 3.1, and thus presented a concrete fuzzy metric in (3.1),
which is very similar to an ordinary metric.

Definition 3.1. [10] A map d : F(R)× F(R) → F(R) is called a fuzzy metric on
F(R) provided that the conditions

(i) d(X,Y ) � 01,
(ii) d (X,Y ) = 01 if and only if X = Y ,
(iii) d(X,Y ) = d(Y,X),
(iv) d(X,Y ) � d(X,Z) + d(Z, Y )
are satisfied for all X,Y, Z ∈ F(R).
If d is a fuzzy metric on the set of fuzzy numbers, then we call the triple

(R,F(R), d) a fuzzy metric space. Guangquan [10] presented an example of a
fuzzy metric space via the function dG defined by

dG (X,Y ) := sup
α∈[0,1]

αχ[
|X1−Y 1|, sup

µ∈[α,1]
max{|Xµ−Y µ|,|Xµ−Y µ|}

]. (3.1)

Here the map dG satisfies the conditions (i)-(iv) in Definition 3.1.
Now we present a practical example for the fuzzy metric dG. Define two fuzzy

numbers X and Y by

X(x) :=

 x , x ∈ [0, 1]
2− x , x ∈ [1, 2]
0 , otherwise

and Y (x) :=


x−3
2 , x ∈ [3, 5]

5−x
2 + 1 , x ∈ [5, 7]
0 , otherwise

.
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Then the fuzzy distance between the fuzzy numbers X and Y is

dG (X,Y ) (x) =

{
5− x , x ∈ [4, 5]
0 , otherwise

.

Remark 3.2. Let

BF :=
{
K (X,P ) : X ∈ F (R) , P ∈ F+(R)

}
⊂ P (F(R)) ,

where P(F(R)) is the power set of F(R) and

K (X,P ) :=
{
Z ∈ F ( R) : dG (X,Z) ≺ P, P ∈ F+ (R)

}
.

Then the set BF forms a basis of a natural topology on F(R) , denoted by τF .
Thus, the pair (F(R), τF ) is a topological space.

Now we investigate the properties of the convergence of a sequence in this topo-
logical space. Since this convergence is in the topology τF , we will denote it by
τF−convergence.

Definition 3.3 (τF−Convergence). Let X = {Xn} ⊂ F (R) and X0 ∈ F (R).
Then {Xn} is τF−convergent to X0 and we denote this by

τF − limXn = X0 or {Xn}
τF→ X0 (n→∞) ,

provided that for any P ∈ F+(R) there exists an n0 = n0 (P ) ∈ N such that

dG (Xn, X0) ≺ P as n > n0.

Example 3.4. Define the sequence {Xn} by

Xn (x) :=

{
1− nx

2n−1 , x ∈
[
0, 2− 1

n

]
0 , otherwise

and the fuzzy number X0 by

X0 (x) :=

{
1− x

2 , x ∈ [0, 2]
0 , otherwise

.

It is easy to see that dG (Xn, X0) = sup
α∈[0,1]

αχ[0, 1n ]
. Then we have dG (Xn, X0)

α
= 0

and dG (Xn, X0)
α
= 1

n for every α ∈ [0, 1] and each n ∈ N. Take P ∈ F
+(R). Then

we have Pα ≥ 0 and Pα > 0 for every α ∈ [0, 1]. Hence we get dG (Xn, X0)
α
=

0 ≤ Pα and there exists an n0 = n0 (P ) ∈ N such that dG (Xn, X0)
α
= 1

n < P
α
for

every n > n0. Consequently, we get dG (Xn, X0) ≺ P for each n > n0, which proves
that τF − limXn = X0.

Now our first step is to compare τF−convergence with M− convergence.

Theorem 3.5. Let X = {Xn} ⊂ F (R) and X0 ∈ F (R). If τF − limXn = X0

then M − limXn = X0.
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Proof. Assume that τF − limXn = X0. By Definition 3.3, for every ε1 ∈ F+(R)
there exists an n0 = n0 (ε1) ∈ N such that dG (Xn, X0) ≺ ε1 for all n > n0. Then
we have

χ[∣∣∣Xn1−X1
0

∣∣∣, sup
µ∈[α,1]

max{|Xnµ−X0
µ|,|Xnµ−X0

µ|}
] ≺ ε1

for every α ∈ [0, 1] and n > n0. Thus we get

sup
µ∈[α,1]

max
{∣∣Xn

µ −X0
µ
∣∣ , ∣∣∣Xn

µ −X0
µ
∣∣∣} < ε1

α.

Since sup
α∈[0,1]

max
{∣∣Xn

α −X0
α
∣∣ , ∣∣∣Xn

α −X0
α
∣∣∣} = dM (Xn, X0), we have dM (Xn, X0)

< ε for all n > n0 and for every ε > 0. Consequently, we haveM−limXn = X0. �

The converse of the theorem above does not hold in general as can be seen in
the following example.

Example 3.6. Define the SFN {Xn} for every x ∈ R by

Xn (x) :=


0 , x ∈ (−∞, 3− 1

n ] ∪ [5−
1
n ,∞)

x−
(
3− 1

n

)
, x ∈

(
3− 1

n , 4−
1
n

)(
5− 1

n

)
− x , otherwise

,

and let

X0 (x) :=

 0 , x ∈ (−∞, 3] ∪ [5,∞)
x− 3 , x ∈ (3, 4)
5− x , otherwise

.

Then M − limXn = X0. Now we show that τF − limXn 6= X0. Let P ∈ F+(R) be
defined as

P (x) :=

 0 , x ∈ (−∞, 0] ∪ [2,∞)
x , x ∈ (0, 1]

2− x , otherwise
.

We have

dG (Xn, X0) = sup
α∈[0,1]

αχ[∣∣∣Xn1−X1
0

∣∣∣, sup
µ∈[α,1]

max{|Xnµ−X0
µ|,|Xnµ−X0

µ|}
]

= sup
α∈[0,1]

αχ[|(4− 1
n )−4|, 1n ]

= sup
α∈[0,1]

αχ[ 1n ,
1
n ]
=

(
1

n

)
1

.

In this case P �
(
1
n

)
1
, i.e.,

(
1
n

)
1
⊀ P for every n ∈ N. Consequently, τF−limXn 6=

X0.
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Remark 3.7. We should note that if we define

BG := {K (X, ε1) : X ∈ F(R), ε > 0} ⊂ P (F(R)) ,
where K (X, ε1) := {Z ∈ F (R) : dG (X,Z) ≺ ε1, ε > 0} . It is easy to show that
the set BG form basis for a topology τG on F (R) . Note that the topology τF is
finer than τG so that the convergences with respect to these topologies are not
equivalent. In Definition 3.3, if we introduce a new type of convergence by using
more positive fuzzy numbers, instead of just the positive characteristic functions
used in Guangquan’s [10, 11] definition of convergence. We note that this conver-
gence should not be perceived as a generalization of ordinary convergence. If we
replace the set of positive fuzzy numbers with the set of characteristic functions
of positive real numbers, we obtain the G−convergence (namely, τG−convergence)
defined by Guangquan [10].

Definition 3.8 (G−Convergence). [10] Let X = {Xn} ⊂ F(R) and X0 ∈ F(R).
{Xn} is said to be G− convergent to X0, which is denoted by

G− limXn = X0 or {Xn}
G→ X0 (n→∞) ,

provided that for any ε > 0, there exists an n0 = n0 (ε) ∈ N such that
dG (Xn, X0) ≺ ε1 as n > n0.

In this case, G−convergence is equivalent to M−convergence as can be seen by
the following lemma. The first version of this lemma was obtained by Wen-yi Zeng
[25].

Lemma 3.9. Let X = {Xn} ⊂ F (R) and X0 ∈ F(R) . Then G − limXn = X0

if, and only if, M − limXn = X0.

Proof. Necessity. Let G − limXn = X0. By Definition 3.8, for every ε > 0 there
exists an n0 = n0 (ε) ∈ N such that dG (Xn, X0) ≺ ε1 for all n > n0. We have

χ[
|Xn1−X0

1|, sup
µ∈[α,1]

max{|Xnµ−X0
µ|,|Xnµ−X0

µ|}
] ≺ χ[ε,ε] = ε1

for every α ∈ [0, 1] and n > n0. Therefore we have

sup
µ∈[α,1]

max
{∣∣Xn

µ −X0
µ
∣∣ , ∣∣∣Xn

µ −X0
µ
∣∣∣} < ε

for every α ∈ [0, 1], i.e.,

sup
µ∈[0,1]

max
{∣∣Xn

µ −X0
µ
∣∣ , ∣∣∣Xn

µ −X0
µ
∣∣∣} = dM (Xn, X0) < ε

for every n > n0. Consequently, M − limXn = X0.
Suffi ciency. Let M − limXn = X0. Then for each ε > 0 there exists an n0 =
n0 (ε) ∈ N such that dM (Xn, X0) < ε for every n > n0. We have

sup
µ∈[α,1]

max
{∣∣Xn

µ −X0
µ
∣∣ , ∣∣∣Xn

µ −X0
µ
∣∣∣} < ε



80 SALIH AYTAR

for every α ∈ [0, 1] and n > n0. Therefore

χ[
|Xn1−X0

1|, sup
µ∈[α,1]

max{|Xnµ−X0
µ|,|Xnµ−X0

µ|}
] ≺ χ[ε,ε] = ε1

for every α ∈ [0, 1] and n > n0. Hence dG (Xn, X0) ≺ ε1 for every n > n0. So,
G− limXn = X0. �

Now we present suffi cient conditions for an M−convergent SFN to be τF−con-
vergent.

Theorem 3.10. Let X = {Xn} ⊂ F (R) and X0 ∈ F (R) . IfM−limXn = X0 and
there exists an ñ ∈ N such that Xn

1 = X1
0 for every n > ñ, then τF − limXn = X0.

Proof. Assume that M − limXn = X0. Then for every ε > 0 there exists an
n0 = n0 (ε) ∈ N such that dM (Xn, X0) < ε for all n > n0. Define N = N (ε) :=
max {n0, ñ}. Now we show that dG (Xn, X0) ≺ P for all P ∈ F+(R) and n > N.
To the contrary, suppose that there exists a P ∈ F+(R) such that dG (Xn, X0) ⊀
P for infinitely many n ∈ N. In this case, we have either dG (Xn, X0) � P
or dG (Xn, X0) � P. First assume that there exists a P ∈ F+ (R) such that
dG (Xn, X0) � P for infinitely many n. Then we have dG (Xn, X0)

α ≥ Pα and

dG (Xn, X0)
α ≥ P

α
for every α ∈ [0, 1] . Since P ∈ F+ (R) , we have Pα >

0 for all α ∈ [0, 1] . Define ε := P
0
.Hence, by definitions of dG and dM ,we have

dG (Xn, X0)
0 ≥ ε, i.e., dM (Xn, X0) ≥ ε for infinitely many n. This contradicts to

M − limXn = X0. Now we assume that dG (Xn, X0) � P for infinitely many n.
Then the following two cases are possible: There exists an α0 ∈ [0, 1] such that

(i) dG (Xn, X0)
α0 > Pα0 , or

(ii) dG (Xn, X0)
α0
> P

α0 .

Since we have Xn
1 = X1

0 , we can write dG (Xn, X0)
α0 = 0 , by the definition of

dG, except finitely many n. Hence the case (i) is not valid because P ∈ F+ (R). In
the case (ii), we have

sup
µ∈[α0,1]

max
{∣∣Xn

µ −X0
µ
∣∣ , ∣∣∣Xn

µ −X0
µ
∣∣∣} > P

α0

for infinitely many n ∈ N. Define ε := P
α0
. By definition of dM , we have dM (Xn, X0)

> ε for infinitely many n ∈ N. However, this contradicts the fact thatM− limXn =
X0. �

Throughout the rest of paper, we will present fuzzy analogues of some results in
classical mathematical analysis, in the context of τF− convergence.

Theorem 3.11. If τF − limXn = X0 and τF − limXn = Y0, then X0 = Y0.

Proof. Assume that τF − limXn = X0 and τF − limXn = Y0. Then for each
P ∈ F+(R) there exists an n1 = n1 (P ) ∈ N such that dG (Xn, X0) ≺ P for all
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n > n1. Similarly, there exists an n2 = n2 (P ) ∈ N such that dG (Xn, Y0) ≺ P for
all n > n2. Define N := max{n1, n2}. Then we have

dG (X0, Y0) � dG (Xn, X0) + dG (Xn, Y0) ≺ P + P = 2P
for every P ∈ F+(R) and n > N . Hence we have X0 = Y0. �

Now we introduce the concept of τF−limit point of an SFN, and compare it with
the concept of M−limit point.

Definition 3.12 (τF−limit point). A fuzzy number λ is a τF−limit point of the
SFN X = {Xn} provided that there is a subsequence of X that τF− converges to
λ. We denote the set of all τF− limit points of X = {Xn} by LFX .

Corollary 1. LFX ⊂ LMX for every X = {Xn} ⊂ F(R).

Proof. If λ ∈ LFX then there is a subsequence {Xnk} such that τF − lim
k→∞

Xnk = λ.

By Theorem 3.5, we have M − lim
k→∞

Xnk = λ, so λ ∈ LMX . �

Remark 3.13. In Example 3.6, LFX = ∅, but LMX = {X0}, i.e., the inclusion relation
given in Corollary 1 is strict.

4. Conclusion

In order to introduce a more general convergence in Guangquan’s fuzzy metric
space, we have defined a new neigbourhood of a fuzzy number using positive fuzzy
numbers, and thus we have obtained τF−convergence of a sequence of fuzzy num-
bers with respect to the topology generated by such neigbourhoods. This new type
of convergence is a natural extension of Guangquan’s definition of convergence in
a fuzzy metric space. Even though ours is a simple idea, it puts forward a new
concept of convergence which is equivalent neither to the convergence with respect
to the supremum metric nor to the convergence in the sense of Guangquan.
Furthermore, we point out that the definitions and results presented here signifi-

cantly differ from those in classical analysis. For instance, in Example 3.6, we have
shown that a monotone increasing and bounded sequence of fuzzy numbers is not
necessarily τF−convergent. In detail, although {Xn} is an SFN where α−cuts of its
terms are close to the α−cuts of X0, the sequence {Xn} may not be τF−convergent
to X0, unless X1

n = X1
0 except for a finite number of terms. Thus, the theory of

τF−convergence requires extra conditions.
Finally, it should be noted that one may obtain some results that are just parallel

to those in classical analysis by modifying the metric dG in a more general context.
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[12] J. Hančl, L. Mišík and J. T. Tóth, Cluster points of sequences of fuzzy real numbers, Soft

Computing 14(4) (2010), 399—404.
[13] D.H. Hong and S.Y. Hwang, On the convergence of T-sum of L-R fuzzy numbers, Fuzzy Sets

and Systems 63(1994), 175—180.
[14] S.Y. Hwang and D.H. Hong, The convergence of T-sum of fuzzy numbers on Banach spaces,

Appl. Math. Lett. 10(1997), 129—134.
[15] O. Kaleva, On the convergence of fuzzy sets, Fuzzy Sets and Systems 17(1985), 53—65.
[16] M. Matloka, Sequences of fuzzy numbers, Busefal 28(1986), 28—37.
[17] M. Mizumoto and K. Tanaka, The four operations of arithmetic on fuzzy numbers, Systems-

Computers-Controls 7(1976), 73—81.
[18] M. Mizumoto and K. Tanaka, Some properties of fuzzy numbers, Advances in fuzzy set theory

and applications, pp. 153—164, North-Holland, Amsterdam-New York, 1979.
[19] S. Nanda, On sequence of fuzzy numbers, Fuzzy Sets and Systems 33(1989), 123—126.
[20] H.T. Nguyen, A note on the extension principle for fuzzy sets, J. Math. Anal. Appl. 64(1978),

369—380.
[21] M.L. Puri and D.A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114(1986), 409—

422.
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